Induced magic labeling of some graphs

K.B. Libeeshkumar1* and V. Anil Kumar2

Abstract

Let $G = (V, E)$ be a graph and let $(A, +)$ be an Abelian group with identity element 0. Let $f : V \rightarrow A$ be a vertex labeling and $f^* : E \rightarrow A$ be the induced labeling of f, defined by $f^*(v_1v_2) = f(v_1) + f(v_2)$ for all $v_1v_2 \in E$. Then f^* again induces a labeling say $f^{**} : V \rightarrow A$ defined by $f^{**}(v) = \sum_{vv_1 \in E} f^*(vv_1)$. A graph $G = (V, E)$ is said to be an Induced A-Magic Graph (IAMG) if there exists a non zero labeling $f : V \rightarrow A$ such that $f \equiv f^{**}$. The function f, so obtained is called an Induced A-Magic Labeling (IAML) of G.

Keywords

Induced A-Magic Labeling of Graphs, Induced A-Magic graphs.

AMS Subject Classification

05C78, 05C25.

1*Department of Mathematics University of Calicut, Malappuram, Kerala-670007, India.
2 Corresponding author: 1 libeesh123@gmail.com; 2 anil@uoc.ac.in

1 Introduction

This paper deals with only finite, un directed simple and connected graphs. We refer [3] for the phrasing and standard notations related to graph theory. A graph is a pair $G = (V, E)$, where V, E are the vertex set and edge set respectively. The degree of a vertex v in G is the number of edges incident at v and it is denoted as $deg(v)$. Let $(A, +)$ be an Abelian group with identity element 0. Let $f : V \rightarrow A$ be a vertex labeling and $f^* : E \rightarrow A$ be the induced edge labeling of f, defined by $f^*(v_1v_2) = f(v_1) + f(v_2)$ for all $v_1v_2 \in E$. Then f^* again induces a vertex labeling say $f^{**} : V \rightarrow A$ defined by $f^{**}(v) = \sum_{vv_1 \in E} f^*(vv_1)$. A graph $G = (V, E)$ is said to be an Induced A-Magic Graph (IAMG) if there exists a non zero labeling $f : V \rightarrow A$ such that $f \equiv f^{**}$. The function f, so obtained is called an Induced A-Magic Labeling (IAML) of G and a graph which has no such Induced Magic Labeling is called a Non-induced magic graph. In this paper we discuss the existence of Induced Magic Labeling of some special graphs like P_n, C_n, K_n and $K_{m,n}$.

Main Results

1 Main Results

Lemma 2.1. Let $G = (V, E)$ be a graph and f is an IAML of G. If $v_1 \in V$ is a pendant vertex adjacent to $v \in V$, then $f(v_1) = 0$.

Proof. Let f be an IAML of a graph G and v_1 be a pendant vertex adjacent to v. Then $f^*(vv_1) = f(v) + f(v_1)$ and v_1 is a pendant vertex implies that $f^{**}(v_1) = f(v) + f(v_1)$. Also f is an induced magic labeling of G implies that $f(v_1) = f^{**}(v_1) = f(v) + f(v_1)$. Thus $f(v) = 0$.

Corollary 2.2. If G has a pendant vertex, then $G \notin \Gamma_k(A)$ for any Abelian group A.

Proof. Proof is indisputable from the lemma 2.1.
Lemma 2.3. Let f be an IAML of a graph G and $wuvz$ be a path in G with w and z are pendant vertices in G, then $f^*(uv) = 0$.

Proof. Suppose f is an IAML of a graph $G = (V, E)$ and $wuvz$ is any path in G with w and z are pendant vertices. Then by the lemma 2.1, we have $f(u) = 0 = f(v)$. Hence $f^*(uv) = 0$. □

Theorem 2.4. Let f be a vertex labeling of a graph G. Then f is an IAML of G, if and only if $|\{\deg(u) - 1 | f(u) + \sum f(v) = 0, \forall u \in V(G)\}|$.

Proof. Let f be an IAML of G and u be a vertex in G with $\deg(u) = m$. Let $v_1, v_2, v_3, \ldots, v_m$ be those vertices adjacent to u. Now, f is an IAML if and only if $f(u) = f^*(u) = f^*(v_1) + f^*(v_2) + f^*(v_3) + \cdots + f^*(v_m)$, where the summation is taken over all the vertices v which are adjacent to u.

Then, f is an IAML of P_n. Conversely suppose n is not a multiple of 3, then $n = 3m + 1$ or $n = 3m + 2$ for some positive integer m. Let $f: V \to A$ be a vertex labeling function with $f \equiv f^*$. Then for $1 \leq k \leq n - 3$ and any path $v_k v_{k+1} v_{k+2} v_{k+3}$ in P_n, we have $f(v_{k+1}) = f^*(v_{k+1})$ implies that $f(v_k) + f(v_{k+1}) + f(v_{k+2}) = 0$. Also $f(v_{k+2}) = f^*(v_{k+2})$ implies that $f(v_k) + f(v_{k+1}) + f(v_{k+3}) = 0$. Therefore we should have $f(v_k) = f(v_{k+3})$. Let us deal with the following cases:

Case 1 : $n = 3m + 1$

In this context, from the above discussion we have, $0 = f(v_2) = f(v_5) = f(v_8) = \cdots = f(v_{3m-1}) = f(v_{n-2})$ and $0 = f(v_{n-1}) = f(v_{n-4}) = \cdots = f(v_6) = f(v_9) = 0$. Thus $f(v_3) = 0$ and $f(v_1) + f(v_4) = 0$ implies that $f(v_1) = 0$, which again implies that $0 = f(v_1) + f(v_4) = f(v_7) = \cdots = f(v_{3m+1}) = f(v_n.)$ Hence $f \equiv 0$. Therefore f is not an IAML.

Case 2 : $n = 3m + 2$

In this context from the above discussion we have, $0 = f(v_2) = f(v_5) = f(v_8) = \cdots = f(v_{3m+2}) = f(v_{n-2})$ and $0 = f(v_{n-1}) = f(v_{n-4}) = \cdots = f(v_6) = f(v_9) = 0$. Thus $f(v_1) = 0$ and $f(v_1) + f(v_4) = 0$ implies that $f(v_3) = 0$, which implies $0 = f(v_3) = f(v_6) = f(v_9) = \cdots = f(v_{3m}) = f(v_{n-2})$. Hence $f \equiv 0$. Therefore, f is not an IAML.

Hence if n is not a multiple of a 3, then $P_n \notin \Gamma(A)$. □

Theorem 2.6. Let $\{v_1, v_2, v_3, \ldots, v_n\}$ be the vertex set of C_n. Then for any path $v_{k-1} v_k v_{k+1}$ mod n, f is an IAML of C_n if and only if $f(v_{k-1}) + f(v_k) + f(v_{k+1})$ mod $n = 0$, where $1 \leq k \leq n$. Moreover any IAML f of C_n satisfies $f(v_k) = f(v_{k+3})$ mod n for $1 \leq k \leq n$.

Proof. For $k = 1, 2, 3, \ldots, n$, consider the path $v_{k-1} v_k v_{k+1}$ mod n in C_n. Observe that f is an IAML of C_n if and only if $f(v_k) = f^*(v_k)$, which holds if and only if $f(v_{k-1}) + f(v_k) + f(v_{k+1})$ mod $n = 0$.

Also for any $0 \leq k \leq n - 1$, let $v_k v_{k+1} v_{(k+2)}$ mod n, is a path in C_n, we have $f(v_k) + f(v_{k+1}) + f(v_{k+2})$ mod $n = 0$ and $f(v_{k+1}) + f(v_{k+2})$ mod $n + f(v_{(k+3)})$ mod $n = 0$.

Thus $f(v_k) = f(v_{(k+3)})$ mod n.

Corollary 2.7. $C_n \in \Gamma_k(A)$ if and only if $O(k) = 3$, where $O(k)$ denotes the order of k in A.

Proof. Consider C_n with $V(C_n) = \{v_1, v_2, \ldots, v_{n-1}, v_n = v_0\}$. Suppose $C_n \in \Gamma_k(A)$, that is there exist an IAML f of C_n with $f(v_i) = k$ for $i = 1, 2, 3, \ldots, n$. Then by theorem 2.6 we have $3k = 0$ in A, which implies $O(k) = 3$. Conversely suppose $O(k) = 3$. Then consider the vertex label $f(v_i) = k$ for $i = 1, 2, 3, \ldots, n$. Since $f(v_i) = k$ for all i and $O(k) = 3$, we have, $f^*(v_{i+1}) = 2k$ for all i, and which implies $f^*(v_i) = f^*(v_{i+1}) + f^*(v_{i-1}) = 4k = f(v_i)$, for all i. Thus f is an IAML of C_n, that is $C_n \in \Gamma_k(A)$. Hence the proof.

Corollary 2.8. C_n has a non-constant IAML if and only if n is a multiple of 3.

Proof. Consider C_n with vertex set $\{v_1, v_2, \ldots, v_{n-1}, v_n = v_0\}$. Suppose $n = 3k$, for some integer k. Let a, b, c be any three distinct elements in A, such that $a + b + c = 0$, then define $f: V(C_n) \to A$ as follows:

$$f(v_i) = \begin{cases} a & \text{if } i = 1, 4, 7, \ldots, 3k - 2 \\ b & \text{if } i = 2, 5, 8, \ldots, 3k - 1 \\ c & \text{if } i = 3, 6, 9, \ldots, 3k. \end{cases}$$

Then clearly f is a non constant IAML of C_n. Conversely assume that n is not a multiple of 3. Then either $n = 3k + 1$ or $3k + 2$ for some integer k. Let f be an IAML of C_n and $f(v_1) = w$.

Case 1: $n = 3k + 1$

In this context, by the theorem 2.6 we have:

$$w = f(v_1) = f(v_4) = f(v_7) = \cdots = f(v_{3k+1}) = f(v_6) = f(v_9) = \cdots = f(v_{3k}) = f(v_2) = f(v_5) = f(v_8) = \cdots = f(v_{3k-1}).$$

Thus $f(v_i) = w$, for $i = 1, 2, 3, \ldots, n$.

Case 2: $n = 3k + 2$

In this context, by the theorem 2.6 we have:

$$w = f(v_1) = f(v_4) = f(v_7) = \cdots = f(v_{3k+1}) = f(v_2) = f(v_5) = f(v_8) = \cdots = f(v_{3k-1}) = f(v_{3k+2}) = f(v_n).$$

60
Thus in either case, we have \(f(v_i) = w \) for \(i = 1, 2, 3, \ldots, n \).

Thus if \(n \not\equiv 0 \pmod{3} \) then every IAML of \(C_n \) is a constant IAML of \(C_n \).

Theorem 2.9. \textbf{The complete graph \(K_n \in \Gamma(A, f) \) if and only if \((n - 3)f(v_i) = (n - 3)f(v_2) = \cdots = (n - 3)f(v_3) = -f(v_1) + f(v_2) + f(v_3) + \cdots + f(v_n) \) where \(v_1, v_2, v_3, \ldots, v_n \) are the vertices of \(K_n \).}

Proof. For \(1 \leq i, j \leq n \), we have \(f(v_i) = f^{**}(v_j) \) holds if and only if \(f(v_1) + f(v_2) + f(v_3) + \cdots + f(v_{i-1}) + (n - 2)f(v_i) + f(v_{i+1}) + \cdots + f(v_n) = 0 \), similarly the condition \(f(v_j) = f^{**}(v_j) \) is equivalent to the condition \(f(v_1) + f(v_2) + f(v_3) + \cdots + f(v_{j-1}) + (n - 2)f(v_j) + f(v_{j+1}) + \cdots + f(v_n) = 0 \). Thus we have \(f \) is an IAML if and only if \((n - 3)f(v_i) = (n - 3)f(v_j) = -f(v_1) + f(v_2) + f(v_3) + \cdots + f(v_n) \), for \(1 \leq i, j \leq n \). Hence the proof.

Corollary 2.10. \(K_n \in \Gamma_k(A) \) if and only if \(O(k) \) divides \(2n - 3 \), where \(O(k) \) denotes the order of \(k \) in \(A \).

Proof. Let \(K_n \) be the complete graph with vertex set \(\{v_1, v_2, v_3, \ldots, v_n\} \). We have \(K_n \in \Gamma_k(A) \), means there exist an IAML \(f \) with \(f(v) = k \), for all \(v \in V(K_n) \). Also by the theorem 2.9, we have \(f \) is an IAML of \(K_n \) if and only if \((n - 3)f(v) = -f(v_1) + f(v_2) + f(v_3) + \cdots + f(v_n) \), for all \(v \in V(K_n) \). Thus \(K_n \in \Gamma_k(A) \) if and only if \((n - 3)k = nk \), that is if and only if \((2n - 3)k = 0 \), that is if and only if \(O(k) \) divides \(2n - 3 \) in \(A \). Completes the proof.

Theorem 2.11. \(K_{m,n} \in \Gamma_k(A) \) if and only if \(O(k) \) divides \(2m - 1 \) and \(O(k) \) divides \(2n - 1 \), where \(O(k) \) denotes the order of \(k \) in \(A \).

Proof. Let \(V(K_{m,n}) = \{v_1, v_2, v_3, \ldots, v_m, u_1, u_2, u_3, \ldots, u_n\} \) with each \((v_i, u_j) \in E(K_{m,n}) \), for \(1 \leq i \leq m, 1 \leq j \leq n \). Suppose \(K_{m,n} \in \Gamma_k(A) \), then we have there exist an IAML \(f \) with \(f(v_i, u_j) = k \), for \(1 \leq i \leq m, 1 \leq j \leq n \). Now \(f \) is an IAML of \(K_{m,n} \) implies \(k = f(v_1) = f^{**}(v_1) = 2nk \), since \(f^{**}(v_1, u_j) = 2k \) for \(1 \leq j \leq n \), that is \((2n - 1)k = 0 \) in \(A \), which implies \(O(k) \) divides \(2n - 1 \). Similarly by considering the equation \(f(u_1) = f^{**}(u_1) \) we get \(k = f(u_1) = f^{**}(u_1) = 2mk \), that is \((2m - 1)k = 0 \) in \(A \), which implies \(O(k) \) divides \(2m - 1 \). Conversely suppose that \(O(k) \) divides \(2m - 1 \) and \(O(k) \) divides \(2n - 1 \). Consider the vertex label \(f(v_i) = k = f(u_j) \), for \(v_i, u_j \in V(K_{m,n}) \), \(1 \leq i \leq m, 1 \leq j \leq n \). Then \(f^{**}(v_i, u_j) = 2k \) for \(1 \leq i \leq m, 1 \leq j \leq n \). There for \(i = 1, 2, 3, \ldots, m \), \(f^{**}(v_i) = \sum_{j=1}^{n} f^{**}(v_i, u_j) = 2nk = k \), since \(O(k) \) divides \(2n - 1 \). Thus we have \(f^{**}(v_i) = f(v_i) = k \) for \(i = 1, 2, 3, \ldots, m \). In a similar way, we have \(f^{**}(u_j) = f(u_j) = k \) for \(j = 1, 2, 3, \ldots, n \). Hence we have \(f = f^{**} \), Thus we get \(K_{m,n} \in \Gamma_k(A) \). This concludes the proof.