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Crank -Nicolson scheme for solving a system of singularly perturbed

partial differential equations of parabolic type
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Abstract

A singularly perturbed boundary value problem (SPBVP) for a system of two linear parabolic second order
differential equations of convection-diffusion type is considered. Since the second order space derivative
of each equation is multiplied by distinct singular perturbation parameters, the components of the solution
exhibit overlapping layers. In this work, a method which comprises the Crank- Nicolson scheme to discretise
time variable on a uniform mesh and standard central difference scheme on a Shishkin piecewise uniform
mesh to discretise space variable is suggested to obtain numerical approximations to the solution of the
continuous problem. The numerical solution obtained using the suggested method is second order convergent
in time and first order convergent in space.
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1 Introduction

A singularly perturbed boundary value problem for a system of two linear parabolic second order differential
equations of convection-diffusion type is considered as follows

~L~u(x, t) =
∂~u
∂t

(x, t)− E
∂2~u
∂x2 (x, t) + A(x, t)

∂~u
∂x

(x, t) + B(x, t)~u(x, t) = ~f (x, t) on Ω,~u given on Γ, (1.1)

where ~u(x, t) = (u1(x, t), u2(x, t))T , ~f (x, t) = ( f1(x, t), f2(x, t))T , A(x, t) = diag(a1(x, t), a2(x, t)),

E = diag(ε1, ε2) and B(x, t) =
(

b11(x, t) b12(x, t)
b21(x, t) b22(x, t)

)
,

Ω = {(x, t) : 0 < x < 1, 0 < t ≤ T}, Ω = Ω ∪ Γ, Γ = ΓL ∪ ΓB ∪ ΓR with ~u(0, t) = ~φL(t) on ΓL = {(0, t) :
0 ≤ t ≤ T}, ~u(x, 0) = ~φB(x) on ΓB = {(x, 0) : 0 ≤ x ≤ 1}, ~u(1, t) = ~φR(t) on ΓR = {(1, t) : 0 ≤ t ≤ T}. The
functions ~φL, ~φB, and ~φR are assumed to be sufficiently smooth. Standard theoretical results on the solutions
of (1.1) are stated, without proof, in this paper. See [1], [2], [7], [8] and [9] for more details. Without loss of
generality we shall assume that

0 < ε1 < ε2 ≤ 1. (1.2)

For all (x, t) ∈ Ω , it is assumed that the components ai(x, t) of A(x, t) and bij(x, t) of B(x, t) satisfy the
inequalities

bij(x, t) ≤ 0 for i 6= j, bii(x, t) > 0, ai(x, t) > 0, B(x, t)− 1
2

∂A
∂x

(x, t) > 0 (1.3)
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and
min

(x,t)∈[0,1]×[0,T]
{b11(x, t) + b12(x, t) + a1(x, t), b21(x, t) + b22(x, t) + a2(x, t)} > α > 0, (1.4)

The problem (1.1) can also be written in the form

~L~u = ~f on Ω,~u given on Γ,

where the operator~L is defined by

~L =
∂

∂t
− E

∂2

∂x2 + A
∂

∂x
+ BI,

where I is the identity matrix. The reduced problem corresponding to (1.1) is defined by

∂~u0

∂t
(x, t) + A(x, t)

∂~u0

∂x
(x, t) + B(x, t)~u0(x, t) = ~f (x, t), ~u0(x, 0) = φB(x), 0 < x < 1 (1.5)

In general as ~u0(x, t) need not satisfy ~u0(1, t) = ~u(1, t), the solution ~u(x, t) exhibit boundary layers at x = 1.

For any function ~y on a domain D the following norms are introduced: ‖ ~y(x, t) ‖D= max
i
|yi(x, t)| and

‖ ~y ‖= sup{‖ ~y(x, t) ‖: (x, t) ∈ [0, 1]× [0, T]}. If D = Ω, the subscript is dropped.
In a compact domain D a function is said to be Hölder continuous of degree λ, 0 < λ ≤ 1, if, for all
(x1, t1), (x2, t2) ∈ D,

|~u(x1, t1)− ~u(x2, t2)| ≤ C(|x1 − x2|2 + |t1 − t2|)
λ/2

.

The set of Hölder continuous functions forms a normed linear space C0
λ(D) with the norm

||~u||λ,D = ||~u||D + sup
(x1,t1),(x2,t2)∈D

|~u(x1, t1)− ~u(x2, t2)|
(|x1 − x2|2 + |t1 − t2|)λ/2 .

For each integer k ≥ 1, the subspaces Ck
λ(D) of C0

λ(D), which contain functions having Hölder continuous
derivatives, are defined as follows

Ck
λ(D) = {~u :

∂l+m~u
∂xl∂tm ∈ C0

λ(D) for l, m ≥ 0 and 0 ≤ l + 2m ≤ k}.

The norm on C0
λ(D) is taken to be ||~u||λ,k,D = max

0≤l+2m≤k
|| ∂

l+m~u
∂xl∂tm ||λ,D.

It is to be noted that the domain of the operators~L isMλ(Ω) = {ψ : ∂ψ
∂t , ∂2ψ

∂x2 exist on Ω} and that of I + ∆
2
~Lx

isM∗
λ(Ω) = {ψ : ∂2ψ

∂x2 exist on Ω}, where~Lx = −E ∂2

∂x2 + A ∂
∂x + BI.

Sufficient conditions for the existence, uniqueness and regularity of solution of (1.1) are given in the following
theorem.

Theorem 1.1. Assume that A, B ~f ∈ C2
λ(Ω), ~φL ∈ C1(ΓL), ~φB ∈ C2(ΓB), ~φR ∈ C1(ΓR) and that the following

compatibility conditions are fulfilled at the corners (0, 0) and (1, 0) of Γ

~φB(0) = ~φL(0) and ~φB(1) = ~φR(0), (1.6)

d~φL(0)
dt

− E
d2~φB(0)

dx2 + A(0, 0)
d~φL(0)

dx
+ B(0, 0)~φB(0) = ~f (0, 0),

d~φR(0)
dt

− E
d2~φB(1)

dx2 + A(1, 0)
d~φL(0)

dx
+ B(1, 0)~φB(1) = ~f (1, 0),

(1.7)

d2

dt2
~φL(0) = E2 d4

dx4
~φB(0)− 2EA(0, 0)

d3

dx3
~φB(0)− A2(0, 0)

d2

dx2
~φB(0)

−E(
∂2 A
∂x2 (0, 0)

d
dx

φB(0) +
∂2B
∂x2 (0, 0)~φB(0) + B(0, 0)

d2

dx2
~φB(0)−

∂2 f
∂x2 (0, 0))

+A(0, 0)(
∂A
∂x

(0, 0)
d

dx
~φB(0) +

∂B
∂x

(0, 0)~φB(0) + B(0, 0)
d

dx
~φB(0)−

∂ f
∂x

(0, 0))

−(∂A
∂t

(0, 0)
d

dx
~φB(0) +

∂B
∂t

(0, 0)~φB(0) + B(0, 0)
d
dt
~φB(0)−

∂ f
∂t

(0, 0))

(1.8)
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and

d2

dt2
~φL(0) = E2 d4

dx4
~φB(1)− 2EA(1, 0)

d3

dx3
~φB(1)− A2(1, 0)

d2

dx2
~φB(1)

−E(
∂2 A
∂x2 (1, 0)

d
dx

φB(1) +
∂2B
∂x2 (1, 0)~φB(1) + B(1, 0)

d2

dx2
~φB(1)−

∂2 f
∂x2 (1, 0))

+A(1, 0)(
∂A
∂x

(1, 0)
d

dx
~φB(1) +

∂B
∂x

(1, 0)~φB(1) + B(1, 0)
d

dx
~φB(1)−

∂ f
∂x

(1, 0))

−(∂A
∂t

(1, 0)
d

dx
~φB(1) +

∂B
∂t

(1, 0)~φB(1) + B(1, 0)
d
dt
~φB(1)−

∂ f
∂t

(1, 0)).

(1.9)

Then there exists a unique solution ~u of (1.1) such that ~u ∈ C4
λ(Ω).

It is assumed throughout the paper that all of the assumptions (1.2), (1.3), (1.4), (1.6), (1.7), (1.8) and (1.9) of
this section hold. Furthermore, C denotes a generic positive constant, which is independent of x, t and of
all singular perturbation and discretization parameters. Inequalities between vectors are understood in the
componentwise sense.

2 Analytical results

The operator~L satisfies the following maximum principle.

Theorem 2.2. Let ~ψ be any vector-valued function in the domain of ~L such that ~ψ ≥ ~0 on Γ. Then ~L~ψ(x, t) ≥ ~0
on Ω implies that ~ψ(x, t) ≥~0 on Ω.

An immediate consequence of this is the following stability result.

Theorem 2.3. If ~ψ is any vector-valued function in the domain of ~L, then, for each i, 1 ≤ i ≤ 2 and (x, t) ∈ Ω,

|ψi(x, t)| ≤ max
{
‖ ~ψ ‖Γ,

1
α
‖ ~L~ψ ‖

}
.

3 Crank-Nicolson semi-discretization in time

On [0, T], a uniform mesh with M mesh intervals, given by ΩM
t = {k∆t, 0 ≤ k ≤ M, ∆t = T/M} is

considered. The following Crank-Nicolson scheme is applied on this mesh

~u0(x) = ~u(x, 0),

(I +
∆t
2
~Lx)~uk+1(x) =

∆t
2
(~f k + ~f k+1)(x) + (I − ∆t

2
~Lx)~uk(x),

~uk+1(0) = ~u(0, tk+1),~uk+1(1) = ~u(1, tk+1), k = 0, ..., M− 1

(3.10)

It is helpful to introduce the following artificial problem:

(I +
∆t
2
~Lx)~̂u

k+1
(x) =

∆t
2
(~f k + ~f k+1)(x) + (I − ∆t

2
~Lx)~u(x, tk),

~̂u
k+1

(0) = ~u(0, tk+1), ~̂u
k+1

(1) = ~u(1, tk+1),
(3.11)

where~Lx = −E ∂2

∂x2 + A ∂
∂x + BI, ~f k = ~f (x, tk) and the solution ~u of (1.1) has replaced ~uk in(3.10).

The operator I +
∆t
2
~Lx satisfies the following maximum principle.

Theorem 3.4. Let ~ψ be any vector-valued function in the domain of the operator I +
∆t
2
~Lx such that ~ψ(0) ≥ ~0 and

~ψ(1) ≥~0. Then (I +
∆t
2
~Lx)~ψ(x) ≥~0 on (0, 1) implies that ~ψ(x) ≥~0 on [0, 1].

The stability of the operator I +
∆t
2
~Lx is now established.



S.Parthiban et al. / Crank -Nicolson scheme for... 407

Theorem 3.5. If ~ψ is any vector-valued function in the domain of the operator I +
∆t
2
~Lx then, for each i, 1 ≤ i ≤ 2

and x ∈ [0, 1],

|ψi(x)| ≤ max
{
‖ ~ψ(0) ‖, ‖ ~ψ(1) ‖, 1

α
‖ (I +

∆t
2
~Lx)~ψ(x) ‖

}
.

4 The Shishkin mesh

A piecewise uniform Shishkin mesh with M× N mesh-intervals is now constructed. Let ΩM
t = {tk}M

k=1, ΩN
x

= {xj}N−1
j=1 , ΩM

t = {tk}M
k=0, ΩN

x = {xj}N
j=0, ΩM,N = ΩM

t × ΩN
x , ΩM,N

= ΩM
t × ΩN

x and ΓM,N =

Γ ∩ΩM,N . The mesh ΩM
t is chosen to be a uniform mesh with M mesh-intervals on [0, T]. The mesh ΩN

x is a
piecewise-uniform mesh on [0, 1] obtained by dividing [0, 1] into 3 mesh-intervals as follows

[0, 1− σ2] ∪ (1− σ2, 1− σ1] ∪ (1− σ1, 1].

The parameters σ1, σ2 which determine the points separating the uniform meshes, are defined by,

σ2 = min
{

1
2

, 2
ε2

α
ln N

}
(4.12)

and,
σ1 = min

{σ2

2
, 2

ε1

α
ln N

}
. (4.13)

Clearly

0 < σ1 < σ2 ≤
1
2

.

Then, on the sub-interval [0, 1 − σ2] a uniform mesh with N
2 mesh-points is placed and on each of the

sub-intervals (1− σ2, 1− σ1] and (1− σ1, 1], a uniform mesh of
N
4

mesh-points is placed. In practice, it is
convenient to take

N = 8q, q ≥ 3. (4.14)

In particular, when both the parameters σr, r = 1, 2, are with the left choice, the Shishkin mesh ΩM,N

becomes the classical uniform mesh with the step size N−1 throughout from 0 to 1.
The Shishkin mesh suggested here has the features of an ideal Shishkin mesh that (i) when both the transition
parameters have the left choice, it is the classical uniform mesh and (ii) it is coarse in the outer region and
becomes finer and finer towards the right boundary. From the above construction it is clear that the transition
points σr, r = 1, 2 on [0, 1] are the only points at which the mesh-size can change and that it does not necessarily
change at each of these points.

5 The discrete problem

In this section a classical finite difference operator with an appropriate Shishkin mesh is used to construct a
numerical method for (1.1).
The discrete boundary value problem is now defined on any mesh by the finite difference method

D−t ~U − Eδ2
x~U + AD−x ~U + B~U = ~f on ΩM,N , ~U = ~u on ΓM,N . (5.15)

This is used to compute numerical approximations to the solution of (1.1). It is assumed henceforth that the
mesh is a Shishkin mesh, as defined in the previous section. Note that (5.15) can also be written in the operator
form

~LM,N~U = ~f on ΩM,N , ~U = ~u on ΓM,N ,

where
~LM,N = D−t − Eδ2

x + AD−x + BI

and D−t , δ2
x, D+

x and D−x are the difference operators.

For any function ~Z defined on the Shishkin mesh ΩM,N , it is defined that ||~Z|| = max
i

max
j,k
|Zi(xj, tk)|.

The following discrete results are analogous to those for the continuous case.
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Theorem 5.6. For any vector-valued mesh function ~Ψ, the inequalities ~Ψ ≥ ~0 on ΓM,N and~LM,N~Ψ ≥ ~0 on ΩM,N

imply that ~Ψ ≥~0 on ΩM,N .

An immediate consequence of this is the following discrete stability result.

Theorem 5.7. For any vector-valued mesh function ~Ψ on ΩM,N ,

|Ψi(xj, tk)| ≤ max
{
||~Ψ||ΓM,N ,

1
α
||~LM,N~Ψ||

}
,

i = 1, 2 and (xj, tk) ∈ ΩM,N .

6 The complete discretisation in time and space

The discrete boundary value problem is now defined on any mesh by

~U0(xj) = ~u(xj, 0) on ΓN
B ,

(I +
∆t
2
~LN

x )~Uk+1(xj) =
∆t
2
(~f k + ~f k+1)(xj) + (I − ∆t

2
~LN

x )~Uk(xj),
~Uk+1(xj) = ~u(xj, tk+1) on ΓM

L ∪ ΓM
R , for k = 0, ..., M− 1

 (6.16)

where ΓM
L = {(0, t) : 0 ≤ t ≤ T}, ΓN

B = {(x, 0) : 0 ≤ x ≤ 2}, ΓM
R = {(2, t) : 0 ≤ t ≤ T} and

~LN
x = −Eδ2

x + AD−x + BI

and δ2
x, D+

x and D−x are the standard finite difference operators.

The following results for the discrete operator I +
∆t
2
~LN

x are analogous to theorems 3.4 and 3.5. They are
presented below without proof.

Theorem 6.8. For any vector-valued mesh function ~Ψ, the inequalities ~Ψ ≥ ~0 on ΓM,N and (I +
∆t
2
~LN

x )~Ψ ≥ ~0 on

ΩM,N imply that ~Ψ ≥~0 on ΩM,N .

An immediate consequence of this is the following discrete stability result.

Theorem 6.9. For any vector-valued mesh function ~Ψ on ΩM,N , for k = 0, ..., M− 1 and 0 ≤ j ≤ N,

‖ ~Ψ(xj, tk+1) ‖ ≤ max
{
||~Ψ||ΓM,N ,

1
α
||(I +

∆t
2
~LN

x )~Ψ||
}

.

7 Error Estimate

Theorem 7.10. Let ~u denote the solution of (1.1) and ~U the solution of (5.15). Then

||~U − ~u|| ≤ C(M−2 + N−1 ln N).

8 Numerical Illustration

The ε–uniform convergence of the numerical method proposed in this paper is illustrated through an
example presented in this section. The following system of singularly perturbed boundary value problem for
a linear parabolic second order differential equations of convection-diffusion type is considered for
numerical illustration.
Example

∂u1

∂t
(x, t)− ε1

∂2u1

∂x2 (x, t) + (6 + x2)
∂u1

∂x
(x, t) + (5 + x + t)u1(x, t)− xu2(x, t) = et + x2,

∂u2

∂t
(x, t)− ε2

∂2u2

∂x2 (x, t) + (10 + ex)
∂u2

∂x
(x, t)− u1(x, t) + (6 + sin x)u2(x, t) = 5 + e−x2

,

for (x, t) ∈ (0, 1)× [0, T], with~u(0, t) =~0,~u(x, 0) =~0,~u(1, t) =~0.

(8.17)
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Fixing a fine Shishkin mesh with 128 points horizontally, the problem is solved by the method suggested
above. The order of convergence and the error constant are calculated for t and the results are presented in
Table 1. A graph of the numerical solution is presented in the Figure 1.
A fine uniform mesh on t with 32 points is considered. The order of convergence and the error constant are
calculated for x and the results are presented in Table 2. A graph of the numerical solution is presented in the
Figure 2.
Based on the algorithm found in [6], it is to be noted that Table 1 and Table 2 give the parameter-uniform order
of convergence and the error constant.

Table 1:
Values of DN , pN , p∗ and CN

p∗ for ε1 = η/4, ε2 = η and α = 0.9

η Number of mesh points N
8 16 32 64 128

2−9 0.968E-01 0.479E-01 0.248E-01 0.112E-01 0.429E-02
2−13 0.969E-01 0.480E-01 0.248E-01 0.111E-01 0.430E-02
2−17 0.969E-01 0.480E-01 0.248E-01 0.111E-01 0.430E-02
2−21 0.969E-01 0.480E-01 0.248E-01 0.111E-01 0.430E-02
2−25 0.969E-01 0.480E-01 0.248E-01 0.111E-01 0.430E-02
DN 0.968E-01 0.480E-01 0.248E-01 0.112E-01 0.430E-02
pN 0.101E+01 0.952E+00 0.115E+01 0.138E+01
CN

p 0.145E+01 0.139E+01 0.139E+01 0.121E+01 0.904E+00
t-order of convergence= 0.9523812E + 00

The error constant= 0.1452491E + 01

Table 2:
Values of DN , pN , p∗ and CN

p∗ for ε1 = η/4, ε2 = η and α = 0.9

η Number of mesh points N
128 256 512 1024

2−13 0.401E+00 0.312E+00 0.222E+00 0.146E+00
2−17 0.401E+00 0.312E+00 0.222E+00 0.146E+00
2−21 0.401E+00 0.312E+00 0.222E+00 0.146E+00
2−25 0.401E+00 0.312E+00 0.222E+00 0.146E+00
2−29 0.401E+00 0.312E+00 0.222E+00 0.146E+00
DN 0.401E+00 0.312E+00 0.222E+00 0.146E+00
pN 0.362E+00 0.489E+00 0.608E+00
CN

p 0.105E+01 0.105E+01 0.958E+00 0.808E+00
x- order of convergence= 0.362E + 00

The error constant= 0.105E + 01

The Figure 1 displays the numerical solution for the problem (8.17), computed for M = 8, N = 128, ε1 = 2−27

and ε2 = 2−25. The solution ~u(x, t) have boundary layers at (1, t).
The Figure 2 displays the numerical solution for the problem (8.17), computed for M = 16, N = 32, ε1 = 2−15

and ε2 = 2−13. The solution ~u(x, t) have boundary layers at (1, t).
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Figure 1:
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