A-perfect lattice

Seema Bagora

Abstract
In the Paper [3] authors define the concept of A-perfect Group. Inspired by [3], we give a new concept of A-perfect lattice. If \(g \in L \) and \(\alpha \in A \), then the element \([g;\alpha] = g^{-1}\alpha(g)\) is an auto commutator of \(g \) and \(\alpha \), if is taken to be an inner automorphism, then the auto commutator sublattice is the derived sublattice \(L' \) of \(L \). A lattice \(L \) is said to be perfect if \(L = L' \). Here, the perception of A-perfect lattices would be introduced. A lattice \(L \) would be known as A-perfect, if \(L = K(L) \).

Keywords
Perfect lattice, A-perfect group, finite abelian group.

AMS Subject Classification
03G10, 11E57.

1 Department of Applied Mathematics, Shri Vaishnav Vidyapeeth Vishwavidyalaya, Gram Baroli, Sanwer Road, Indore (M.P.) 453331 India.
*Corresponding author: 1 bagoraseema@gmail.com
Article History: Received 21 March 2018; Accepted 19 April 2018

©2018 MJM.

2. Some Important Results

Theorem 2.1. Let \(H \) and \(T \) be two lattices. Suppose, the following conditions are satisfied:

(i) \(K(H) \times K(T) \subseteq K(H \times T) \);

(ii) \(H \) and \(T \) are such that \((|H|; |T|) = 1 \).

Then, \(K(H) \times K(T) = K(H \times T) \).

Proof. (i) For \(\alpha \in \text{Aut}(H) \) and \(\beta \in \text{Aut}(T) \) we define the automorphism of lattice \(H \times T \), given by

\[
(\alpha \times \beta)(h, t) = \alpha(h)\beta(t) \quad \forall h \in H, t \in T.
\]

It is easy to check that \([h;\alpha];[t;\beta] = [(h, t);\alpha \times \beta]\). This implies the result.

(ii) It is sufficient to prove \(K(H \times T) \subseteq K(H) \times K(T) \). It is easy to check that \(\hat{\lambda}/H \in \text{Aut}(H) \) and \(\hat{\lambda}/T \in \text{Aut}(T) \), for all \(\hat{\lambda} \in \text{Aut}(H \times T) \). Now

\[
[(h;\hat{\lambda}H);\hat{\lambda}] = ([h;\hat{\lambda}];[t;\hat{\lambda}/T]), \forall h \in H, t \in T, \text{Aut}(H \times T).
\]

This implies the result.

Theorem 2.2. For all nonnegative integers \(n > m_1 \geq m_2 \geq \cdots \geq m_k \).

Corollary 2.3. If \(G \) is a finite abelian group of odd order, then \(G \) is A-perfect.
Proof. L is a direct product of finitely many Z_{p^i}, where p is an odd prime number and $i \geq 1$. Hence, the result is true due to previous theorem. \square

Theorem 2.4. For all nonnegative integers $n > m_1 \geq m_2 \geq \cdots \geq m_k$,

$$K(Z_{2^n} \times Z_{2^{m_1}} \times \cdots \times Z_{2^{m_k}}) = Z_{2^n} \times Z_{2^{m_1}} \times \cdots \times Z_{2^{m_k}}.$$

Theorem 2.5. For all nonnegative integers $n > m_1 \geq m_2 \geq \cdots \geq m_k$,

$$K(Z_{2^n} \times Z_{2^{m_1}} \times \cdots \times Z_{2^{m_k}}) = Z_{2^n} \times Z_{2^{m_1}} \times Z_{2^{m_2}} \times \cdots \times Z_{2^{m_k}}.$$

Proof. We define the automorphisms $\alpha, \alpha', \beta_1, \ldots, \beta_k$ of the lattice L given by:

$$\begin{align*}
\alpha(a, b, c_1, \ldots, c_k) &= (a + b, c_1, \ldots, c_k) \\
\alpha'(a, b, c_1, \ldots, c_k) &= (a, a + b, c_1, \ldots, c_k) \\
\beta_1(a, b, c_1, \ldots, c_k) &= (a, a + b + c_1, c_2, \ldots, c_k) \\
\vdots & \\
\beta_k(a, b, c_1, \ldots, c_k) &= (a, b, c_1, \ldots, a + c_k).
\end{align*}$$

for all $a, b \in \{0, 1, 2, \ldots, 2^n - 1\}$ and $c_i \in \{0, 1, 2, \ldots, 2^m - 1\}$, $1 \leq i \leq k$. Clearly,

$$\begin{align*}
(a, 0, \ldots, 0) &= [(0, a, 0, \ldots, 0), \alpha], (0, b, 0, \ldots, 0) \\
&= [(b, 0, \ldots, 0), \alpha'] \\
(0, 0, c_1, 0, \ldots, 0) &= [(c_1, 0, 0, \ldots, 0), \beta_1] \\
(0, 0, 0, c_2, 0, \ldots, 0) &= [(c_2, 0, 0, \ldots, 0), \beta_2] \\
&\quad \vdots \\
(0, 0, \ldots, 0, c_2) &= [(c_k, 0, 0, \ldots, 0), \beta_k].
\end{align*}$$

These imply that

$$K(Z_{2^n} \times Z_{2^{m_1}} \times \cdots \times Z_{2^{m_k}}) \supseteq Z_{2^n} \times Z_{2^{m_1}} \times \cdots \times Z_{2^{m_k}}.$$

\square

Theorem 2.6. A finite abelian lattice L is A-perfect if and only if

$$L \approx Z_{2^n} \times Z_{2^{m_1}} \times \cdots \times Z_{2^{m_k}} \times M.$$

for some nonnegative integers $n > m_1 \geq m_2 \geq \cdots \geq m_k$, where M is a finite lattice of odd order.

Proof. The necessary condition follows from Theorem 2.5. Now, for the reverse conclusion, we assume that L is not a product of $Z_{2^n} \times Z_{2^{m_1}} \times \cdots \times Z_{2^{m_k}} \times M$, so it is $Z_{2^n} \times Z_{2^{m_1}} \times \cdots \times Z_{2^{m_k}} \times N$ where N is a finite abelian lattice of odd order. Theorem 2.1 implies that

$$K(Z_{2^n} \times Z_{2^{m_1}} \times \cdots \times Z_{2^{m_k}} \times N) = K(Z_{2^n} \times Z_{2^{m_1}} \times \cdots \times Z_{2^{m_k}}) \times K(N).$$

Now, the lattice L is not A-perfect due to previous. It completes the proof. \square

Acknowledgment

Author is thankful to Dr. Satish Shukla for his kind support and guidance for research work.

References

References