Fixed point theorem of a set valued map on Cone metric space

Jigmi Dorjee Bhutia\(^1\)* and Kalishankar Tiwary \(^2\)

\[1. \text{Then in 1972, Chatterjea [23] established a fixed point} \]
\[\text{theorems on single valued maps. In [5],} \]
\[\text{it is during the year 2007 when Huang and Zhang [4]} \]
\[\text{introduced the concept of cone metric space by replacing the} \]
\[\text{range set of non negative real numbers of the metric} \]
\[\text{d by the ordered Banach space. Since then many other authors in [12]-[19]} \]
\[\text{and the references therein, have obtained the fixed point} \]
\[\text{theorems on single valued maps. In [5], the existence of a fixed} \]

\[\text{point in cone metric space for set valued mappings has been} \]
\[\text{obtained by the concept of H-Cone metric. For more recent} \]
\[\text{fixed point theorems in cone metric spaces for multivalued} \]
\[\text{mappings we refer [\{5\}-[11\}] and references therein.} \]

\section{2. Preliminaries}

Let \(E\) be a real Banach space \(P \subset E\). Then \(P\) is said to a cone if it satisfies the following conditions:

1. \(P\) is a nonempty closed subset and \(P \neq \emptyset\).
2. \(x, y \in P\) and \(a, b \in R\) where \(a \geq 0\) and \(b \geq 0\) then \(ax + by \in P\).
3. \(\text{If} \ x \in P \ \text{and} \ -x \in P, \ \text{then} \ x = \theta\).

Cone induces a Partial order relation We can define a partial order relation \(\preceq\) on \(E\) with respect to the cone \(P\) in the following way: \(x \preceq y\) if and only if \(y - x \in P\). Also \(x \ll y\) if and only if \(y \preceq x \in \text{IntP}\) and \(x \ll y\) implies \(x \preceq y\) but \(x \neq y\). If \(\text{IntP} \neq \emptyset\) then the cone is a solid cone.

\begin{definition}{1.2} \cite{4} Let \(X\) be a non empty set and \(d : X \times X \to E\) satisfying
\begin{enumerate}
\item \(\theta \preceq d(x, y)\) and \(d(x, y) = \theta\) if and only if \(x = y\).
\item \(d(x, y) = d(y, x)\).
\item \(d(x, y) \preceq d(x, z) + d(z, y)\), \(\forall x, y \in X\).
\end{enumerate}
\end{definition}
Then \(d \) is called the cone metric and the pair \((X, d)\) is called the cone metric space.

Example 1 [5]: Let \(E = \mathbb{R}^2 \) and \(P = \{(x, y) \in \mathbb{R}^2 : x \geq 0 \text{ and } y \geq 0\} \), \(X = \mathbb{R}^2 \) and \(d((x, y), (x', y')) = \sqrt{(x-x')^2 + (y-y')^2} \), \(\forall x, y, x', y' \in \mathbb{R}^2 \) and \(\alpha \geq 0 \). Then \((X, d)\) is a cone metric space and \(P \) is a normal cone with normal constant 1.

There are two different kinds of cones: Normal (with a normal constant) and Non-Normal cones. Let \(E \) be a real Banach space, \(P \subset E \) be a cone and \(\rho \) be the partial ordering defined by \(P \). Then \(P \) is said to be normal if there exist positive real number \(H \) such that, for all \(x, y \in E \), \(\theta \leq x \leq y \Rightarrow \|x\| \leq H \|y\| \). Or, equivalently if \(x_n \leq y_n \leq z_n \) and \(\lim_{n \to \infty} x_n = \lim_{n \to \infty} y_n = x \), then \(\lim_{n \to \infty} z_n = n \). The least of all such constant \(H \) is known as normal constant.

Definition 2.2. [4]: Let \((X, d)\) be a cone metric space. Let \(\{x_n\} \) be a sequence in \(X \) and \(x \in X \). If for every \(\varepsilon \in E \) with \(\varepsilon > \theta \) there is \(N \) such that for all \(n > N \), \(d(x_n, x) < \varepsilon \). Then \(\{x_n\} \) is said to be convergent and \(x \) is the limit of \(\{x_n\} \). We denote this by, \(\lim_{n \to \infty} x_n = x \) as \(n \to \infty \).

Definition 2.3. : Let \((X, d)\) be a cone metric space. Let \(\{x_n\} \) be a sequence in \(X \). If for every \(\varepsilon \in E \) with \(\varepsilon > \theta \) there is a positive integer \(N \) such that for all \(n > N \), \(d(x_n, x) \leq \varepsilon \). Then \(\{x_n\} \) is said to be a Cauchy sequence in \(X \).

Definition 2.4. : If every Cauchy sequence \(\{x_n\} \subset M \) is convergent in \(x \in M \), then \((X, d)\) is called a complete cone metric space.

Lemma 2.5. [21] Let \(E \) be a Banach space.
(i) If \(a, b, c \in E \) and \(a \leq b \leq c \), then \(a \leq c \).
(ii) If \(\theta \leq a \leq c \) for each \(c > \theta \), then \(a = \theta \).
(iii) If \(E \) is a real Banach space with cone \(P \) and if \(a \leq \lambda a \) where \(a \in P \) and \(\lambda \in (0, 1) \), then \(a = \theta \).

Remark 2.6. [21]: If \(c \gg \theta \), \(\theta \ll a_0 \) and \(a_0 \to \theta \), then there exist \(N \), such that for all \(n > N \), we have \(a_n \ll c \).

A set \(A \subset M \) is closed if for any sequence \(\{x_n\} \subset A \) convergent in \(x \), then \(x \in A \).

We denote \(N(M) \) as the collection of all nonempty subsets of \(M \) and \(C(M) \) as collection of all nonempty closed subsets of \(M \).

Definition 2.7. An element \(x \in M \) is said to be a fixed point of a set-valued mapping \(T : M \to N(M) \) if \(x \in Tx \). Denote \(\text{Fix}(T) = \{x \in M : x \in Tx\} \).

The following is the definition of H-cone metric as given by Wardowski in [6] came in the year 2011.

Definition 2.8. Let \((M, d)\) be a cone metric space and \(\mathcal{A} \) be the collection of all nonempty subsets of \(M \). A map \(\mathcal{H} : \mathcal{A} \times \mathcal{A} \to E \) is called an H-cone metric with respect to \(d \) if for any \(A, B, C \in \mathcal{A} \) the following conditions hold:
1. \(\mathcal{H}(A, B) = 0 \Rightarrow A = B \).
2. \(\mathcal{H}(A, B) = \mathcal{H}(B, A) \).
3. \(\forall \varepsilon \in E \) with \(\theta \ll \varepsilon \), \(\forall x \in A_1 \), \(\exists \) at least one \(y \in A_2 \), such that \(d(x, y) \leq \mathcal{H}(A_1, A_2) + \varepsilon \).
4. anyone of the following holds there exist
 (a) \(\forall \varepsilon \in E \) with \(\theta \ll \varepsilon \), \(\exists \) at least one \(x \in A_1 \), such that \(\mathcal{H}(A_1, A_2) \leq d(x, y) + \varepsilon \). \(\forall y \in A_2 \).
 (b) \(\forall \varepsilon \in E \) and \(\theta \ll \varepsilon \), \(\exists \) at least one \(x \in A_2 \), such that \(\mathcal{H}(A_1, A_2) \leq d(x, y) + \varepsilon \). \(\forall y \in A_1 \).

For examples we refer [6] to the readers. The author in [6] have proved that if \((M, d)\) is a cone metric space and \(\mathcal{H} : \mathcal{A} \times \mathcal{A} \to E \) is H-cone metric with respect to \(d \) then the pair \((\mathcal{A}, \mathcal{H})\) is a cone metric space.

In [6], the author have proved the following result.

Theorem 2.9. Let \((M, d)\) be a complete cone metric space with a normal cone \(P \) with a normal constant \(H \). Let \(\mathcal{A} \) be a nonempty collection of all nonempty closed subsets of \(M \) and let \(\mathcal{H} : \mathcal{A} \times \mathcal{A} \to E \) be an H-cone metric with respect to \(d \). If for a map \(T : M \to \mathcal{A} \) \(\exists \lambda \in (0, 1) \) such that \(\forall x, y \in M \), \(\mathcal{H}(Tx, Ty) \leq \lambda d(x, y) \), then \(\text{Fix} T \neq \emptyset \).

In the year 2013, H-cone metric in the sense of Arshad and Ahmad [11] was defined in the following way to make it more comparable with a standard metric.

Definition 2.10. [11]: Let \((M, d)\) be a cone metric space and \(\mathcal{A} \) be a collection of all nonempty subsets of \(M \). A map \(\mathcal{H} : \mathcal{A} \times \mathcal{A} \to E \) is called an H-cone metric in the sense of Arshad and Ahmad if the following conditions hold:
1. \(\theta \leq \mathcal{H}(A, B) \) for all \(A, B \in \mathcal{A} \) and \(\mathcal{H}(A, B) = \theta \) if and only if \(A = B \);
2. \(\mathcal{H}(A, B) = \mathcal{H}(B, A) \), \(\forall A, B \in \mathcal{A} \);
3. \(\mathcal{H}(A, B) \leq \mathcal{H}(A, C) + \mathcal{H}(C, B) \), \(\forall A, B, C \in \mathcal{A} \);
4. if \(A, B \in \mathcal{A} \), \(\theta \ll \varepsilon \in E \) with \(\mathcal{H}(A, B) \ll \varepsilon \), then for each \(a \in A \) there exists \(b \in B \) such that \(d(a, b) \ll \varepsilon \).

Using this H-cone metric the following result [11], Th.3 was proved

Theorem 2.11. [11] Let \((M, d)\) be a complete cone metric space. Let \(\mathcal{A} \) be a nonempty collection of all nonempty closed subsets of \(M \) and let \(\mathcal{H} : \mathcal{A} \times \mathcal{A} \to E \) be an H-cone metric induced by \(d \). If for a map \(T : M \to \mathcal{A} \) \(\exists \lambda \in (0, 1) \) such that \(\forall x, y \in M \), \(\mathcal{H}(Tx, Ty) \leq \lambda d(x, y) \), then \(\text{Fix} T \neq \emptyset \).

The following example has been shown in [14], Eg 1.10 which indicates that Definition 2.10 is different from Definition 2.8.

Example 2.12. Let \(X = \{a, b, c\} \) and \(d : X \times X \to [0, +\infty) \) be defined by \(d(a, b) = d(b, a) = \frac{1}{2} \), \(d(a, c) = d(c, a) = d(b, c) = d(c, b) = 1 \), \(d(a, a) = d(b, b) = d(c, c) = 0 \). Let \(A = \{a, b, c\} \).

\(\mathcal{H} : A \times A \to [0, +\infty) \) as \(\mathcal{H}(\{a\}, \{b\}) = \mathcal{H}(\{b\}, \{a\}) = 1 \).
We define an H-cone metric \(d \) be a normal cone and let \(\mathcal{H} \) be two cone multivalued mappings and suppose that there is \(H \in \mathbb{R} \) such that \(\forall x, y \in X \) at least one of the following is holds:

1. \(\mathcal{H}(Tx, Sy) \leq d(x, y) \);
2. \(\mathcal{H}(Tx, Sy) \leq d(x, u) \) for each fixed \(u \in Tx \);
3. \(\mathcal{H}(Tx, Sy) \leq d(y, v) \) for each fixed \(v \in Sy \);
4. \(\mathcal{H}(Tx, Sy) \leq \lambda \frac{d(x,y) + d(x, y)}{2} \) for each fixed \(x \in Sy \) and \(u \in Tx \).

Then \(T \) and \(S \) have a common fixed point.

The following example is given by Wardowski [[6], Ex. 3.3] which satisfies Defn. 2.8.

Example 2.14. Let \(M = [0, 1] \), \(E = \mathbb{R}^2 \) be a Banach space with the standard norm, \(P = \{(x, y) \in \mathbb{R}^2 : x \geq 0 \land y \geq 0 \} \) be a normal cone and let \(d : M \times M \to E \) be of the form \(d(x, y) = (x - y, \frac{1}{2}|x - y|) \). Let \(\mathcal{S} \) be a family of subsets of \(M \) of the form \(\mathcal{S} = \{[0, x] : x \in M \} \cup \{\{x \} : x \in M \} \). We define an H-cone metric \(\mathcal{H} : \mathcal{S} \times \mathcal{S} \to \mathbb{R} \) with respect to \(d \) by the formulae

\[
\mathcal{H}((a, b), (c, d)) = \max\{d(a, c), d(b, d)\} \\
\mathcal{H}(a, b) = \max\{d(a, b), d(b)\}
\]

In [5], the author have given the following example that satisfies defn 2.8.

Example 2.15. Let \(M = \{(0, 1), (1, 0), (0, 0)\} \), \(E = \mathbb{R}^2 \) be a Banach space with the standard norm, \(P = \{(x, y) \in \mathbb{R}^2 : x \geq 0 \land y \geq 0 \} \) be a normal cone and let \(d : M \times M \to E \) be defined by

\[
d((0, 0), (1, 0)) = d((0, 1), (0, 0)) = (1, \frac{1}{2}) \\
d((0, 0), (0, 1)) = d((1, 0), (0, 0)) = (1, \frac{1}{2}) \\
d((1, 0), (0, 0)) = d((0, 1), (0, 0)) = (1, \frac{1}{2})
\]

Then the pair \((M, d) \) is a complete cone metric space.
If we take $T_1 = T_2$, in the above theorem we get the following result due to Wardowski ([6], Th. 3.1).

Corollary 3.2. Let (M, d) be a complete cone metric space with a normal cone P with a normal constant λ. Let \mathcal{A} be a nonempty collection of all nonempty closed subsets of M and $\mathcal{H}: \mathcal{A} \times \mathcal{A} \to \mathcal{E}$ be an H-cone metric with respect to d. If for a map $T : M \to \mathcal{A}$ there exists $x_0 \in [0, 1]$ such that $\mathcal{H}(T(x), T(y)) \leq \lambda(d(y, x), \forall y \in M).$ then Fix$T \neq \emptyset$.

Definition [5]: Suppose $D(x, Tx) = \{d(x, z) : z \in T(x)\}$ and $S(x, Tx) = \{u \in D(x, Tx) : ||u|| = \inf \{||v|| : v \in D(x, Tx)\}\}$.

Theorem 3.3. Let (M, d) be a complete cone metric space. Let \mathcal{A} be a nonempty collection of all nonempty closed subsets of M and $T : M \to \mathcal{A}$ be the set valued map. Consider an H-cone metric with respect to d $\mathcal{H} : \mathcal{A} \times \mathcal{A} \to \mathcal{E}$ satisfying Defn. 2.8.

Then if T satisfies the contraction condition $\mathcal{H}(T(x), T(y)) \leq \lambda(S(x, Tx) + S(y, Ty)), \forall x, y \in M. \lambda \in [0, 1)$ then T has a fixed point.

Proof: Suppose that $\varepsilon_n \in E$ and $\varepsilon_n \gg \theta$, such that $\varepsilon_n \to \theta$, as $n \to \infty$. Let $x_0 \in M$ be arbitrary and fixed. Then $T(x_0) \in \mathcal{A}$. Suppose $d(x_1, x_0) = \inf \{d(x_0, z) : z \in T(x_0)\}$. Then $d(x_0, x_1) = d(x_0, x_1)$. Let $x_2 \in T(x_1)$, such that $d(x_1, x_2) = \inf \{d(x_1, z) : z \in T(x_1)\}$. Then we have $S(x_1, x_2) = d(x_1, x_2)$. Inductively we have for $x_{n+1} \in T(x_n), S(x_n, x_{n+1}) = d(x_n, x_{n+1})$. Therefore, $d(x_n, x_{n+1}) \leq \mathcal{H}(T_{n}, T_{n+1}) + \varepsilon_n$. Then $\lambda \{S(x_{n-1}, T_{n-1}) + S(x_{n}, T_{n+1})\} + \varepsilon_n$. Hence we have $\lambda \{S(x_{n-1}, T_{n-1}) + S(x_{n}, T_{n+1})\} + \varepsilon_n$. So we have, $\leq \lambda \{S(x_{n-2}, T_{n-2}) + S(x_{n-1}, T_{n+1})\} + \varepsilon_n$. Therefore, $\lambda \{S(x_{n-3}, T_{n-3}) + S(x_{n-2}, T_{n+1})\} + \varepsilon_n$.

\[d(x_0, x_1) \leq \sum_{n=0}^{\infty} \lambda \frac{\varepsilon_n}{\varepsilon_n} \leq \varepsilon_n \leq \varepsilon_n, \text{ for all } n > N.\]

Thus if $d(x_n, x_{n+1}) \leq \varepsilon_n$, for all $n > N$. Therefore, $d(x_{2n}, x_{2m}) \leq c, \text{ for all } n > N$. which gives that $\{x_{2n}\}$ is a cauchy sequence. Since (M, d) is complete $\{x_{2n}\}$ is convergent in M. Let $x_{2n} \to x_0$. Now $x_{2n} \in T_2(x_{2n-1}) \exists x \in T_2(x_0)$ such that $d(x_{2n}, x) \leq \mathcal{H}(T_2(x_{2n-1}), T_2(x_0)) + \varepsilon_n$. $d(x_{2n}, x) \leq \lambda d(x_{2n}, x_0) + \varepsilon_n$. Taking limit $n \to \infty$ we get, $d(x_0, x) \leq \varepsilon_n$. Therefore, $x_0 = x$. But $x \in T_1(x_0)$. So, we have $x_0 \in T_1(x_0)$. That is x_0 is a fixed point of T. Similarly, $x_{2n} \in T_1(x_{2n-2})$ then $x_{2n} \in T_2(x_2n-2)$ such that, $d(x_{2n-1}, x_0) \leq \mathcal{H}(T_2(x_{2n-1}), T_2(x_0)) + \varepsilon_n$. $d(x_{2n-1}, x_0) \leq \lambda d(x_{2n}, x_0) + \varepsilon_n$. Taking limit $n \to \infty$ we get, $d(x_0, x_0) \leq \varepsilon_n$. Therefore, $x_0 = x$. But $x \in T_0(x_0)$. So we have $x_0 \in T_0(x_0)$. That is x_0 is a fixed point of T_2.

\[\lambda \sum_{n=0}^{\infty} \lambda \frac{\varepsilon_n}{\varepsilon_n} \leq \varepsilon_n \leq \varepsilon_n, \text{ for all } n > N.\]

Therefore, $d(x_{2n}, x_{2m}) \leq c, \text{ for all } n > N$. For $m \geq n$, we have, $d(x_{2n}, x_{2m}) \leq \sum_{j=n}^{m-1} d(x_{2n}, x_{2m}) + \varepsilon_n$. $d(x_{2n}, x_{2m}) \leq \lambda d(x_{2n}, x_{2m}) + \varepsilon_n$. Taking limit $n \to \infty$ we get, $d(x_{2n}, x_{2m}) \leq \frac{\varepsilon_n}{\varepsilon_n}$. Therefore, $x_0 = x$. But $x \in T_4(x_0)$. So we have $x_0 \in T_4(x_0)$. That is x_0 is a fixed point of T_2.

\[\lambda \sum_{n=0}^{\infty} \lambda \frac{\varepsilon_n}{\varepsilon_n} \leq \varepsilon_n \leq \varepsilon_n, \text{ for all } n > N.\]
So, $S(y, Ty) = d\left(\frac{1}{2}, \frac{1}{2}\right) = \left(\frac{1}{2}, \frac{1}{2}\right)$.

Also, $H\left(Tx, Ty\right) = \left(\max\{0, 0 - \frac{1}{2}(y - \frac{1}{2})^2\}\right)\max\{0, 0 - \frac{1}{2}(y - \frac{1}{2})^2\} = \left(\frac{1}{2}, \frac{1}{2}\right)$.

Hence, we have,

$$\alpha \left[S(x, Tx + S(y, Ty))\right] - H\left(Tx, Ty\right) = \left(\alpha(x + \frac{3}{8}), \frac{\alpha(x + \frac{3}{8})}{2}\right) - \left(\frac{1}{2}, \frac{1}{2}\right),$$

that is,

$$\alpha \left[S(x, Tx + S(y, Ty))\right] - H\left(Tx, Ty\right) = \left(\alpha(x + \frac{3}{8}) - \frac{1}{2}, \frac{\alpha(x + \frac{3}{8})}{2} - \frac{1}{2}\right).$$

We now find what could be the minimum value of $\alpha(x + \frac{3}{8}) - \frac{1}{2}$ for $x \in \left[0, \frac{1}{2}\right]$ and $y \in \left[\frac{1}{2}, 1\right]$.

Observe that $x + \frac{3}{8}$ is maximum and $\alpha(x + \frac{3}{8})$ is minimum. If $\frac{1}{2}(y - \frac{1}{2})^2$ is minimum, $\frac{1}{2}(y - \frac{1}{2})^2$ is maximum.

But, $\alpha\left(x + \frac{3}{8}\right)$ is maximum if y is maximum i.e., $y = 1$, so $\frac{1}{2}(y - \frac{1}{2})^2 = \frac{1}{8}$.

and $\alpha(x + \frac{3}{8})$ is minimum if x is minimum i.e., $x = 0$, so $\alpha(x + \frac{3}{8}) = \frac{3}{8}$.

So, we have,

$$\frac{1}{2}(y - \frac{1}{2})^2 = \frac{1}{8},$$

$$\alpha(x + \frac{3}{8}) = \frac{3}{8}.$$

Thus, $\alpha \geq \frac{1}{2}$. Taking $\alpha = \frac{1}{2}$, we get,

$$H\left(Tx, Ty\right) \leq \frac{1}{2} S\left[x, Tx + S(y, Ty)\right], \forall x, y \in M, \lambda \in \left[0, \frac{1}{2}\right].$$

Then $H = H\left(Tx, Ty\right)$ has a fixed point.

Proof : Suppose that $\varepsilon_n \in E$ and $\varepsilon_n \to \theta$, such that $\varepsilon_n \to \theta$ as $n \to \infty$. Let $x_0 \in M$ be arbitrary and fixed.

Then $T(x_0) \in \mathcal{A}$. Let $x_1 \in T(x_0)$, then $S(x_1, T(x_0)) = \theta$.

Let $x_2 \in T(x_1)$, such that $\|d(x_0, x_2)|| = \inf \{\|d(x_0, z)|| \in \mathbb{R} : z \in T(x_1)\}$.

Then we have $S(x_0, T(x_1)) = d(x_0, x_2)$.

Hence, we have, $d(x_1, x_2) = H\left(Tx_0, T_1\right) + \varepsilon_1$.

$\leq \lambda S(x_0, T(x_1)) + S(x_1, T(x_0)) + \varepsilon_1$.

$\leq \lambda d(x_0, x_2) + \varepsilon_1$.

$\leq \lambda d(x_0, x_2) + d(x_1, x_2) + \varepsilon_1$.

Then we have $S(x_1, T_2) = d(x_1, x_2)$.

Hence, we have, $d(x_2, x_3) = H\left(Tx_1, T_2\right) + \varepsilon_1$.

$\leq \lambda S(x_1, T_2) + S(x_2, T_2) + \varepsilon_2$.

$\leq \lambda d(x_1, x_2) + \varepsilon_2$.

$\leq \lambda d(x_1, x_2) + d(x_2, x_3) + \varepsilon_2$.

$\leq \lambda d(x_1, x_2) + d(x_2, x_3) + \frac{1}{2} \varepsilon_2$.

Inductively we have for $x_{n+1} \in T(x_n)$,

$$d(x_n, x_{n+1}) \leq \frac{\lambda}{\lambda - \frac{1}{2}} d(x_n, x_{n-1}) + \frac{\varepsilon_n}{\lambda - \frac{1}{2}}.$$

So we have,

$$\lim_{n \to \infty} \left[\left(\frac{\lambda}{\lambda - \frac{1}{2}} d(x_n, x_{n-1}) + \frac{\varepsilon_n}{\lambda - \frac{1}{2}}\right)\right] = \theta, \quad \lambda > \frac{1}{2}.$$

We now find what could be the minimum value of $\alpha(x + \frac{3}{8}) - \frac{1}{2}$ for $x \in \left[0, \frac{1}{2}\right]$ and $y \in \left[\frac{1}{2}, 1\right]$.

Therefore, we have,

$$d(x_n, x_{n+1}) \leq \alpha^n \left[\|d(x_0, x_1)|| + \sum_{j=1}^{n-1} \frac{\lambda^{n-j}}{(\lambda - \frac{1}{2})^{n-j}} \varepsilon_j\right].$$

Where $\alpha = \frac{1}{\lambda - \frac{1}{2}} < 1$.

For $m \geq n$, we have,

$$d(x_n, x_m) \leq \sum_{j=n}^{m-1} \alpha^n \left[\|d(x_0, x_1)|| + \sum_{j=1}^{n-1} \frac{\lambda^{n-j}}{(\lambda - \frac{1}{2})^{n-j}} \varepsilon_j\right].$$

Taking limit $n \to \infty$, we get, $\sum_{j=n}^{m-1} \alpha^n \left[\|d(x_0, x_1)|| + \sum_{j=1}^{n-1} \frac{\lambda^{n-j}}{(\lambda - \frac{1}{2})^{n-j}} \varepsilon_j\right] \to 0$.

Let $c \in \mathbb{N}$, then there exist a natural number N such that,

$$\sum_{j=n}^{m-1} \alpha^n \left[\|d(x_0, x_1)|| + \sum_{j=1}^{n-1} \frac{\lambda^{n-j}}{(\lambda - \frac{1}{2})^{n-j}} \varepsilon_j\right] \leq \frac{\varepsilon}{c},$$

for all $n \geq N$.

Hence, we have $d(x_n, x_m) \leq \varepsilon$ for all $n > N$.

Therefore, $\{x_n\}$ is a Cauchy sequence.

Since, (M, d) is complete, $\{x_n\}$ is convergent. Let us suppose that $x_n \to x^* \in M$. We claim that x^* is the fixed point of T i.e., $x^* \in T(x^*)$.

Now since $x_n \to x^*$ as $n \to \infty$, we get, $\|d(x_n, x^*)\| \to 0$ as $n \to \infty$, again since $x_n \in T(x_n)$, therefore $S(x^*, T(x_n)) = \theta$.

Suppose that, $x_n \in T(x^*)$, such that, $\|d(x_n, x^*)\| = \inf \{\|d(x_n, z)|| : z \in T(x^*)\}$.

Hence, $S(x_n, T(x^*)) = \theta$.

Now, for $x_n \in T(x_n)$, $\exists x_1 \in T(x^*)$, such that, $d(x_n, x_1) \leq H\left(Tx_n, T(x^*)\right) + \varepsilon_n$.

$\leq \lambda S(x_n, T(x^*)) + S(x_1, T(x_n)) + \varepsilon_n$.

$\leq \lambda d(x_n, x_1) + \varepsilon_n$.

$\leq \lambda d(x_n, x_1) + d(x_2, x_3) + \frac{\varepsilon_2}{2}$.

Taking limit $n \to \infty$, we get, $d(x^*, x_1) \leq \lambda \left[\|d(x^*, x^*)\|\right]$. Since, $\lambda < 1$.

$\|d(x^*, x^*)\| = \theta$.

Hence, $x^* \in T(x^*)$.

Example 3.6. Consider the Example 2.15. There we take the following $T(\{0, 1\}) = \{\{0, 0\}, \{0, 1\}, \{0, 1\}\}$.}

Case 1: If $x \in \{0, 0\}$ and $y \in \{0, 0\}$, then $x = 0 = 0$.}

Case 2: $x = 0 = 0$.}

Case 3: $x = 0 = 0$.}

Case 4: $x = 0 = 0$.}

Hence, $\mathcal{S}(x, Ty) = (\frac{1}{2}, \frac{1}{2})$.

Let $x = (0, 0)$, $Ty = (0, 0)$.}

Hence, $\mathcal{S}(x, Ty) = (\frac{1}{2}, \frac{1}{2})$.
\[\lambda(S(x, Ty) + S(y, Tx)) = \lambda(2, \frac{3}{2}). \]
\[\lambda(S(x, Ty) + S(y, Tx)) - H(Tx, Ty) = \lambda(2, \frac{3}{2}) \in P, \text{ for any } \lambda \in [0, \frac{1}{2}). \]

Hence, \(H(Tx, Ty) \leq \lambda(S(x, Ty) + S(y, Tx)) \), for any \(\lambda \in [0, \frac{1}{2}). \)

Case 2: If \(x \in \{0, 0\} \) and \(y \in \{0, 0\} \), then \(x = (0, 0) \)
y = (0, 1).

\[Tx = T(0, 0) = \{0, 1\} \] and \(Ty = T(1, 0) = \{0, 1\} \).

So, \(H(Tx, Ty) = H(\{0, 1\}, \{0, 1\}) = (0, 0) \).

\[D(x, Ty) = D(0, 0), T(1, 0) = d((0, 0), (0, 1)) = (1, \frac{2}{3}). \]

Hence, \(S(x, Ty) = (1, \frac{2}{3}) \).

\[D(y, Tx) = D(1, 0), T(0, 0) = d((1, 0), (0, 0)) = (0, 0). \]

Hence, \(S(y, Tx) = (0, 0) \).

\[\lambda(S(x, Ty) + S(y, Tx)) = \lambda(1, \frac{2}{3}). \]

\[\lambda(S(y, Tx)) + \lambda(S(x, Ty)) = \lambda(1, \frac{2}{3}). \]

\[S(y, Tx) \in P. \]

Case 3: If \(x \in \{0, 0\} \) and \(y \in \{0, 1\} \), then \(x = (0, 0) \)
y = (1, 0).

\[Tx = T(0, 0) = \{0, 1\} \] and \(Ty = T(1, 0) = \{0, 0\} \).

So, \(H(Tx, Ty) = H(\{0, 1\}, \{0, 0\}) = (1, \frac{2}{3}). \)

\[D(x, Ty) = D(0, 0), T(1, 0) = d((0, 0), (0, 0)) = (0, 0). \]

Hence, \(S(x, Ty) = (0, 0) \).

\[D(y, Tx) = D(1, 0), T(0, 0) = d((1, 0), (0, 0)) = (0, 0). \]

Hence, \(S(y, Tx) = (0, 0) \).

\[\lambda(S(x, Ty) + S(y, Tx)) = \lambda(1, \frac{2}{3}). \]

\[\lambda(S(y, Tx)) + \lambda(S(x, Ty)) = \lambda(1, \frac{2}{3}). \]

\[S(y, Tx) \in P. \]

Case 4: If \(x \in \{0, 1\} \) and \(y \in \{0, 1\} \), then \(x = (1, 0) \)
y = (0, 1).

\[Tx = T(1, 0) = \{0, 0\} \] and \(Ty = T(0, 1) = \{0, 1\} \).

So, \(H(Tx, Ty) = H(\{0, 0\}, \{0, 1\}) = (1, \frac{2}{3}). \)

\[D(x, Ty) = D(1, 0), T(0, 1) = d((1, 0), (0, 1)) = (\frac{2}{3}, \frac{5}{3}). \]

Hence, \(S(x, Ty) = (\frac{2}{3}, \frac{5}{3}). \)

\[D(y, Tx) = D(0, 1), T(1, 0) = d((0, 1), (0, 0)) = (0, 0). \]

Hence, \(S(y, Tx) = (0, 0) \).

\[\lambda(S(x, Ty) + S(y, Tx)) = \lambda(\frac{2}{3}, \frac{5}{3}). \]

\[\lambda(S(y, Tx)) + \lambda(S(x, Ty)) = \lambda(\frac{2}{3}, \frac{5}{3}). \]

\[S(y, Tx) \in P. \]

Case 5: If \(x \in \{0, 1\} \) and \(y \in \{0, 1\} \), then \(x = (0, 1) \)
y = (0, 1).

\[Tx = T(0, 0) = \{0, 1\} \] and \(Ty = T(1, 0) = \{0, 1\} \).

So, \(H(Tx, Ty) = H(\{0, 1\}, \{0, 1\}) = (0, 0). \)

\[D(x, Ty) = D(0, 1), T(1, 0) = d((0, 1), (0, 1)) = (0, 0). \]

Hence, \(S(x, Ty) = (0, 0) \).

\[D(y, Tx) = D(0, 1), T(0, 1) = d((0, 1), (0, 1)) = (0, 0). \]

Hence, \(S(y, Tx) = (0, 0) \).

\[\lambda(S(x, Ty) + S(y, Tx)) = \lambda(0, 0). \]

\[\lambda(S(y, Tx)) + \lambda(S(x, Ty)) = \lambda(0, 0). \]

\[S(y, Tx) \in P. \]

\[H(Tx, Ty) \leq \lambda(S(x, Ty) + S(y, Tx)), \forall x, y \in M, \text{ with } \lambda \in [0, \frac{1}{2}). \]

Theorem 3.7. Let \((M, d) \) be a complete cone metric space. Let \(\mathcal{A} \) be a nonempty collection of all nonempty closed subsets of \(M \) and \(T : M \to \mathcal{A} \) be the set valued map. Consider an H-cone metric with respect to \(d \). Let \(\mathcal{A} : \mathcal{A} \times \mathcal{A} \to E \) satisfying Defn. 2.8. Then if \(T \) satisfies the contraction condition \(H(Tx, Ty) \leq \{a_1S(x, Tx) + a_2S(y, Ty) + a_3d(x, y)\}, \forall x, y \in M, \) \(a_1 \geq 0 \forall, i = 1, 2, 3 \) and \(a_1 + a_2 + a_3 < 1 \). Then \(T \) has a fixed point.

Proof: Suppose that \(\varepsilon_n \in E \) and \(\varepsilon_n \rhd \theta \), such that \(\varepsilon_n \to \theta \) as \(n \to \infty \).

Let \(x_0 \in M \) be arbitrary and fixed.

Then \(T(x_0) \in \mathcal{A} \). Let \(x_1 \in T(x_0) \), be such that \(\|d(x_0, x_1)\| = \inf_{x \in T(x_0)} \|d(x_0, x)\|, \forall x \in T(x_0). \)

Then \(S(x_0, Tx_0) = d(x_0, x_1). \)

Let \(x_2 \in T(x_1) \), such that \(\|d(x_1, x_2)\| = \inf_{x \in T(x_1)} \|d(x_1, x)\|, \forall x \in T(x_1). \)

Then we have \(S(x_1, Tx_1) = d(x_1, x_2). \)

Inductively we have for \(x_{n+1} \in T(x_n), S(x_n, Tx_n) = d(x_n, x_{n+1}). \)

Therefore, \(d(x_n, x_{n+1}) \leq H(Tx_{n-1}, Tx_n) + c \varepsilon_n \).

\[\leq \{a_1S(x_{n-1}, Tx_{n-1}) + a_2S(x_n, Tx_n) + a_3d(x_{n-1}, x_n)\} + \varepsilon_n. \]

\[\leq \{a_1d(x_{n-1}, x_n) + a_2d(x_n, x_{n+1}) + a_3d(x_n, x_{n+1})\} + \varepsilon_n. \]

\[(1 - a_2) d(x_n, x_{n+1}) \leq (a_1 + a_3) d(x_{n-1}, x_n) + \varepsilon_n. \]

\[d(x_n, x_{n+1}) \leq \left(\frac{a_1 + a_3}{1 - a_2}\right) d(x_{n-1}, x_n) + \frac{\varepsilon_n}{1 - a_2}. \]

So we have, \(\leq \left(\frac{a_1 + a_3}{1 - a_2}\right)^2 d(x_{n-2}, x_{n-1}) + \frac{a_1 + a_3}{1 - a_2} \frac{\varepsilon_{n-1}}{1 - a_2} + \frac{\varepsilon_{n-1}}{1 - a_2}. \)

\[\leq \left(\frac{a_1 + a_3}{1 - a_2}\right)^3 d(x_{n-3}, x_{n-2}) + \left(\frac{a_1 + a_3}{1 - a_2}\right)^2 d(x_{n-2}, x_{n-1}) + \frac{a_1 + a_3}{1 - a_2} \frac{\varepsilon_{n-2}}{1 - a_2} + \frac{\varepsilon_{n-2}}{1 - a_2} + \frac{\varepsilon_{n-2}}{1 - a_2}. \]

\[\leq \varepsilon_n + \frac{\varepsilon_n}{1 - a_2} + \frac{\varepsilon_n}{1 - a_2} + \frac{\varepsilon_n}{1 - a_2}. \]

\[\leq \varepsilon_n + \frac{\varepsilon_n}{1 - a_2} + \frac{\varepsilon_n}{1 - a_2} + \frac{\varepsilon_n}{1 - a_2}. \]

\[\vdots \]

\[\varepsilon_n \to \theta \]
Therefore, we have,
\[d(x_n, x_{n+1}) \leq \alpha^n d(x_0, x_1) + \sum_{j=1}^{n} \left(\frac{(a_1+a_3)^{n-j}}{(1-a_2)^{n-j}} \right) \varepsilon_j. \]
Where \(\alpha = \frac{a_1}{1-a_2} < 1. \)

For \(m \geq n \), we have,
\[d(x_m, x_n) \leq \sum_{j=n}^{m-1} \left[\alpha^j d(x_0, x_1) + \sum_{r=1}^{j} \left(\frac{(a_1+a_3)^{j-r}}{(1-a_2)^{j-r}} \right) \varepsilon_r. \]

Taking limit \(n \to \infty \), we have,
\[\sum_{j=1}^{\infty} \alpha^j d(x_0, x_1) \to \theta \quad \text{and} \quad \sum_{r=1}^{\infty} \varepsilon_r = \sum_{j=1}^{\infty} \left(\frac{(a_1+a_3)^{j-r}}{(1-a_2)^{j-r}} \right) \to \theta. \]

Let \(c \in IntP \), then there exist a natural number \(N \) such that,
\[\sum_{j=1}^{N-1} \alpha^j d(x_0, x_1) \leq \zeta \quad \text{and} \quad \sum_{j=N}^{\infty} \alpha^j d(x_0, x_1) \leq \zeta, \]
for all \(n > N \).

Therefore, we have,
\[d(x_n, x_N) \leq c. \]

Since \((M, d) \) is complete, \(\{x_n\} \) is convergent. Let us suppose that \(x_n \to x^* \) in \(M \). We claim that \(x^* \) is the fixed point of \(T \) i.e., \(x^* \in T x^* \).

Suppose that \(x_1 \in T x^* \), such that,
\[\|d(x^*, x_1)\| = \inf \{ \|d(x^*, z)\| : z \in T x^* \}. \]

Now, for \(x_n \in T x_{n-1} \), \(\exists x_1 \in T x^* \), such that,
\[d(x_n, x_1) \leq H(T x_{n-1}, T x^*) + \varepsilon_n. \]
\[\leq [a_1 S(x_{n-1}, T x_{n-1}) + a_2 S(x^*, T x^*) + a_3 d(x_{n-1}, x^*)] + \varepsilon_n. \]
\[\leq [a_1 d(x_{n-1}, x_1) + a_2 d(x^*, x_1) + a_3 d(x_{n-1}, x^*)] + \varepsilon_n. \]

Taking \(n \to \infty \), we get,
\[d(x^*, x_1) \leq a_2 d(x^*, x_1). \] Since, \(a_2 < 1 \), \(d(x^*, x_1) = \theta. \)

\[x^* = x_1 \in T x^*. \]

\[\text{Hence, } x^* \in T x^*. \]

References
