Properties and applications of soft digraphs

Kalyan Sinha ${ }^{1 *}$ and Pinaki Majumdar ${ }^{2}$

Abstract

In this paper, some properties of a soft digraph are studied. In this connection some terminologies regarding soft digraphs are defined. Also, the relationship between digraphs and matrices are studied. Later on soft tournaments are introduced and some properties of soft tournaments are discussed. Finally applications of soft digraphs and tournaments in solving decision making problem, traffic flow problem and determination of the strongest team in a cricket championship are shown.

Keywords

Soft Set, Digraph, Tournaments, Soft digraph, Soft tournaments.
AMS Subject Classification
15A48.
${ }^{1}$ Department of Mathematics, A. B. N. Seal College, Coochbehar, India-736101. ${ }^{2}$ Department of Mathematics, M.U.C Womens' College, Burdwan, India-713104.
*Corresponding author: ${ }^{1}$ kalyansinha90@gmail.com; ${ }^{2}$ pmajumdar2@rediffmail.com
Article History: Received 12 February 2019; Accepted 23 May 2019
(C)2019 MJM.

Contents

1 Introduction 451
2 Preliminaries 451
2.1 Soft Set Theory 451
2.2 Soft Digraph 452
3 Soft digraph and its properties 452
4 Soft Digraph and Matrices 453
5 Soft Tournament 453
6 Applications of soft digraph and soft tournament 454
6.1 Decision Making Problem 454
6.2 Traffic Flow Problem 455
6.3 Determination of strongest team in cricket champi- onship by using Soft Tournament. 455
7 Conclusion 456
References 456

1. Introduction

Molodtsov [15] introduced the theory of soft sets as a new mathematical tool to deal with the uncertainties which traditional mathematical tools can not solve. Now soft set theory is rapidly used in many fields like engineering, medical science, sociology, economics etc to deal with the complexities of modeling with uncertain data. Many practical problem can
be solved easily with the help of soft set theory rather than some well known theories viz. fuzzy set theory [20], probability theory, intuitionistic fuzzy sets theory [2,3], vague sets theory [5], theory of rough sets [16] etc since these theories have certain limitations. The problem with the fuzzy set is that it lacks parameterization of tools. Thus many authors like Maji, Roy and Biswas [8, 9] have further studied the theory of soft sets and used this theory to solve some decision making problems. They have also introduced the concept of fuzzy soft set and intuitionistic fuzzy soft set [10-12], in a more generalized way. In 2009, Ali et al [1] has defined some new operations on soft sets.

Research in soft set theory (SST) has been done in many areas like algebra, topology, applications etc (see [1, 7, 13, 14, 19], for example). On the other hand several authors have recently studied Fuzzy graph theory, soft graph theory and studied the properties of fuzzy graphs, soft graphs and their properties [18] with the help of traditional graph theory [4, 6]. We have introduced soft digraph theory in the light of soft set theory and digraph theory [17].

In this paper, we will study the following: In Section 2, some preliminary definitions and example regarding soft set theory, soft digraph theory are given which will be used in the rest of the paper. In section 3, some properties of soft digraphs are investigated. The relation between soft digraph and matrices are discussed in section 4. Section 5 is devoted for soft tournament and its properties. Finally in the last section i.e. section 6 , applications using soft tournament and

Figure 1. The Digraph D
soft digraphs are discussed.

2. Preliminaries

2.1 Soft Set Theory

The idea of soft sets was first given by Molodtsov. Later Maji and Roy [12] have defined operations on soft set and studied their properties.

Definition 2.1. [15] Let U be an initial universal set and let $E=\left\{e_{i} ; i=1, \ldots, n\right\}$ be a set of parameters. Suppose $P(U)$ denote the power set of U and A be a subset of E. A pair (F, A) is called a soft set over U if and only if F is a mapping given by $F: A \rightarrow P(U)$.

Example 2.2. As an illustration, suppose a soft set (F, E) describes attractiveness of the shirts which the authors are going to wear.
$U=$ the set of all shirts under consideration $=\left\{x_{1}, x_{2}, x_{3}\right.$, $\left.x_{4}, x_{5}\right\} . E=$ colorful, bright, cheap, warm $=\left\{e_{1}, e_{2}, e_{3}, e_{4}\right\}$. Let $F\left(e_{1}\right)=\left\{x_{1}, x_{2}\right\}, F\left(e_{2}\right)=\left\{x_{1}, x_{2}, x_{4}, x_{3}\right\}, F\left(e_{3}\right)=\left\{x_{4}\right\}$, $F\left(e_{4}\right)=\left\{x_{2}, x_{5}\right\}$.

So, the soft set (F, E) is a family $\left\{F\left(e_{i}\right) ; i=1, \ldots, 4\right\}$ of U.

2.2 Soft Digraph

Now we have defined the soft digraph corresponding to the soft set (F, E) in [17] as follows:

Definition 2.3. [17] Suppose e_{a} be any arbitrary parameter such that $F\left(e_{a}\right)=\phi$. Consider $D=\left(V_{D}, A_{D}\right)$ be any digraph with vertex set V_{D} and arc set A_{D} such that, $V_{D}=E \cup\left\{e_{a}\right\}$ $A_{D}=\left\{\left(e_{i}, e_{j}\right): h_{j} \in F\left(e_{i}\right)\right.$ and $\left.j \leq|E|\right\} \cup\left\{\left(e_{i}, e_{a}\right): h_{j} \in F\left(e_{i}\right)\right.$ and $j>|E|\}$. Then D is called a soft digraph of the soft set (F, E). The vertex e_{a} is called the universal vertex for any soft digraph D.

Example 2.4. Consider the digraph D in the Figure 1 corresponding to the soft set in Example 2.2. It is clear that D is a soft digraph by Definition 2.3.

3. Soft digraph and its properties

An arc $x=\left(e_{i}, e_{i}\right)$ in soft digraph D is called a loop in D, and we say that soft digraph D includes a loop at the vertex e_{i}. If $e_{i} \neq e_{j}$ and $x=\left(e_{i}, e_{j}\right)$ is an arc in soft digraph D, we say that x is incident with e_{i} and $e_{j} ; e_{i}$ is adjacent to e_{j}; and e_{j} is adjacent from e_{i}. The outdegree od $\left(e_{j}\right)$ (resp. indegree $i d\left(e_{j}\right)$) of a vertex e_{j} in a soft digraph D is the number of
vertices of D adjacent from (resp. to) e_{j}. Two arcs in a soft digraph are said to be parallel if they have same start and end vertices. A soft digraph without having any parallel arcs is said to be a simple soft digraph. It is customary to represent a digraph by a diagram with nodes representing the vertices and directed line segments (arcs) representing the arcs of the digraph.

A soft directed walk in a soft digraph is an alternating sequence of vertices and arcs $e_{1}\left(e_{1}, e_{2}\right) e_{2}, \ldots, e_{n}$. The length of such a soft directed walk is n, the number of arcs in it. A closed soft walk has same first and last vertices and a spanning walk contains all the vertices. A soft path is a walk in which all vertices are distinct. A soft cycle is a nontrivial closed walk with all vertices distinct. A soft digraph having no cycle is said to be acyclic. A soft digraph is strongly connected if for any two vertices are mutually reachable. The soft digraph is unilaterally connected if for any two vertices at least one is reachable from the other. Otherwise the soft digraph is called weakly connected.

Theorem 3.1. Suppose D be a soft digraph with n-vertices and q-arcs corresponding to the soft set (F, E). If $\left\{e_{1}, e_{2}, \ldots\right.$, $\left.e_{n-1}, e_{a}\right\}$ is the set of vertices in D, then

$$
\sum i d\left(e_{i}\right)=\sum o d\left(e_{i}\right)=q
$$

Proof. It is given that D be a soft digraph with n-vertices and q-arcs. When the out-degrees of the vertices are assumed, we are considering $\sum\left|F\left(e_{i}\right)\right|$. Now for each $x_{j} \in F\left(e_{i}\right)$ generates an arc $\left(e_{i}, e_{j}\right)$ if $j \leq|E|$ or $\left(e_{i}, e_{a}\right)$ if $j>|E|$. Thus $\sum\left|F\left(e_{i}\right)\right|$ also gives us the total number of $\operatorname{arcs}\left(e_{i}, e_{j}\right)$ or $\left(e_{i}, e_{a}\right)$. Hence, we have

$$
\sum o d\left(e_{i}\right)=\sum\left|F\left(e_{i}\right)\right|=q
$$

Similarly, the result follows also for in-degrees.
Example 3.2. Consider the soft digraph D in Figure 1. Here, we have $i\left(e_{1}\right)=2, i\left(e_{2}\right)=3, i\left(e_{3}\right)=1, i\left(e_{4}\right)=2, i\left(e_{a}\right)=1$ and $o\left(e_{1}\right)=2, o\left(e_{2}\right)=4, o\left(e_{3}\right)=1, o\left(e_{4}\right)=2, o\left(e_{a}\right)=0$. Now

$$
\sum i d\left(e_{i}\right)=\sum o d\left(e_{i}\right)=9=q
$$

where q is the number of arcs.
Theorem 3.3. No soft digraph is strongly connected.
Proof. For any soft digraph D corresponding to a soft set (F, A), we have an universal vertex e_{a} such that $F\left(e_{a}\right)=$ ϕ. This implies that outdegree of a universal vertex is zero. Hence the result follows.

Corollary 3.4. A soft digraph has at least one point of outdegree zero.

Since a soft digraph cannot be strongly connected, thus a soft digraph may be unilaterally connected. In this case, we have the following:

Theorem 3.5. Suppose D be a simple soft digraph without any loop corresponding to a soft set (F, A) which is unilaterally connected. Then the minimum and maximum possible number q of arcs among all p vertices are $p-1$ and $(p-1)^{2}$ respectively.

Proof. we will proof this result by induction on p, the number of vertices. Now by definition, for any soft digraph D corresponding to a soft set (F, A), we have an universal vertex e_{a} of outdegree zero. Suppose $p=2$ i.e. D is a soft digraph containing two vertices say e_{1}, e_{a}. Since D is unilaterally connected, hence it contains an arc at most $\left(e_{1}, e_{a}\right)$, which is the minimum as well as maximum no of arcs.

Let us assume that the result holds for $p=k$. Then we have the minimum and maximum number of arcs in D are $m_{k}=(k-1)$ and $M_{k}=(k-1)^{2}$ respectively. Now suppose $p=k+1$. In this case, we are adding a vertex say e_{k+1} with a soft digraph D of k-vertices. As a result, we can add at least 1 arc, say $\left(e_{k+1}, e_{a}\right)$ to D minimally and at most $(2 k-1)$ arcs, say $\forall i=1, \ldots, k,\left\{\left(e_{i}, e_{k+1}\right),\left(e_{k+1}, e_{i}\right)\right\} \backslash\left\{\left(e_{a}, e_{k+1}\right)\right\}$ to D maximally. Thus we have,

$$
\begin{aligned}
& m_{k+1}=m_{k}+1=(k-1)+1=k \\
& M_{k+1}=M_{k}+(2 k-1)=(k-1)^{2}+(2 k-1)=k^{2}
\end{aligned}
$$

Hence, the result follows.

4. Soft Digraph and Matrices

The adjacency matrix $B(D)=\left[b_{i j}\right]$ of a soft digraph D is a $n \times n$ matrix with $b_{i j}=1$ if $\left(e_{i}, e_{j}\right) \in D$, and 0 otherwise. Clearly the row sums of $B(D)$ are the outdegrees and the column sums are the indegrees of the vertices of D. Since for any soft digraph D corresponding to a soft set (F, A), we have $F\left(e_{a}\right)=\phi$, thus the outdegree of an universal vertex e_{a} is zero. Hence for any adjacency matrix $B(D)$, the row corresponding to the vertex e_{a} contains only the zero entries.

Example 4.1. The adjacency matrix B corresponding to the soft digraph D in Example 2.2 is as following:

$$
B=\left[\begin{array}{cccccc}
& e_{1} & e_{2} & e_{3} & e_{4} & e_{a} \\
e_{1} & 1 & 1 & 0 & 0 & 0 \\
e_{2} & 1 & 1 & 1 & 1 & 0 \\
e_{3} & 0 & 0 & 0 & 1 & 0 \\
e_{4} & 0 & 1 & 0 & 0 & 1 \\
e_{a} & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

Theorem 4.2. The (i, j)-th entry of $b_{i j}^{n}$ of B^{n} is the number of walks of length n from the vertices e_{i} to e_{j} in a soft digraph D corresponding to the soft set (F, A).

Proof. We will use mathematical induction technique on the length of walks to proof this result.

Suppose $n=1$. Then the (i, j)-th entry of B is the number of different $e_{i}-e_{j}$ walks in D of length 1 which can be easily seen since a length 1 walk from e_{i} to e_{j} is an arc from e_{i} to e_{j}.

Let us consider that the results holds for $n=k-1$. Choosing $B^{k-1}=\left[m_{i j}\right]$, we are assuming that $m_{i j}$ is the number of different walks of length $k-1$ from e_{i} to e_{j}. Now we have,

$$
\begin{aligned}
B^{k} & =B^{k-1} \times B \\
& =\sum_{t=1}^{n}\left((i, t) \text {-th element of } B^{k-1}\right) \times((t, j) \text {-th element of B }) \\
& =\sum_{t=1}^{n} m_{i t} b_{t j}
\end{aligned}
$$

Now every $e_{i}-e_{j}$ walk of length k consists of a $e_{i}-e_{t}$ walk of length $k-1$ followed by an arc $e_{t} e_{j}$. Since there are $m_{i t}$ such walks of length $k-1$ and $b_{t j}$ such arcs for each vertex e_{t}, thus the total no of walks are $\sum_{t=1}^{n} m_{i t} b_{t j}$. Hence the result holds.

Example 4.3. Consider the adjacency matrix

$$
B\left[\begin{array}{lllll}
1 & 1 & 0 & 0 & 0 \\
1 & 1 & 1 & 1 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

specifying the soft digraph D in Figure 1. Now we obtain B^{2} as follows:

$$
B^{2}=\left[m_{i j}\right]=\left[\begin{array}{ccccc}
2 & 2 & 1 & 1 & 0 \\
2 & 3 & 1 & 2 & 0 \\
0 & 1 & 0 & 0 & 1 \\
1 & 1 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

Since $m_{i j}$ gives the number of walks of length 2 from vertex i to j, then m_{11} gives the number of walks of length 2 from vertex e_{1} to e_{1} is 2 . The walks from e_{1} to e_{1} are $\left(e_{1}, e_{1}, e_{1}\right)$ and $\left(e_{1}, e_{2}, e_{1}\right)$. Hence the result follows.

5. Soft Tournament

Definition 5.1. Suppose D be a absolute digraph corresponding to a absolute soft set (F, A). A soft tournament is a complete orientation of a absolute soft digraph D.

Example 5.2. We consider the soft set (F, A) over the universal set $U=\left\{x_{1}, x_{2}, x_{3}\right\}$ where $A=\left\{e_{1}, e_{2}\right\}, F\left(e_{1}\right)=U=$ $F\left(e_{2}\right)$. Now we draw the soft absolute digraph D_{1} of the absolute soft set (F, A). We take an orientation subdigraph T_{1} of the soft absolute digraph D_{1}. Clearly T_{1} is a soft tournament.

Also T_{1} is called a transitive triple. In any soft digraph, we have an universal vertex e_{a} such that $\operatorname{od}\left(e_{a}\right)=0$. Thus a soft cyclic triple tournament does not exist.

Theorem 5.3. Every soft tournament has a spanning path.
Proof. It can be easily seen that every tournament with 2,3 vertices has a spanning path. Assume that the result holds

Figure 2. Absolute Digraph D_{1} and Soft Tournament T_{1}
for all soft tournaments with k vertices. Suppose T be a tournament with $k+1$-vertices. Suppose e_{0} be any point of T. Then $T-e_{0}$ is a tournament of k-vertices. So, it has a spanning path P, say $e_{1} e_{2} \ldots e_{k-1} e_{a}$. If the arc $e_{0} e_{1}$ is in T, then we are done. If $e_{1} e_{0}$ is in T, suppose e_{i} be the first point of P for which the arc $e_{0} e_{i}$ is in T, if any. Then $e_{i-1} e_{0}$ is in T, so that $e_{1} e_{2} \ldots e_{i-1} e_{0} e_{i} \ldots e_{k-1} e_{a}$ is a spanning path. If no such e_{i} exists, then $e_{1} e_{2} \ldots e_{k-1} e_{0} e_{a}$ is a spanning path.

Definition 5.4. The score of a vertex e_{i} in a soft tournament T is defined to its outdegree. If soft tournament T has vertex set $\left\{e_{a}, e_{1}, \ldots, e_{n}\right\}$ where od $\left(e_{a}\right) \leq \operatorname{od}\left(e_{1}\right) \leq \ldots$ od $\left(e_{n}\right)$ then the sequence $\left(\operatorname{od}\left(e_{a}\right), \operatorname{od}\left(e_{1}\right), \ldots, \operatorname{od}\left(e_{n}\right)\right)$ is called a score sequence of soft tournament T.
Example 5.5. Consider the tournament T_{1} in Figure 2. The out degree of the vertices of T_{1} are as follows:

$$
o\left(e_{a}\right)=0, o\left(e_{1}\right)=1, o\left(e_{2}\right)=2
$$

Then $(0,1,2)$ is a score sequence of T_{1}.
Theorem 5.6. The distance from a vertex with maximum score in any soft tournament to any other vertex is at most 2.

Proof. Suppose $\operatorname{od}\left(e_{i}\right)=m$ and suppose the vertices joined by an arc from e_{i} be $e_{1}, e_{2}, \ldots, e_{m-1}, e_{a}$. If the soft tournament T has k vertices then each of the remaining $k-m-1$ vertices $\dot{e}_{1}, e_{2}, \ldots, e_{k-m-1}$ are adjacent to e_{i}, since T is a soft tournament, i.e. for these remaining vertices $\dot{e}_{j}, 1 \leq j \leq k-m-1$, there are arcs from e_{j} to e_{i}.

Then for each $l, 1 \leq l \leq m-1$, the arc from e_{i} to e_{l} gives a directed path of length 1 from e_{i} to e_{l}.

Now for the rest of the part, given a vertex \dot{e}_{j}, if there is an arc from e_{l} to \dot{e}_{j} for some l then $e_{i} e_{l} e_{j}$ gives a directed path of the desired type. Now suppose there is a $e_{p}, 1 \leq p \leq$ $k-m-1$, such that there is no vertex $e_{l}, 1 \leq l \leq m-1$ has an arc from e_{l} to \dot{e}_{p}. Since we also have an arc from \dot{e}_{p} to e_{i} this gives $\operatorname{od}\left(\hat{e}_{p}\right) \geq m+1$. This contradicts our assumption that e_{i} has maximum degree m. Thus each e_{j} must have an arc joining it from some e_{l} and this completes the proof.

Theorem 5.7. If $\left\{s_{1}, s_{2}, \ldots, s_{n}\right\}$ is a score sequence of a soft tournament T, then

$$
\sum_{i=1}^{n} s_{i}=\frac{n(n-1)}{2}
$$

Proof. Any complete digraph K_{n}^{*} with n-vertices contains n^{2} arcs. Since any soft tournament with n-vertices is a completely oriented digraph with no loops, thus any soft tournament with score sequence $\left\{s_{1}, s_{2}, \ldots, s_{n}\right\}$ has the following properties:

$$
\sum_{i=1}^{n} s_{i}=\frac{n^{2}-n}{2}=\frac{n(n-1)}{2}
$$

Example 5.8. The sum of score sequence of T_{1} in Figure 2 is $\frac{3(3-1)}{2}=3$.
Corollary 5.9. For any soft tournament T with outdegree sequence $\left\{s_{1}, s_{2}, \ldots, s_{n}\right\}$ and with n-vertices,

$$
\sum_{i=1}^{n} s_{i}^{2}=\sum_{i=1}^{n}\left(n-1-s_{i}\right)^{2}
$$

Proof. Any soft tournament T with outdegree sequence $\left(s_{1}, s_{2}\right.$, \ldots, s_{n}) have indegree sequence ($n-1-s_{1}, n-1-s_{2}, \ldots, n-$ $\left.1-s_{n}\right)$ since any vertex e_{i} has in T associated with $(n-1)$ arcs. Hence the result follows.

6. Applications of soft digraph and soft tournament

6.1 Decision Making Problem

Molodstov showed various applications of soft set theory in real life situations in his paper[15]. In [17] applications of soft digraph in decission making, medical diagnosis, soft entropy calculation have been shown. In this subsection we will use soft tournament in solving decision making problem.
Algorithm- Now we give an algorithm for selection of flats for a prospective buyer using soft tournament. For this, the following steps are to be followed:
(1) Input the soft set (F, E).
(2) Draw the soft digraph T_{2} corresponding to the soft set (F, E).
(3) Find out the score sequence of the soft tournament T_{2}.
(4) Find out the indegree sequence of T_{2} using score sequence.
(5) Choose k , for which $x_{k}=\max i d\left(e_{i}\right), i \neq a$.

Then x_{k} is the optimal selection. If there exists more than one optimal solution, then any solution can be taken.

Example 6.1. Consider the following problem:
The author wish to buy a flat. Suppose a soft set (F, E) describes choice of parameters.
$U=$ the set of all flats under consideration $=\left\{x_{1}, x_{2}, x_{3}\right\}$. $E=\{$ roadside, riverside, parkside $\}$ be a set of parameters $=\left\{e_{1}, e_{2}, e_{3}\right\}$. Suppose $F\left(e_{1}\right)=\left\{x_{2}, x_{3}, x_{4}\right\}, F\left(e_{2}\right)=\left\{x_{4}\right\}$,

Figure $3{ }_{c}{ }_{a}$ Soft Tournament T_{2}
$F\left(e_{3}\right)=\left\{x_{2}, x_{4}\right\}$. The author is interested to buy a flat on the basis of his choice of parameters. Please note that the choice of parameters is dependent on the author i.e. the choice of parameters vary from person to person. So the solution will vary according to the choice of the person. Now we consider the score sequence i.e. outdegree sequence of the vertices e_{i} 's of T_{2}. The score sequence of the vertices of T_{2} i.e. $\operatorname{od}\left(e_{1}, e_{2}, e_{3}, e_{a}\right)$ is $(3,1,2,0)$. Then the indegree sequence of the vertices of T_{2} is $(0,2,1,3)$, follows from Corollary 5.9. Now we choose the vertex of maximum indegree among e_{i} 's, $i \neq a$ of $T_{2} . e_{2}$ is such a vertex whose indegree is 2 .
Decision: The author can buy the flat x_{2}.

6.2 Traffic Flow Problem

Example 6.2. In this subsection we will consider traffic flow problem for a traveler. In this problem he/she wants to visit all the cities which are well connected once.
Algorithm- Now we give an algorithm for traffic flow problem for a traveler using soft digraph. For this, the following steps are to be followed:
(1) Input the soft set (F, E).
(2) Draw the soft digraph D corresponding to the soft set (F, E).
(3) Find out the matrix representation of the soft digraph D.
(4) To visit n cities once at a time, compute M^{n}.
(5) If the starting and ending point is the city x_{i}, calculate $\left(x_{i}, x_{i}\right)-t h$ entry of M^{n}.
(6) If (x_{i}, x_{i})-th entry is k, find out the k number of paths from x_{i} to x_{i} in D.
(7) Finally choose desired path in which all cities can be visited once providing the starting and ending point is the city x_{i}.

Suppose the author wants to visit 5 cities $x_{1}, x_{2}, x_{3}, x_{4}, x_{5}$ starting from x_{1}. Suppose a soft set (G, E) describes choice of parameters.
$U=$ the set of cities under consideration $=\left\{x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right\}$. $E=\{$ train, road, metro-railway, flight, ship $\}$ be the set of transport parameters by which the cities x_{i}, x_{j} are connected $=\left\{e_{1}, e_{2}, e_{3}, e_{4}, e_{5}\right\}$. Now $x_{j} \in F\left(e_{i}\right)$ denotes that author can visit the city x_{i} to the city x_{j} by the transport e_{i} but not conversely.

Figure 4. Soft Digraph D_{2}

Suppose $F\left(e_{1}\right)=\left\{x_{2}, x_{3}, x_{4}\right\}, F\left(e_{2}\right)=\left\{x_{4}\right\}, F\left(e_{3}\right)=\left\{x_{1}\right.$, $\left.x_{5}\right\}, F\left(e_{4}\right)=\left\{x_{2}, x_{1}\right\}, F\left(e_{5}\right)=\left\{x_{3}\right\}$. The author is interested to visit all the cities at most once from x_{1} and wants to return back into x_{1}. He wish to find the number of 5 -step connections from x_{1} to x_{1}. Now we draw the soft digraph D_{2} corresponding to the soft set (G, E) and calculate the matrix representation M of the digraph D_{2} as follows:

$$
M=\left[\begin{array}{llllll}
0 & 1 & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 & 1 & 0 \\
1 & 1 & 0 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

Now we compute the matrix

$$
M^{5}=\left[\begin{array}{cccccc}
6 & 14 & 9 & 10 & 1 & 0 \\
1 & 5 & 4 & 5 & 0 & 0 \\
9 & 6 & 2 & 9 & 5 & 0 \\
9 & 6 & 1 & 6 & 4 & 0 \\
5 & 9 & 5 & 5 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

Now by Theorem 4.2, we can see that number of 5 -step connections from x_{1} to x_{1} is 6 . The connections are $\left(x_{1}, x_{4}, x_{1}\right)$, $\left(x_{1}, x_{3}, x_{1}\right),\left(x_{1}, x_{2}, x_{4}, x_{1}\right),\left(x_{1}, x_{3}, x_{5}\right.$, $\left.x_{2}, x_{4}, x_{1}\right),\left(x_{1}, x_{3}, x_{5}, x_{3}, x_{1}\right),\left(x_{1}, x_{3}, x_{1}, x_{4}, x_{1}\right)$.
Decision: The only way that the author can visit all cities at most 1 from x_{1} and return to x_{1} is

$$
\left(x_{1}, x_{3}, x_{5}, x_{2}, x_{4}, x_{1}\right)
$$

6.3 Determination of strongest team in cricket championship by using Soft Tournament.

In this subsection we will determine the strongest team in a upcoming tournament by soft tournament. Now we give an algorithm for this purpose using soft digraph. For this, the following steps are to be followed: Algorithm-
(1) Input the soft set (F, E).
(2) Draw the soft tournament T corresponding to the soft set (F, E).
(3) Find out the matrix representation of the soft digraph D.
(4) Compute M^{2} and calculate $B=M+M^{2}$.
(5) Find out the row sum of the matrix B and write down the row sum of the matrix B in ascending order.
(6) Finally the strongest team has highest row sum.

Suppose the author wants to determine the strongest team in a cricket championship. He knew the previous results of some tournaments. Suppose a soft set (H, E) describes choice of parameters.
$U=$ the set of registered teams in the championship $=$ $\left\{e_{1}, e_{2}, e_{3}, e_{4}, e_{5}, e_{6}\right\} . E=$ the teams which are originally playing in the tournament $=\left\{e_{1}, e_{2}, e_{3}, e_{4}, e_{5}\right\}$. Suppose $F\left(e_{1}\right)=$ $\left\{e_{2}, e_{3}, e_{5}, e_{6}\right\}, F\left(e_{2}\right)=\left\{e_{4}, e_{5}, e_{6}\right\}, F\left(e_{3}\right)=\left\{e_{2}, e_{4}, e_{5}, e_{6}\right\}$, $F\left(e_{4}\right)=\left\{e_{1}, e_{6}\right\}, F\left(e_{5}\right)=\left\{e_{4}, e_{6}\right\}$ where $e_{j} \in F\left(e_{i}\right)$ denotes that according to the schedule $\left(e_{i}, e_{j}\right)$ will play between them and e_{i} can defeat e_{j}. Here we have assumed that e_{i} can defeat e_{j} if e_{i} has defeated e_{j} more number of times than e_{j} defeated e_{i} in previously played matches. Now we draw the soft tournament T_{3} in Figure 5 where we have,

$$
\begin{array}{r}
V_{T_{3}}=E \cup\left\{e_{a}\right\} \\
A_{T_{3}}=\left\{\left(e_{i}, e_{j}\right): \text { if } e_{j} \in F\left(e_{i}\right) ; i, j=1,2, \ldots 5\right\} \\
\bigcup\left\{\left(e_{i}, e_{a}\right) \text { if } e_{6} \in F\left(e_{i}\right)\right\} .
\end{array}
$$

Now by Theorem 5.6, in any soft tournament there is at least one vertex from which there is a 1 -step or a 2 -step connection to any other vertex in the soft tournament. We calculate the matrix representation M of T_{3} as follows:

$$
M=\left[\begin{array}{llllll}
0 & 1 & 1 & 0 & 1 & 1 \\
0 & 0 & 0 & 1 & 1 & 1 \\
0 & 1 & 0 & 1 & 1 & 1 \\
1 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

Finally we calculate

$$
M+M^{2}=\left[\begin{array}{llllll}
0 & 2 & 1 & 3 & 3 & 4 \\
1 & 0 & 0 & 2 & 1 & 3 \\
1 & 1 & 0 & 3 & 2 & 4 \\
1 & 1 & 1 & 0 & 1 & 2 \\
1 & 0 & 0 & 1 & 0 & 2 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

Now R_{i} denotes the sum of the elements of row i. Here, $R_{1}=13, R_{2}=7, R_{3}=11, R_{4}=6, R_{5}=4$. Since the first row has the largest sum, the vertex e_{1} must have a 1 -step or 2step connection to any other vertex. The ranking of the strong teams according to the powers of the corresponding vertices is: Team e_{1} (first), Team e_{3} (second), Teams e_{2} (third) and e_{4} (fourth) and Team e_{5} (last).

7. Conclusion

Molodtstov introduced the soft set theory in his paper [15] to deal with the uncertainties in real life problems. Currently

Figure 5. Soft tournament T_{3}
research in SST is going on at a high phase. Many authors have studied SST in various way and have applied this theory in solving many practical problems ([8], [12] ,[14]). We have introduced the soft digraph theory in our previous paper [17]. In that paper we have developed the soft digraph theory in combination of soft set theory and digraph theory. In this paper we have studied the properties of soft digraphs and soft tournaments and showed many possible application of this theory. The novelty of soft digraphs is that they can graphically represent any problem that is originally represented by a soft set. One can further study soft tournament and use the soft tournament in many other real life problems.

References

${ }^{[1]}$ M.I. Ali et. al., On some new operations in soft set theory, Computers and Math with Appl.,57 (2009), 1547-1553.
${ }^{[2]}$ K. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets and Systems 20 (1986), 87-96.
[3] K. Atanassov, Operators over interval valued intuitionstic fuzzy set, Fuzzy Sets and Systems 64 (1994), 159174.
${ }^{\text {[4] }}$ G. Chartrand and L. Lesniak, Graphs and Digraphs, Fourth Edition, Chapman and Hall/CRC, London, (2005).
${ }^{[5]}$ W.L. Gau and D.J. Buecher, Vague set, IEEE Trans. System Man Cybernet 23(2) (1993), 610-614.
${ }^{\text {[6] }}$ F. Harary, Graph Theory, Addison-Wesley, Reading, MA, (1969).
${ }^{[7]}$ T. Y. Lin, A set theory for soft computing, a unified view of fuzzy sets via neighbourhoods, In proceedings of 1996 IEEE International Conference on Fuzzy Systems. New Orieans, LA, September 8-11, 1140-1146,(1996).
${ }^{[8]}$ P.K. Maji et. al., Fuzzy soft-sets, The journal of Fuzzy Math 9 (2001), 589-602.
${ }^{[9]}$ P.K. Maji et. al., Intuitionistic Fuzzy Soft Sets, The journal of Fuzzy Math 9 (2001), 677-691.
${ }^{[10]}$ P.K. Maji et. al., On Intuitionistic Fuzzy Soft Sets, The journal of Fuzzy Math 12 (2004), 669-683.
${ }^{[11]}$ P.K. Maji et. al., An Application of Soft Sets in A Decision Making Problem, Computers and Math with Appl.,44 (2002), 1077-1083.
${ }^{[12]}$ P.K. Maji et. al., Soft Set Theory, Computers and Math with Appl.,45 (2003), 555-562.
${ }^{\text {[13] P. Majumdar and S.K. Samanta, On Soft Mappings, }}$ Computers and Math with Appl.,60 (2010), 2666-2672.
[14] P. Majumdar and S.K. Samanta, Generalised fuzzy soft set, Computers and Math with Appl.,59 (2010), 14251432.
${ }^{[15]}$ D. Molodtsov, Soft set theory-first results, Computers Math. Applic 37(4/5) (1999), 19-31.
[16] Z. Pawlak, Rough sets, International Journal of Information and Computer Sciences 11 (1982), 341-356.
${ }^{[17]}$ K. Sinha and P. Majumdar, Soft digraphs, Operations and Applications, to appear in Annals of Fuzzy Mathematics and Informatics.
${ }^{[18]}$ R.K. Thumbakara and B. George, Soft GraphsGeneral Math. Notes 21 (2014), 75-86
[19] Y. Y. Yao, Relational interpretations of neighbourhood operators and rough set approximation operators, Information Sciences, 111(1-4),239-259,(1998).
[20] L.A. Zadeh, Fuzzy Sets, Infor. and Control, 8 (1965), pp. 338-353

ISSN(P):2319-3786
Malaya Journal of Matematik
ISSN(O):2321-5666

