Intuitionistic Q-fuzzy ternary subhemiring of a hemiring

N. Anithaa and K. Tamilvananb,*

aDepartment of Mathematics, Periyar University PG Extension centre, Dharmapuri-636 701, Tamil Nadu, India.
bDepartment of Mathematics, Periyar University PG Extension centre, Dharmapuri-636 701, Tamil Nadu, India.

Abstract

In this paper, a generalized intuitionistic Q-fuzzy ternary subhemiring of a hemiring is proposed. Further, some important notions and basic algebraic properties of intuitionistic fuzzy sets are discussed.

Keywords: Q-fuzzy subhemiring, Q-fuzzy ternary subhemiring, intuitionistic fuzzy ternary subhemiring, homomorphism, anti-homomorphism.

2010 MSC: 03F55, 06D72, 08A72, 16Y30, 16Y60.

1 Introduction

An algebra $(R; +; \cdot)$ is said to be a semiring if $(R; +)$ and $(R; \cdot)$ are semigroups satisfying $a \cdot (b + c) = a \cdot b + a \cdot c$ and $(b + c) \cdot a = b \cdot a + c \cdot a$ for all a, b and c in R. A Semiring R is said to be additively commutative if $a + b = b + a$ for all a and b in R. Ternary rings are introduced by Lister [9]. And he investigated some of their properties and radical theory of such rings. A Semiring R may have an identity 1, defined by $1 \cdot a = a = a \cdot 1$ and a zero 0, defined by $0 + a = a = a + 0$ and $a \cdot 0 = 0 = 0 \cdot a$ for all a in R. Ternary semirings arise naturally as follows-consider the ring of integers \mathbb{Z} which plays a vital role in the theory of ring. The concept of intuitionistic fuzzy subsets (IFS) was presented by K.T.Atanassov [5], as a generalization of the notion of fuzzy set. Solairaju.A and R.Nagarajan, have given a new structure in construction of Q-fuzzy groups [14]. Also Giri.R.D and Chide.B.R [8], given the structure of Prime Radical in Ternary Hemiring. In this paper, we introduce some properties and theorems in intuitionistic Q-fuzzy ternary subhemiring of a hemiring.

2 Preliminaries

Definition 2.1. Let X be a non-empty set and Q be a non-empty set. A Q-fuzzy subset A of X is function $A : X \times Q \to [0, 1]$.

Definition 2.2. Let R be a hemiring. A fuzzy subset A of R is said to be a Q-fuzzy ternary subhemiring (FTSHR) of R if it satisfies the following conditions:

(i) $A(x + y, q) \geq \min\{A(x, q), A(y, q)\}$,

(ii) $A(xyz, q) \geq \min\{A(x, q), A(y, q), A(z, q)\}$, for all x, y and z in R and q in Q.

Definition 2.3. Let R be a hemiring. A Q-fuzzy subset A of R is said to be an anti Q-fuzzy subhemiring (AFTSHR) of R if it satisfies the following conditions:

*Corresponding author.

E-mail address: anithaarenu@gmail.com (Anitha), tamiltamilk7@gmail.com (Tamilvanan).
Theorem 3.3. If \(A \) is an intuitionistic \(Q \)-fuzzy ternary subhemiring of a hemiring \(R \), then for all \(x, y, z \in R \) and \(q \in Q \),

(i) \(A(x + y, q) \leq \max\{A(x, q), A(y, q)\} \),
(ii) \(A(xyz, q) \leq \max\{A(x, q), A(y, q), A(z, q)\} \).

Definition 2.4. An intuitionistic fuzzy subset (IFS) \(A \) in \(X \) is defined as an object of the form \(A = \{ (x, \mu_A(x), \nu_A(x)) \mid x \in X \} \), where \(\mu_A : X \to [0, 1] \) and \(\nu_A : X \to [0, 1] \) define the degree of membership and the degree of non-membership of the element \(x \in X \) respectively and for every \(x \in X \) satisfying \(0 \leq \mu_A(x) + \nu_A(x) \leq 1 \).

Definition 2.5. Let \(R \) be a hemiring. An intuitionistic \(Q \)-fuzzy subterary subhemiring (IFTSHR) of \(R \) if it satisfies the following conditions:

(i) \(\mu_A(x + y, q) \geq \min\{\mu_A(x, q), \mu_A(y, q)\} \),
(ii) \(\nu_A(x + y, q) \leq \max\{\nu_A(x, q), \nu_A(y, q)\} \),
(iii) \(\mu_A(xyz, q) \geq \min\{\mu_A(x, q), \mu_A(y, q), \mu_A(z, q)\} \),
(iv) \(\nu_A(xyz, q) \leq \max\{\nu_A(x, q), \nu_A(y, q), \nu_A(z, q)\} \), for all \(x, y, z \in R \) and \(q \in Q \).

Definition 2.7. Let \((R, +, \cdot) \) and \((R', +, \cdot) \) be any two hemirings. Then the function \(f : R \to R' \) is called a homomorphism if \(f(x + y, q) = f(x, q) + f(y, q) \) and \(f(xyz, q) = f(x, q)f(y, q)f(z, q) \), for all \(x, y, z \in R \) and \(q \in Q \).

Definition 2.8. Let \((R, +, \cdot) \) and \((R', +, \cdot) \) be any two hemirings. Then the function \(f : R \to R' \) is called an isomorphism if \(f \) is bijection.

Definition 2.9. Let \((R, +, \cdot) \) and \((R', +, \cdot) \) be any two hemirings. Then the function \(f : R \to R' \) is called an anti-isomorphism if \(f \) is bijection.

3 Some properties of intuitionistic \(Q \)-fuzzy ternary subhemiring of a hemiring

Theorem 3.1. If \(A \) is an intuitionistic \(Q \)-fuzzy ternary subhemiring of a hemiring \((R, +, \cdot) \), then \(H = \{ (x, q) \mid x \in R : \mu_A(x, q) = 1, \nu_A(x, q) = 0 \} \) is either empty or is a ternary subhemiring of \(R \).

Proof. If none of the elements satisfies this condition, then \(H \) is empty. If \((x, q) \) and \((y, q) \) in \(H \), then \(\mu_A(x + y, q) \geq \min\{\mu_A(x, q), \mu_A(y, q)\} = \min\{1, 1\} = 1 \). Therefore \(\mu_A(x + y, q) = 1 \), for all \((x, q) \) and \((y, q) \) in \(H \). And \(\mu_A(xyz, q) \geq \min\{\mu_A(x, q), \mu_A(y, q), \mu_A(z, q)\} = \min\{1, 1, 1\} = 1 \). Therefore \(\mu_A(xyz, q) = 1 \), for all \((x, q), (y, q) \) and \((z, q) \) in \(H \). And \(\nu_A(x + y, q) \leq \max\{\nu_A(x, q), \nu_A(y, q)\} = \max\{0, 0\} = 0 \). Therefore \(\nu_A(x + y, q) = 0 \), for all \((x, q) \) and \((y, q) \) in \(H \). And \(\nu_A(xyz, q) \leq \max\{\nu_A(x, q), \nu_A(y, q), \nu_A(z, q)\} = \max\{0, 0, 0\} = 0 \). Therefore \(\nu_A(xyz, q) = 0 \), for all \((x, q), (y, q) \) and \((z, q) \) in \(H \). Therefore \(H \) is a ternary subhemiring of \(R \). Hence \(H \) is either empty or is a ternary subhemiring of \(R \).

Theorem 3.2. If \(A \) is an intuitionistic \(Q \)-fuzzy ternary subhemiring of a hemiring \((R, +, \cdot) \), then \(H = \{ (x, q) \mid \mu_A(x, q) \leq 1 \text{ and } \nu_A(x, q) = 0 \} \) is either empty or is a \(Q \)-fuzzy ternary subhemiring of \(R \).

Proof. By using Theorem 3.1.

Theorem 3.3. If \(A \) is an intuitionistic \(Q \)-fuzzy ternary subhemiring of a hemiring \((R, +, \cdot) \), then \(H = \{ (x, q) \mid \mu_A(x, q) \leq 1 \} \) is either empty or is a \(Q \)-fuzzy ternary subhemiring of \(R \).

Proof. By using Theorem 3.2.
Theorem 3.4. If A is an intuitionistic Q-fuzzy ternary subhemiring of a hemiring $(R,+)$, then A is an intuitionistic Q-fuzzy ternary subhemiring of R.

Proof. Let A be an intuitionistic Q-fuzzy ternary subhemiring of a hemiring R. Consider $A = \{\{(x,q),\mu_A(x,q)\};\}$ for all $x \in R$. $A = B = \{(x,q)\}$, where $\mu_B(x,q) = \mu_A(x,q) = 1 - \mu_A(x,q)$. Clearly, $\mu_B(x+y,q) \geq \min\{\mu_B(x,q),\mu_B(y,q)\}$ and $\mu_B(xyz,q) \geq \min\{\mu_B(x,q),\mu_B(y,q),\mu_B(z,q)\}$. Since A is an intuitionistic Q-fuzzy ternary subhemiring of R, we have, $\mu_A(x+y,q) \geq \min\{\mu_A(x,q),\mu_A(y,q)\}$ for all x and y in R, which implies that $1 - \nu_B(x+y,q) \geq \min\{(1 - \nu_B(x,q)),(1 - \nu_B(y,q))\}$ which implies that $\nu_B(x+y,q) \leq 1 - \min\{1 - \nu_B(x,q),(1 - \nu_B(y,q))\} = \max\{\nu_B(x,q),\nu_B(y,q)\}$. Therefore, $\nu_B(x+y,q) \leq \max\{\nu_B(x,q),\nu_B(y,q),\nu_B(z,q)\}$ for all x and y in R and q in Q. And $\nu_A(xyz,q) \geq \min\{\nu_A(x,q),\nu_A(y,q)\}$ which implies that $1 - \nu_B(xyz,q) \geq \min\{(1 - \nu_B(x,q)),(1 - \nu_B(y,q)),(1 - \nu_B(z,q))\} \neq \max\{\nu_B(x,q),\nu_B(y,q),\nu_B(z,q)\}$. Therefore $\nu_B(xyz,q) \leq \max\{\nu_B(x,q),\nu_B(y,q),\nu_B(z,q)\}$ for all x, y and z in R. Hence $B = A$ is an intuitionistic Q-fuzzy ternary subhemiring of a hemiring R.

Remark 3.1. The converse of the above theorem is not true. It is shown by the following example: Consider the hemiring $Z_5 = \{0,1,2,3,4\}$ with addition modulo and multiplicative modulo operation and $Q = \{p\}$. Then $A = \{(0,0.7,0.2),\mu_A(x,q)\}$, $(1,0.5,0.1),\mu_A(x,q)$, $(2,0.5,0.4),\mu_A(x,q)$, $(3,0,5,0.1),\mu_A(x,q)$, $(4,0.5,0.4),\mu_A(x,q)$ is not an intuitionistic Q-fuzzy ternary subhemiring of Z_5, but $A = \{(0,0.7,0.3),\mu_A(x,q)\}$, $(1,0.5,0.5),\mu_A(x,q)$, $(2,0,5,0.5),\mu_A(x,q)$, $(3,0,5,0.5),\mu_A(x,q)$, $(4,0,5,0.5),\mu_A(x,q)$ is an intuitionistic Q-fuzzy ternary subhemiring of Z_5.

Theorem 3.5. If A is an intuitionistic Q-fuzzy ternary subhemiring of a hemiring $(R,+)$, then A is an intuitionistic Q-fuzzy ternary subhemiring of R.

Proof. Let A be an intuitionistic Q-fuzzy ternary subhemiring of a hemiring R. That is $A = \{(x,q),\mu_A(x,q)\}$, for all $x \in R$ and $q \in Q$. Let $A = B = \{(x,q),\mu_B(x,q),\nu_B(x,q)\}$, where $\mu_B(x,q) = 1 - \nu_B(x,q), \nu_B(x,q) = \nu_A(x,q)$. Clearly, $\nu_B(x+y,q) \leq \max\{\nu_B(x,q),\nu_B(y,q)\}$ and $\nu_B(xyz,q) \leq \max\{\nu_B(x,q),\nu_B(y,q),\nu_B(z,q)\}$ for all x,y and z in R. Since A is an intuitionistic Q-fuzzy ternary subhemiring of R, we have, $\nu_A(x+y,q) \leq \max\{\nu_A(x,q),\nu_A(y,q)\}$ for all x and y in R, which implies that $1 - \nu_B(x+y,q) \leq \max\{(1 - \nu_B(x,q))\},(1 - \nu_B(y,q))\}$ which implies that $\nu_B(x+y,q) \geq 1 - \min\{(1 - \nu_B(x,q))\},(1 - \nu_B(y,q))\} = \min\{\nu_B(x,q),\nu_B(y,q)\}$, Therefore, $\nu_B(x+y,q) \geq \min\{\nu_B(x,q),\nu_B(y,q)\}$ for all x and y in R and q in Q. And $\nu_A(xyz,q) \leq \max\{\nu_A(x,q),\nu_A(y,q),\nu_A(z,q)\}$ which implies that $1 - \nu_B(xyz,q) \leq \max\{(1 - \nu_B(x,q)),(1 - \nu_B(y,q)),(1 - \nu_B(z,q))\}$ which implies that $\nu_B(xyz,q) \geq 1 - \min\{(1 - \nu_B(x,q)),(1 - \nu_B(y,q)),(1 - \nu_B(z,q))\} \neq \min\{\nu_B(x,q),\nu_B(y,q),\nu_B(z,q)\}$, Therefore $\nu_B(xyz,q) \geq \min\{\nu_B(x,q),\nu_B(y,q),\nu_B(z,q)\}$, for all x,y and z in R. Hence $B = A$ is an intuitionistic Q-fuzzy ternary subhemiring of a hemiring R.

Remark 3.2. The converse of the above theorem is not true. It is shown by the following example: Consider the hemiring $Z_5 = \{0,1,2,3,4\}$ with addition modulo and multiplicative modulo operation and $Q = \{p\}$. Then $A = \{(0,0.5,0.1,\mu_A(x,q)\},(1,0,6,0.4),\mu_A(x,q),\nu_B(x,q)\}$, $(2,0,5,0.4),\mu_A(x,q)$, $(3,0,6,0.4),\mu_A(x,q)$, $(4,0,5,0.4),\mu_A(x,q)$ is not an intuitionistic Q-fuzzy ternary subhemiring of Z_5, but $A = \{(0,0.9,0.1),\mu_A(x,q)\},(1,0,6,0.4),\mu_A(x,q),\nu_B(x,q)\}$, $(2,0,6,0.4),\mu_A(x,q),\nu_B(x,q)\}$, $(3,0,6,0.4),\mu_A(x,q),\nu_B(x,q)\}$, $(4,0,6,0.4),\mu_A(x,q),\nu_B(x,q)\}$ is an intuitionistic Q-fuzzy ternary subhemiring of Z_5.

In The Following Theorem ô Is The Composition Operation of Functions:

Theorem 3.6. Let A be an intuitionistic Q-fuzzy ternary subhemiring of a hemiring H and f is an isomorphism from a hemiring R onto H. Then $A \circ f$ is an intuitionistic Q-fuzzy ternary subhemiring of R.

Proof. Let x and y in R and A be an intuitionistic Q-fuzzy ternary subhemiring of H. Then we have $\mu_A(f(x,y,q)) = \mu_A(f(x,q)) + \mu_A(f(y,q)) \geq \min\{\mu_A(f(x,q)),\mu_A(f(y,q))\}$ (as A is an IFTSHR of H) $\geq \min\{\mu_A(f(x,q)),\mu_A(f(y,q))\}$ which implies that $\mu_A(f(x+y,q)) \geq \min\{\mu_A(f(x,q)),\mu_A(f(y,q))\}$, for all x and y in R and q in Q. And $\mu_A(f(xyz,q)) = \mu_A(f(xy,q)) = \mu_A(f(x,q)) \mu_A(f(y,q))$, as f is an isomorphism $\geq \min\{\mu_A(f(x,q)),\mu_A(f(y,q)),\mu_A(f(z,q))\}$, as A is an IFTSHR of H $\geq \min\{\mu_A(f(x,q)),\mu_A(f(y,q))\}$ which implies that $\mu_A(f(xyz,q)) \geq \min\{\mu_A(f(x,q)),\mu_A(f(y,q))\}$.
\(f(x, y), (\mu \circ f)(y, q), (\mu \circ f)(z, q)\), for all \(x, y, z\) in \(R\). We have \((\nu \circ f)(x + y, q) = \nu_A(f(x + y, q)) = \nu_A(f(y, q) + f(x, q))\), as \(f\) is an isomorphism \(\leq \) \(\max\ \{\nu_A(f(x, q)), \nu_A(f(y, q))\} \leq \max\ \{\nu_A \circ f(x, q), (\nu_A \circ f)(y, q)\}\) which implies that \((\nu \circ f)(x + y, q) \leq \max\ \{\nu_A \circ f(x, q), (\nu_A \circ f)(y, q)\}\) for all \(x, y\) in \(R\). And \((\nu \circ f)(xyz, q) = \nu_A(f(xyz, q)) = \nu_A(f(x, q)f(y, q)f(z, q))\), as \(f\) is an isomorphism \(\leq \max\ \{\nu_A(f(x, q)), \nu_A(f(y, q)), \nu_A(f(z, q))\}\) which implies that \((\nu \circ f)(xyz, q) \leq \max\ \{\nu_A \circ f(x, q), (\nu_A \circ f)(y, q), (\nu_A \circ f)(z, q)\}\) for all \(x, y, z\) in \(R\). Therefore \((\nu \circ f)\) is an intuitionistic \(Q\)-fuzzy ternary subhemiring of a hemiring \(R\).

Theorem 3.7. Let \(A\) be an intuitionistic \(Q\)-fuzzy ternary subhemiring of a hemiring \(H\) and \(f\) is an anti-isomorphism from a hemiring \(H\) onto \(H\). Then \(A \circ f\) is an intuitionistic \(Q\)-fuzzy ternary subhemiring of \(R\).

Proof. Let \(x\) and \(y\) in \(R\) and \(A\) be an intuitionistic \(Q\)-fuzzy ternary subhemiring \(H\). Then we have \((\mu \circ f)(x + y, q) = \mu_A(f(x + y, q)) = \mu_A(f(y, q) + f(x, q))\), as \(f\) is an anti-homomorphism \(\geq \) \(\min\ \{\mu_A(f(y, q)), \mu_A(f(x, q))\}\) as \(A\) is an IFTSHR of \(H\). \(\geq \) \(\min\ \{\mu_A \circ f(x, q), (\mu_A \circ f)(y, q)\}\) which implies that \((\mu \circ f)(x + y, q) \geq \min\ \{\mu_A \circ f(x, q), (\mu_A \circ f)(y, q)\}\) for all \(x, y\) in \(R\).

And \((\mu \circ f)(xyz, q) = \mu_A(f(xyz, q)) = \mu_A(f(x, q)f(y, q)f(z, q))\), as \(f\) is an anti-isomorphism \(\geq \) \(\min\ \{\mu_A \circ f(x, q), (\mu_A \circ f)(y, q), (\mu_A \circ f)(z, q)\}\) which implies that \((\mu \circ f)(xyz, q) \geq \min\ \{\mu_A \circ f(x, q), (\mu_A \circ f)(y, q), (\mu_A \circ f)(z, q)\}\) for all \(x, y, z\) in \(R\). We have \((\nu \circ f)(x + y, q) = \nu_A(f(x + y, q)) = \nu_A(f(y, q) + f(x, q))\), as \(f\) is an anti-isomorphism \(\leq \) \(\max\ \{\nu_A(f(x, q)), \nu_A(f(y, q))\}\) which implies that \((\nu \circ f)(x + y, q) \leq \max\ \{\nu_A(f(x, q)), \nu_A(f(y, q))\}\) for all \(x, y\) in \(R\). And \((\nu \circ f)(xyz, q) = \nu_A(f(xyz, q)) = \nu_A(f(x, q)f(y, q)f(z, q))\), as \(f\) is an anti-isomorphism \(\leq \) \(\max\ \{\nu_A(f(x, q)), \nu_A(f(y, q)), \nu_A(f(z, q))\}\) which implies that \((\nu \circ f)(xyz, q) \leq \max\ \{\nu_A \circ f(x, q), (\nu_A \circ f)(y, q), (\nu_A \circ f)(z, q)\}\) for all \(x, y, z\) in \(R\) and \(q\) in \(Q\). Therefore \((\nu \circ f)\) is an intuitionistic \(Q\)-fuzzy ternary subhemiring of a hemiring \(R\).

References

Received: January 19, 2017; Accepted: July 21, 2017

UNIVERSITY PRESS

Website: http://www.malayajournal.org/