Neighborhood-Prime labeling for some graphs

N.P. Shrimali¹, A.K. Rathod²* and P.L. Vihol³

Abstract
We consider here a graph with \(n \) vertices and \(m \) edges denoted by \(G \) having vertex set as \(V(G) \) and edge set as \(E(G) \). If there is a bijective function \(f \) from \(V(G) \) to the set of positive integer up to \(|V(G)| \) such that for every vertex \(u \) with degree at least two the gcd of the labels of adjacent vertices of \(u \) is 1 then \(f \) is called neighborhood-prime labeling and \(G \) is called neighborhood-prime graph. In the present work we constructed some particular graphs and we proved these are neighborhood-prime graphs.

Keywords
Neighborhood of a vertex, neighborhood-prime labeling.

AMS Subject Classification (2010)
05C78.

1 Department of Mathematics, Gujarat University, Ahmedabad, India.
2,3 Department of Mathematics, Government Engineering College, Sector-28, Gandhinagar, India.
*Corresponding author: ashwin.rathodmaths@gmail.com

Article History: Received 22 August 2018; Accepted 17 January 2019

Contents

1 Introduction and Definitions ... 108
2 Main Results .. 108
3 Concluding Remarks ... 112

1. Introduction and Definitions

In our investigation we consider simple, finite, connected, undirected graphs with \(V(G) \) and \(E(G) \) as vertex set and edge set respectively. For various notation and terminology we follow Gross Yellen [4] and for some results of number theory we follow Burton [2]. Now We give brief note of definition which are useful in present investigation.

Definition 1.1: Consider a graph \(G = (V(G), E(G)) \) with \(n \) vertices and a bijective function \(f : V(G) \rightarrow \{1, 2, 3...n\} \). We say that \(f \) is prime labeling if for every \(e \in E(G) \) with \(e = uv \), \((f(u), f(v)) = 1 \). A graph having prime labeling is called prime graph [1].

Definition 1.2: For vertex \(v \) in \(G \), neighborhood of \(v \) is the set of all vertices which are at distance one to \(v \) and it is denoted by \(N(v) \).

Definition 1.3: Consider a graph \(G = (V(G), E(G)) \) with \(n \) vertices and a bijective function \(f : V(G) \rightarrow \{1, 2, 3...n\} \). We say that \(f \) is a neighborhood-prime labeling if for every vertex \(u \) in \(G \) with \(\deg(u) > 1 \), \(\gcd \{ f(p) | p \in N(u) \} = 1 \) and graph \(G \) is called neighborhood-prime graph [5].

Definition 1.4: A Helm \(H_n \) is the graph obtained from the wheel graph \(W_n = C_n + K_1 \) by attaching a pendent edge to each vertex of cycle in \(C_n \).

A concept of prime labeling was given by Entringer. Tout-et-all introduced prime labeling in [1]. Now a days it is an interesting field of research. S.K.Patel and N.P.Shrimali introduced the notion neighborhood-prime labeling and they shown that Helm, Cycle, Path admit neighborhood-prime labeling [5]. In [6] they proved union of some graphs are neighborhood-prime. For further list of results regarding prime graph and neighborhood-prime graph reader may refer [3].

2. Main Results

Theorem 2.1: \(H_n(W_n) \) is neighborhood-prime graph where the graph \(H_n(W_n) \) is obtained by identifying each pendent vertex of \(H_n \) by rim vertex of Wheel graph \(W_n \).

Proof: In a graph \(G = H_n(W_n) \) central vertex of \(H_n \) is denoted by \(u \) and rim vertices of \(H_n \) are denoted by \(u_1, u_2, u_3...u_n \). In a \(i^{th} \) copy of \(W_n \) in a graph \(G \) the rim vertex of \(W_n \) which is identified with pendent vertex of \(H_n \) is denoted by \(u_{i,1} \), remaining rim vertices of \(W_n \) are denoted by \(u_{i,2}, u_{i,3}...u_{i,n} \) and central vertex of \(W_n \) is denoted by \(u_{i,n+1} \) for each \(i \).

Case(i) \(n \) is even.

We define \(f : V(G) \rightarrow \{1, 2, 3...|V(G)|\} \) as follows.
\(f(u) = 2, f(u_1) = 1, f(u_{1,1}) = 3 \)
\(f(u_i) = 2 + (i-1)(n+2); \quad 2 \leq i \leq n \)
We define f as a function from $V(G)$ to \{1,2,3,...\} as follows.

\[
f(u) = \begin{cases}
 n + 3 + (i - 1)(n + 2); & i = 2k - 1 \text{ where } k = 1, 2, 3, \ldots, \frac{n + 1}{2} \\
 n + 2 + (i - 1)(n + 2); & i = 2k \text{ where } k = 1, 2, 3, \ldots, \frac{n - 1}{2}
\end{cases}
\]

for $1 \leq i \leq n$

\[
f(u_{n+1}) = \begin{cases}
 n + 2 + (i - 1)(n + 2); & i = 2k - 1 \text{ where } k = 1, 2, 3, \ldots, \frac{n + 1}{2} \\
 n + 3 + (i - 1)(n + 2); & i = 2k \text{ where } k = 1, 2, 3, \ldots, \frac{n - 1}{2}
\end{cases}
\]

for $1 \leq i \leq n$

We consider w as a vertex at each position in a graph G. We will show that \(\gcd \{f(p) \mid p \in N(w)\} = 1\).

If $w = u_1$, then $f(u_1) = 1$.

If $w = u_i$ for any i, $\{u_1, u_2\} \subseteq N(w)$. $f(u_1) = 2$ and $f(u_2)$ is odd number.

If $w = u_i$ for any i, $\{u_1, u_2\} \subseteq N(w)$. $f(u_1)$ and $f(u_{n+1})$ are consecutive numbers.

If $w = u_{i+1}$ for $i = 2k - 1$, $j = 2m$ where $k = 1, 2, 3, \ldots, \frac{n + 1}{2}$ and $m = 1, 2, 3, \ldots, \frac{n - 3}{2}$; $\{u_{i+1-1}, u_{i+1-1}+1\} \subseteq N(w)$. $f(u_{i+1-1})$ and $f(u_{i+1})$ are consecutive even numbers.

If $w = u_{i+1}$ for $i = 2k - 1$, $j = 2m + 1$ where $k = 1, 2, 3, \ldots, \frac{n + 1}{2}$ and $m = 1, 2, 3, \ldots, \frac{n - 3}{2}$; $\{u_{i+1-1}, u_{i+1-1}+1\} \subseteq N(w)$. $f(u_{i+1-1})$ and $f(u_{i+1})$ are consecutive even numbers and $f(u_{i+1}+1)$ is odd number.

If $w = u_{i+1}$ for $i = 2k - 1$, $j = 2m$ where $k = 1, 2, 3, \ldots, \frac{n - 1}{2}$ and $m = 1, 2, 3, \ldots, \frac{n - 3}{2}$; $\{u_{i+1-1}, u_{i+1-1}+1\} \subseteq N(w)$. $f(u_{i+1-1})$ and $f(u_{i+1})$ are consecutive odd numbers.

If $w = u_{i+1}$ for $i = 2k - 1$, $j = 2m + 1$ where $k = 1, 2, 3, \ldots, \frac{n - 1}{2}$ and $m = 1, 2, 3, \ldots, \frac{n - 3}{2}$; $\{u_{i+1-1}, u_{i+1-1}+1\} \subseteq N(w)$. $f(u_{i+1-1})$ and $f(u_{i+1})$ are consecutive odd numbers.

So f is neighborhood-prime labeling.

Illustration 2.1 Consider the graph $H_6(W_6)$. The labeling is as shown in Figure 1.
Here we consider two sub cases.

sub case:(i) \(n = 3 \)

We define function \(f \) as follows.

\[
f(u_1) = 1.
\]

\[
f(u_i) = 2 + (i - 1)(n + 2) ; 1 \leq i \leq n
\]

\[
f(u'_i) = \begin{cases}
 \left(\frac{n + 9}{2} + \left[\frac{i}{2} \right] \right) \left(n + 1 \right) + \left[\frac{i - 1}{2} \right] \left(n + 3 \right) ; \\
 \left[\frac{i + 1}{2} \right] \left(n + 1 \right) + \left[\frac{i - 1}{2} \right] \left(n + 1 \right) ;
 \end{cases} \quad ; n \equiv 1 \pmod{4}
\]

\[
\text{for } 1 \leq i \leq n
\]

\[
f(u_{i,1}) = 3 + (i - 1)(n + 2); \quad 1 \leq i \leq n
\]

\[
f(u_{2i-1,1}) = \begin{cases}
 \left(\frac{n + 11}{2} \right) + \left[\frac{2i - 1}{2} \right] \left(n + 1 \right) + \left[\frac{2i - 2}{2} \right] \left(n + 3 \right) ; \\
 \left(\frac{n + 11}{2} \right) + \left[\frac{2i - 1}{2} \right] \left(n + 3 \right) + \left[\frac{2i - 2}{2} \right] \left(n + 1 \right) ;
 \end{cases} \quad ; n \equiv 1 \pmod{4}
\]

\[
\text{for } 1 \leq i \leq \frac{n + 1}{2}
\]

\[
f(u_{2i,2}) = \begin{cases}
 \left(\frac{n + 12}{2} \right) + i(n + 1) + \left[\frac{2i - 1}{2} \right] \left(n + 3 \right) ; \\
 \left(\frac{n + 12}{2} \right) + i(n + 3) + \left[\frac{2i - 1}{2} \right] \left(n + 1 \right) ;
 \end{cases} \quad ; n \equiv 1 \pmod{4}
\]

\[
\text{for } 1 \leq i \leq \frac{n - 1}{2}
\]

\[
f(u_{i,2j+1}) = 3 + j + (i - 1)(n + 2) ; \quad 1 \leq i \leq n \text{ and } \quad 1 \leq j \leq \frac{n + 3}{2}
\]

\[
f(u_{i,2j+2}) = f(u_{i,2}) + j ; \quad 1 \leq i \leq n \text{ and } 1 \leq j \leq \frac{n - 5}{2}
\]

\[
f(u_{i,n-1}) = \frac{n + 5}{2} + (i - 1)(n + 2) ; \quad 1 \leq i \leq n
\]

\[
f(u_{2i-1,n}) = \begin{cases}
 \frac{n + 7}{2} + (2i - 2)(n + 2) ; \\
 \frac{n + 9}{2} + (2i - 2)(n + 2) ;
 \end{cases} \quad n \equiv 1 \pmod{4}
\]

\[
\text{for } 1 \leq i \leq \frac{n + 1}{2}
\]

\[
f(u_{2i,n}) = \begin{cases}
 \frac{n + 9}{2} + (2i - 1)(n + 2) ; \\
 \frac{n + 7}{2} + (2i - 1)(n + 2) ;
 \end{cases} \quad n \equiv 3 \pmod{4}
\]

\[
\text{for } 1 \leq i \leq \frac{n - 1}{2}
\]

We consider \(w \) as a vertex at each position in a graph \(G \). We will show that \(\text{gcd} \{ f(p) \mid p \in N(w) \} = 1 \).

If \(w = u_i \), \(i \in N(w) \) for each \(i \). Also \(f(u_1) = 2, f(u_{2k}) \) is odd number for each \(k \).

If \(w = u_i \) for any \(i, u \in N(w) \) and \(f(u) = 1 \).

If \(w = u'_i \) for any \(i, \{ u_{ij}, j = 1, 2, ..., n \} \subseteq N(w) \). \(f(u_{ij})'s \) are consecutive numbers.

If \(w = u_{i,1} \) for any \(i, \{ u_{i,2}, u'_i \} = N(w) \). \(f(u_{i,2}) \) and \(f(u'_i) \) are consecutive numbers or consecutive odd numbers.

If \(w = u_{i,j} \) for any \(i, j \) for \(1 \leq j \leq n - 3 \). \(f(u_{i,j}) \)'s are consecutive numbers or consecutive odd numbers.

If \(w = u_{i,j} \) for any \(i, \{ u_{i,j}, u_{i,n-1} \} \subseteq N(w) \).

\(f(u_i) \) and \(f(u_{i,n-1}) \) are consecutive numbers or consecutive odd numbers.

Case:(ii) \(n \) is even.

\[
f(u) = 2.
\]

\[
f(u_1) = 1, f(u_i) = 2 + (i - 1)(n + 2) ; \quad 2 \leq i \leq n
\]

\[
f(u'_i) = \begin{cases}
 \left(\frac{n + 8}{2} \right) + (i - 1)(n + 2) ; \\
 \left(\frac{n + 6}{2} \right) + (i - 1)(n + 2) ;
 \end{cases} \quad n \equiv 2 \pmod{4}
\]

\[
\text{for } 1 \leq i \leq n
\]

\[
f(u_{i,1}) = 3 + (i - 1)(n + 2); \quad 1 \leq i \leq n
\]

\[
f(u_{2i-1,2}) = \begin{cases}
 \left(\frac{n + 13}{2} \right) + i(n + 1) + \left[\frac{2i - 1}{2} \right] \left(n + 3 \right) ; \\
 \left(\frac{n + 13}{2} \right) + i(n + 3) + \left[\frac{2i - 1}{2} \right] \left(n + 1 \right) ;
 \end{cases} \quad ; n \equiv 1 \pmod{4}
\]

\[
\text{for } 1 \leq i \leq \frac{n + 1}{2}
\]

\[
f(u_{2i,2}) = \begin{cases}
 \left(\frac{n + 14}{2} \right) + i(n + 1) + \left[\frac{2i - 1}{2} \right] \left(n + 3 \right) ; \\
 \left(\frac{n + 14}{2} \right) + i(n + 3) + \left[\frac{2i - 1}{2} \right] \left(n + 1 \right) ;
 \end{cases} \quad ; n \equiv 1 \pmod{4}
\]

\[
\text{for } 1 \leq i \leq \frac{n - 1}{2}
\]

\[
f(u_{i,2j+1}) = 3 + j + (i - 1)(n + 2) ; \quad 1 \leq i \leq n \text{ and } \quad 1 \leq j \leq \frac{n - 4}{2}
\]

\[
f(u_{i,2j+2}) = \frac{n + 10}{2} + j + (i - 1)(n + 2) ; \quad 1 \leq i \leq n \text{ and } \quad 1 \leq j \leq \frac{n - 2}{2}
\]

\[
f(u_{i,n}) = \begin{cases}
 \left(\frac{n + 10}{2} \right) + (i - 1)(n + 2) ; n \equiv 2 \pmod{4} \\
 \left(\frac{n + 8}{2} \right) + (i - 1)(n + 2) ; n \equiv 0 \pmod{4}
 \end{cases} \quad 1 \leq i \leq n
\]

We consider \(w \) as a vertex at each position in a graph \(G \). We will show that \(\text{gcd} \{ f(p) \mid p \in N(w) \} = 1 \).

If \(w = u_i \), \(u_1 \in N(w) \). Also \(f(u_1) = 1 \).

\(w = u_i \) for any \(i, \{ u_i \} \subseteq N(w) \). \(f(u) = 2 \) and \(f(u') \) is odd number.

If \(w = u_i \) for any \(i, \{ u_{ij}, j = 1, 2, ..., n \} \subseteq N(w) \). \(f(u_{i,1}), f(u_{i,2}), f(u_{i,3}), ..., f(u_{i,n}) \) are consecutive numbers.
If \(w = u_{i,1} \) for any \(i \), \(\{u_{i,2}, u'_i\} \subseteq N(w) \). \(f(u_{i,2}) \) and \(f(u'_i) \) are either consecutive numbers or consecutive odd numbers.

If \(w = u_{i,j} \) for any \(i \) and \(j \) for \(1 \leq j \leq n-2 \), \(\{u_{i,j-1}, u_{i,j+1}\} \subseteq N(w) \). \(f(u_{i,j-1}) \) and \(f(u_{i,j+1}) \) are consecutive numbers.

If \(w = u_{i,n-1} \) for any \(i \), \(\{u'_i, u_{i,n}\} \subseteq N(w) \). \(f(u'_i) \) and \(f(u_{i,n}) \) are consecutive numbers.

If \(w = u_{i,n} \) for any \(i \), \(\{u'_i, u_{i,n-1}\} \subseteq N(w) \). \(f(u'_i) \) and \(f(u_{i,n-1}) \) are either consecutive numbers or consecutive odd numbers. So \(f \) is neighborhood-prime labeling.

Illustration 2.2 Consider the graph \(H_6(F_6) \). The labeling is as shown in Figure 3.

![Figure 3: Neighborhood-prime labeling for \(H_6(F_6) \).](image)

Theorem 2.3: \(H_n(\tilde{H}_n) \) is neighborhood prime graph where the graph \(H_n(H_n) \) is obtained by identifying each pendant vertex of \(H_n \) by vertex of outer cycle of closed Helm graph \(H_n \).

Proof: In a graph \(G = H_n(\tilde{H}_n) \) central vertex of \(H_n \) is denoted by \(u \) and rim vertices of \(H_n \) are denoted by \(u_1, u_2, u_3, \ldots, u_n \). In \(j \)th copy of \(H_n \) in a graph \(G \) the vertex of outer cycle of \(H_n \) which is identified with pendant vertex of \(H_n \) is denoted by \(u_{i,n} \), vertices of outer cycle and vertices of inner cycle are denoted by \(u_{i,1}, u_{i,2}, \ldots, u_{i,n} \) and \(u'_i, u'_i, \ldots, u'_i \) respectively in same direction for each \(i \). More over \(u_{i,j} \) and \(u'_{i,j} \) are adjacent vertices for \(j = 1, 2, 3, \ldots, n \) for each \(i \). Central vertex of \(j \)th copy of \(H_n \) in a graph \(G \) is denoted by \(v_j \) for each \(i \).

We define \(f : V(G) \rightarrow \{1, 2, 3, \ldots, |V(G)|\} \) as follows.

\[
\begin{align*}
f(u) &= 1, \\
f(u_1) &= 2n + 3, \\
f(u_{i,j}) &= 2 + 2(i-1)(n+1); \quad 2 \leq i \leq n \quad \text{and} \quad 1 \leq j \leq n \quad \text{for each \(i \).}
\end{align*}
\]

Theorem 2.4: \(H_n(GP(5,2)) \) is neighborhood-prime graph where the graph \(H_n(GP(5,2)) \) is obtained by identifying each pendant vertex of \(H_n \) by vertex of outer cycle of Petersen graph \(GP(5,2) \).

Proof: In a graph \(G = H_n(GP(5,2)) \) central vertex of \(H_n \) is denoted by \(u \) and rim vertices of \(H_n \) are denoted by \(u_1, u_2, u_3, \ldots, u_n \). In \(j \)th copy of Petersen graph \(GP(5,2) \) in a graph \(G \) the vertex...
We define \(f : V(G) \rightarrow \{1, 2, 3, ..., |V(G)|\} \) as follows.
\[
f(u) = 1.
\]
\[
f(u_i) = 2 + (i - 1)11; 1 \leq i \leq n
\]
\[
f(u_{2i-1,j}) = 2j + 2 + (2i - 2)11; 1 \leq i \leq \left\lfloor \frac{n + 1}{2} \right\rfloor \text{ and } 1 \leq j \leq 5
\]
\[
f(u_{2i,j}) = 2j + 1 + (2i - 1)11; 1 \leq i \leq \left\lfloor \frac{n}{2} \right\rfloor \text{ and } 1 \leq j \leq 5
\]
\[
f(u'_{2i-1,j}) = 2j + 3 + (2i - 2)11; 1 \leq i \leq \left\lfloor \frac{n + 1}{2} \right\rfloor \text{ and } 1 \leq j \leq 4
\]
\[
f(u'_{2i-1,5}) = 3 + (2i - 2)11; 1 \leq i \leq \left\lfloor \frac{n + 1}{2} \right\rfloor
\]
\[
f(u'_{2i,j}) = 2j + 4 + (2i - 1)11; 1 \leq i \leq \left\lfloor \frac{n}{2} \right\rfloor \text{ and } 1 \leq j \leq 4
\]
\[
f(u'_{2i,5}) = 4 + (2i - 1)11; 1 \leq i \leq \left\lfloor \frac{n}{2} \right\rfloor
\]

We consider \(w \) as a vertex at each position in a graph \(G \). We will show that \(gcd \{f(p) | p \in N(w)\} = 1 \).

If \(w = u \), \(\{u_1, u_2\} \subseteq N(w) \). \(f(u_1) = 2 \) and \(f(u_2) \) is odd number.

If \(w = u_i \) for any \(i, u \in N(w) \) and \(f(u) = 1 \).

If \(w = u_{i,j} \) for any \(i \) and \(j \neq 5 \), \(\{u'_{i,j}, u_{i,j+1}\} \subseteq N(w) \). \(f(u'_{i,j}) \) and \(f(u_{i,j+1}) \) are consecutive numbers.

If \(w = u_{i,5} \) for any \(i \), \(\{u'_{i,5}, u_{i,1}\} \subseteq N(w) \). \(f(u'_{i,5}) \) and \(f(u_{i,1}) \) are consecutive numbers.

If \(w = u'_{i,j} \) for any \(i \) and \(j \neq 2 \), \(\{u'_{i,j+2}, u'_{i,j+3}\} \subseteq N(w) \). \(f(u_{i,j+2}) \) and \(f(u_{i,j+3}) \) are consecutive odd numbers where values of \(j + 2 \) and \(j + 3 \) modulo 5.

If \(w = u'_{i,2} \) for any \(i \), \(\{u_{i,4}, u_{i,5}\} \subseteq N(w) \). \(f(u_{i,4}) \) and \(f(u_{i,5}) \) are odd numbers of difference eight.

\(f \) is neighborhood-prime labeling.

Illustration 2.4 Consider the graph \(H_5(GP(5,2)) \). The labeling is as shown in Figure 5.

3. Concluding Remarks

Here we investigated four results corresponding to neighborhood prime labeling for some particular graphs. Analogous result can be obtained for the generalization of these graphs using various graph operations in the context of neighborhood prime labeling.

Acknowledgment

Department of Mathematics, Gujarat University is supported by DST-FIST.

References