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Abstract
Fixed point theorems in metric spaces involving implicit relations were introduced by Popa. We modify such a
theorem by Berinde so that it applies to pairs of self mappings in multiplicative metric spaces. An illustrative
example is given on the use of the theorem.
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1. Introduction
Researchers have extended the Banach Contraction Prin-

ciple [2] and generated several fixed point theorems with the
form

d(T x,Ty)≤ F
(
d( f x, f y),d( f x,T x),

d( f y,Ty),d( f x,Ty),d(T x, f y)
)
, (1.1)

where f and T are self mappings in complete metric spaces.
We state the theorems by Imdad and Kumar [9] and Gajić and
Rakoc̆ević [7] as examples of this form of expressing fixed
point theorems.

In 1997, Popa [12] established a class of mappings F :
R6
+→ R, which ensures the existence and the uniqueness of

a fixed point for a mapping T , if they obey the inequality

F [d(T x,Ty),d(x,y),d(x,T x),d(y,Ty),d(x,Ty),d(y,T x)]≤ 0

(1.2)

for all x,y ∈ X . When a fixed point theorem is written in the
form of (1.2), it is said to satisfy an implicit relation.

Grossman and Katz [8] developed a new type of calculus
called multiplicative calculus, where the operations of subtrac-
tion and addition were replaced by division and multiplication.
Bashirov et al. [3] exploited the efficiency of multiplicative
calculus over the Newtonian calculus by showing that it works
better than ordinary calculus in addressing some types of prob-
lems involving differential equations. Florack and Assen [6]
displayed the use of the concept of multiplicative calculus in
biomedical image analysis.

Inspired by multiplicative calculus, Özavşar and Çevikel
[11] defined and developed the topological properties of the
multiplicative metric space. They also obtained some fixed
point results in complete multiplicative metric spaces.

Fixed points in multiplicative metric spaces have various
applications such as solving multiplicative boundary value
problems (Abbas et al. [1]) and determining the existence
and uniqueness of solutions for a class of nonlinear integral
equations (Jiang and Gu [10]).

In this study, we will develop a fixed point theorem sat-
isfying an implicit relation for a pair of mappings in a multi-
plicative metric space. In doing so, we modify the theorem
by Berinde [4] so that it applies to pairs of self mappings in
multiplicative metric spaces.
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2. Preliminaries
In this section, we recall some definitions and basic results

which will be of use in this paper.
In this work, we define R+ as the set of positive real

numbers. We also denote N as the set of natural numbers. We
use the term MMS as an abbreviation of multiplicative metric
space.

The following is the definition of a multiplicative metric
space.

Definition 2.1. [1] Let X be a nonempty set. A function
d : X ×X → R+ is said to be a multiplicative metric on X if
for any x,y,z ∈ X , the following conditions hold:

(m1) d(x,y)≥ 1 and d(x,y) = 1 if and only if x = y;

(m2) d(x,y) = d(y,x);

(m3) d(x,y)≤ d(x,z) ·d(z,y).

The pair (X ,d) is called a multiplicative metric space.

Examples of multiplicative metric spaces are stated here.

Example 2.2. [11] Let d∗ : (R+)
n× (R+)

n → [1,∞) be de-
fined as follows

d∗(x,y) =
∣∣∣∣x1

y1

∣∣∣∣∗ ∣∣∣∣x2

y2

∣∣∣∣∗ · · · ∣∣∣∣xn

yn

∣∣∣∣∗ ,
where x = (x1,x2, . . . ,xn), y = (y1,y2, . . . ,yn) ∈ (R+)

n and∣∣ · ∣∣∗ : R+→ [1,∞) is defined as

|a|∗ =
{

a, if a≥ 1
1
a , if a < 1.

Then
(
(R+)

n, d∗
)

is a multiplicative metric space.

The following example is modified from Özavşar and
Çevikel [11].

Example 2.3. Let a > 1 be a fixed number. Then da : R×
R→ [1,∞] defined by

da(x,y) = a|x−y|

holds the multiplicative metric conditions.

Özavşar and Çevikel [11] gave the following definitions
in multiplicative metric spaces.

Definition 2.4. [11] Let (X ,d) be a multiplicative metric
space, x ∈ X and ε > 1. Define the following set

Bε(x) := {y ∈ X : d(x,y)< ε},

which is called the multiplicative open ball of radius ε with
center x. Similarly, one can describe the multiplicative closed
ball as follows:

B̄ε(x) := {y ∈ X : d(x,y)≤ ε}.

Definition 2.5. [11] Let (X ,d) be a multiplicative metric
space, {xn} be a sequence in X and x ∈ X . If for every multi-
plicative open ball Bε(x) there exists a natural number N such
that n≥ N⇒ xn ∈ Bε(x), then the sequence {xn} is said to be
multiplicative converging to x, denoted by
xn→∗ x(n→ ∞).

Lemma 2.6. [11] Let (X ,d) be a multiplicative metric space,
{xn} be a sequence in X and x ∈ X. Then xn→∗ x as n→ ∞

if and only if d(xn,x)→∗ 1 as n→ ∞.

Lemma 2.7. [11] Let (X ,d) be a multiplicative metric space
and {xn} be a sequence in X. If the sequence {xn} is mul-
tiplicative convergent, then the multiplicative limit point is
unique.

Definition 2.8. [11] Let (X ,d) be a multiplicative metric
space and {xn} be a sequence in X . The sequence {xn} is
called a multiplicative Cauchy sequence if for all ε > 1, there
exists N ∈ N such that d(xm,xn)< ε for all m,n≥ N.

Lemma 2.9. [11] Let (X ,d) be a multiplicative metric space
and {xn} be a sequence in X. Then {xn} is a multiplicative
Cauchy sequence if and only if d(xm,xn)→∗ 1 as m,n→ ∞.

Definition 2.10. [11] Let (X ,d) be a multiplicative metric
space. A subset S⊆ X is called multiplicative closed in (X ,d)
if S contains all of its multiplicative limit points.

Theorem 2.11. [11] Let (X ,d) be a multiplicative metric
space and S ⊆ X. Then the set S is multiplicative closed if
and only if every multiplicative convergent sequence in S has
a multiplicative limit point that belongs to S.

Theorem 2.12. [11] Let (X ,d) be a multiplicative metric
space and S ⊆ X. Then (S,d) is complete if and only if S is
multiplicative closed.

We make modifications to the description of the set of
implicit relations as defined by Berinde [5]. Let F be a
family of all continuous real functions F : R6

+→ R and the
following conditions:

(F1a) F is non-increasing in the fifth variable and
F(u,v,v,u,uv,1)≤ 1 for u,v≥ 1 implies that u≤ vh for
some h ∈ [0,1).

(F2) F(u,u,1,1,u,u)> 1, for all u > 1.

Example 2.13. The following functions F ∈F satisfy the
properties (F1a) and (F2).

(i) F(t1, t2, t3, t4, t5, t6) = t1/t2a where a ∈ [0,1);

(ii) F(t1, t2, t3, t4, t5, t6) = t1/(t3 t4)b, where t1 ≥ t4 and
b ∈ [0, 1

2 );

(iii) F(t1, t2, t3, t4, t5, t6) = t3t1/(t5 t6)c, where c ∈ [0, 1
2 ).

We will also make use of the following definitions.
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Definition 2.14. Consider the mappings f ,T : X → X . A
point x∈X is called a coincidence point of f and T if f x= T x.

Definition 2.15. The mappings T and f are said to be coin-
cidentally commuting if they commute at their coincidence
point, that is, f T x = T f x whenever f x = T x.

We take note of the following theorem by Berinde [4].

Theorem 2.16. [4] Let (X ,d) be a complete metric space,
T : X → X a self mapping for which there exists F ∈F such
that for all x,y ∈ X

F(d(T x,Ty),d(x,y),d(x,T x),d(y,Ty),

d(x,Ty),d(y,T x))≤ 0.

If F satisfies (F1a)and (F2), then:

(p1) T has a unique fixed point x? in X;

(p2) The Picard iteration {xn}∞
n=0 defined by

xn+1 = T xn,n = 0,1,2, ...

converges to x?, for any x0 ∈ X .

The aim of this study is to modify Theorem 2.16 so that
it applies for pairs of self mappings in multiplicative metric
spaces.

3. Main Results
We intend to prove the following theorem:

Theorem 3.1. Let (X ,d) be a multiplicative metric space and
f ,T : X → X be self mappings such that T X ⊆ f X. Assume
that there exists F ∈ F satisfying (F1a) such that, for all
x,y ∈ X, the following condition holds:

F
(
d(T x,Ty),d( f x, f y),d( f x,T x),d( f y,Ty),

d( f x,Ty),d( f y,T x)
)
≤ 1. (3.1)

If T X ⊆ f X and f X is a complete subspace of X, then T
and f have a coincidence point. Moreover, if T and f are
coincidentally commuting and F satisfies also (F2), then T
and f have a unique common fixed point.

Furthermore, for any x0 ∈ X, the T-f-sequence f xn+1 =
T xn with initial point x0 converges to the common fixed point.

Proof. Commencing with an arbitrary point x0 ∈ X , we find
T x0. From the assumption, we have T X ⊆ f X . Hence, there
is x1 ∈ X such that f x1 = T x0. We then find T x1.

Proceeding inductively, we generate the sequence { f xn}
and {T xn} by using the relation f xn+1 = T xn.

Consider ( f xn, f xn+1) = (T xn−1,T xn). Applying (3.1),
we get

F
(
d(T xn−1,T xn),d( f xn−1, f xn),d( f xn−1,T xn−1),

d( f xn,T xn),d( f xn−1,T xn),d( f xn,T xn−1)
)
≤ 1.

⇒F
(
d( f xn, f xn+1),d( f xn−1, f xn),d( f xn−1, f xn),

d( f xn, f xn+1),d( f xn−1, f xn+1),d( f xn, f xn)
)
≤ 1.

(3.2)

From (m1) of Definition 2.1, we note that d( f xn, f xn) = 1.
If we set u= d( f xn, f xn+1)), v= d( f xn−1, f xn), then (3.2)

becomes

F
(
u,v,v,u,d( f xn−1, f xn+1),1

)
≤ 1. (3.3)

From (m3) of Definition 2.1, we note that

d( f xn−1, f xn+1)≤ d( f xn−1, f xn) ·d( f xn, f xn+1) = uv.

From the assumption, F is non-increasing in the fifth variable.
Therefore, (3.3) implies that

F
(
u,v,v,u,uv,1

)
≤ 1.

This implies that there is h ∈ [0,1) such that u≤ vh, meaning

d( f xn, f xn+1))≤ [d( f xn−1, f xn)]
h. (3.4)

Extending (3.4) for large n, we get

d( f xn, f xn+1)≤ [d( f xn−1, f xn)]
h

≤ [d( f xn−2, f xn−1)]
h2

≤ [d( f xn−3, f xn−2)]
h3

...

≤ [d( f x0, f x1)]
hn

⇒ d( f xn, f xn+1)≤ [d( f x0, f x1)]
hn
. (3.5)

Consider n,m ∈ N with n > m. From (m3) of Definition 2.1,
we conclude inductively that

d( f xm, f xn)≤
n−1

∏
i=m

d( f xi, f xi+1)

≤
n−1

∏
i=m

[d( f x0, f x1)]
hi
, from (3.5)

≤
∞

∏
i=m

[d( f x0, f x1)]
hi
, by (m1).

We utilize the fact that the logarithmic is a continuous and
increasing function. This leads to

log [d( f xm, f xn)]≤ log

[
∞

∏
i=m

[d( f x0, f x1)]
hi

]

=
∞

∑
i=m

hi log [d( f x0, f x1)]

= log [d( f x0, f x1)]
∞

∑
i=m

hi

= log [d( f x0, f x1)]
hm

1−h
,

{sum o f a Geometric Progression}.

As m,n→ ∞ we get

lim
m,n→∞

log [d( f xm, f xn)] = 0. (3.6)
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We use the fact that the exponential function is continuous.
We apply the exponential function on both sides of (3.6) and
get

lim
m,n→∞

d( f xm, f xn) = 1.

This makes { f xn} a multiplicative Cauchy sequence by Lemma
2.9. From the assumption, we know that f X is complete. This
means that there is z ∈ f X such that

lim
n→∞

f xn = z. (3.7)

From the construction of the sequence { f xn}, we have
f xn = T xn−1. Taking n→ ∞ we have

lim
n→∞

f xn = z = lim
n→∞

T xn. (3.8)

As z ∈ f X , there is w ∈ X such that f w = z. We claim that w
is a coincidence point of f and T .

Let x = xn and y = w in (3.1). Then, we have

F
(
d(T xn,Tw),d( f xn, f w),d( f xn,T xn),d( f w,Tw),

d( f xn,Tw),d( f w,T xn)
)
≤ 1

⇒F
(
d(T xn,Tw),d( f xn,z),d( f xn,T xn),d(z,Tw),

d( f xn,Tw),d(z,T xn)
)
≤ 1.

From the assumption, F is continuous. Hence, on taking
n→ ∞ and appying (3.8), we get

F
(
d(z,Tw),d(z,z),d(z,z),d(z,Tw),

d(z,Tw),d(z,z)
)
≤ 1.

⇒F
(
d(z,Tw),1,1,d(z,Tw),d(z,Tw),1

)
≤ 1. (3.9)

We use the property (F1a) with u= d(z,Tw),v= 1 and deduce
that, for some h ∈ [0,1), we have

u≤ vh

⇒d(z,Tw)≤ 1
⇒d(z,Tw) = 1, by (m1) of Definition 2.1,
⇒z = Tw, by (m1).

Thus w is a coincidence point for f and T because

Tw = z = f w. (3.10)

If f and T are coincidentally commuting at point w, then we
have

f Tw = T f w⇒ f z = T z. (3.11)

We claim that z is a common fixed point of f and T . Let us

use (3.1) with x = w, y = z.

F
(
d(Tw,T z),d( f w, f z),d( f w,Tw),d( f z,T z),

d( f w,T z),d( f z,Tw)
)
≤ 1,

⇒F
(
d(z, f z),d(z, f z),d(z,z),d( f z, f z),

d(z, f z),d( f z,z)
)
≤ 1,

from (3.11) and (3.10)

⇒F
(
d(z, f z),d(z, f z),1,1,d(z, f z),d(z, f z)

)
≤ 1,

(3.12)

Let us assume d(z, f z)> 1. Applying property (F2) , we get

F
(
d(z, f z),d(z, f z),1,1,d(z, f z),d(z, f z)

)
> 1,

which is a contradiction. Hence

d(z, f z)≤ 1
⇒d(z, f z) = 1, according to (m1) in Definition 2.1,
⇒ f z = z = T z, by (m1)and (3.11)

making z a common fixed point of f and T .
Now we will show that z is unique. Suppose z′ is also a

common fixed point of f and T . Let us set x = z,y = z′ in
(3.1). We get

F
(
d(T z,T z′),d( f z, f z′),d( f z,T z),d( f z′,T z′),

d( f z,T z′),d( f z′,T z)
)
≤ 1

⇒F
(
d(z,z′),d(z,z′),d(z,z),d(z′,z′),

d(z,z′),d(z′,z)
)
≤ 1

⇒F
(
d(z,z′),d(z,z′),1,1,

d(z,z′),d(z,z′)
)
≤ 1.

Let us assume u = d(z,z′)> 1. Using property (F2), we get

F
(
d(z,z′),d(z,z′),1,1,d(z,z′),d(z′,z)

)
> 1,

which is a contradiction.
Hence, we have

d(z,z′)≤ 1
⇒d(z,z′) = 1, by (m1) in Definition 2.1,
⇒z = z′, by (m1)

making z the unique common fixed point of f and T .

If we set f = I, the identity mapping, we get the following
corollary, which is Theorem 2.16 by Berinde [4], modified to
multiplicative metric spaces.

Corollary 3.2. Let (X ,d) be a complete multiplicative metric
space and T : X → X be a self-mapping. Assume that there
exists F ∈F satisfying (F1a) and (F2) such that, for all x,y ∈
X, the following condition holds:

F
(
d(T x,Ty),d(x,y),d(x,T x),d(y,Ty),

d(x,Ty),d(y,T x)
)
≤ 1.
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Then the mapping T has a unique fixed point in X.
Furthermore, for any x0 ∈ X, the sequence {T xn}, where

xn+1 = T xn with initial point x0, converges to the fixed point.

Example 3.3. Consider the function F : R+
6→ R+ defined

as

F(t1, t2, t3, t4, t5, t6) =
t1

(t2)a · (t3)b · (t4)c ,

where 0 < a+b+ c≤ 1.
(3.13)

We will show that F has the (F1a) property. Note that F is
non-increasing in the fifth variable. Also note that,

F(u,v,v,u,uv,1)≤ 1

⇒ u
vavbuc ≤ 1

⇒ u≤ v
a+b
1−c . (3.14)

Because 0≤ a+b+c< 1, we have 0≤ h=
a+b
1− c

< 1. Hence

(3.14) becomes u≤ vh with h ∈ [0,1), obeying the (F1a) prop-
erty for all u,v≥ 1.

We now show that F has the F2 property which states that
for all u > 1 we have F(u,u,1,1,u,u)> 1.

Because 0 ≤ a+ b+ c < 1 we have 1− a > b+ c ≥ 0.
Hence for u > 1 we have

F(u,u,1,1,u,u) = u1−a > u0 = 1.

The function F described in (3.13) leads to the following the-
orem which is a modification of Reich’s Fixed Point Theorem
[13] so that it applies to two self mappings in multiplicative
metric spaces.

Theorem 3.4. Let (X ,d) be a multiplicative metric space and
f ,T : X → X be self-mappings such that T X ⊆ f X. Assume
that, for all x,y ∈ X, the following condition holds:

d(T x,Ty)≤ [d( f x, f y)]a · [d( f x,T x)]b · [d( f y,Ty)]c, (3.15)

where 0≤ a+b+ c < 1. If T X ⊆ f X and f X is a complete
subspace of X, then T and f have a coincidence point. More-
over, if T and f are coincidentally commuting, then T and f
have a unique common fixed point.

Furthermore, for any x0 ∈ X, the T-f-sequence f xn+1 =
T xn with initial point x0, converges to the common fixed point.

Proof. We provide the proof to the theorem using conven-
tional methods. Commencing with an arbitrary point x0 ∈ X ,
we find T x0. From the assumption, we have T X ⊆ f X . Hence,
there is x1 ∈ X such that f x1 = T x0. We then find T x1.

Proceeding inductively, we generate the sequence { f xn}
and {T xn} by using the relation

f xn+1 = T xn.

If we set x = xn−1,y = xn in (3.15), we get

d(T xn−1,T xn) = d( f xn, f xn+1)

≤ [d( f xn−1, f xn)]
a · [d( f xn−1,T xn−1)]

b·
[d( f xn,T xn)]

c

= [d( f xn−1, f xn)]
a · [d( f xn−1, f xn)]

b·
[d( f xn, f xn+1)]

c

⇒ d( f xn, f xn+1)≤ [d( f xn−1, f xn)]
a+b
1−c . (3.16)

From the assumption we have 0≤ a+b+c < 1. This implies

h =
a+b
1− c

< 1. Hence, for all n≥ 1, we have

d( f xn, f xn+1)≤ [d( f xn−1, f xn)]
h, 0≤ h < 1. (3.17)

The proof continues as after (3.4).

4. Example

Now, we illustrate an example on the use of the theorem.

Example 4.1. Consider the multiplicative metric space (X ,d)
where X = [1,2] ∈ R and for all x,y ∈ X , d(x,y) = | xy |

∗. De-

fine the mappings f ,T : X → X as f x = x(1/2),T x = x(1/3).
Note that we have [1, 2(1/3)] = T X ⊂ f X = [1, 2(1/2)]. We
also have f X closed as the theorem requires.

Consider the function F ∈F defined as

F(t1, t2, t3, t4, t5, t6) =
t1

(t2)2/5 (t5)1/5 (t6)1/5 . (4.1)

We show that F has the (F1a) property. Note that F is non-
increasing in the fifth variable. Also note that,

F(u,v,v,u,uv,1)≤ 1

⇒ u
v2/5(uv)1/511/5 ≤ 1

⇒ u≤ v3/4.

Then we show that F has the F2 property which states that for
all u > 1 we have F(u,u,1,1,u,u)> 1.

F(u,u,1,1,u,u) =
u

(u)2/5 u1/5u1/5

= u1/5

> 1.

Here we show that function (4.1) obeys the condition (3.1 ).
Without loss of generality, assume x,y ∈ X , x≥ y. Note that
in this case

d(x,y) = |x
y
|∗ = x

y
.
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Γ = F
(
d(T x,Ty),d( f x, f y),d( f x,T x),

d( f y,Ty),d( f x,Ty),d( f y,T x)
)

=
d(T x,Ty)

(d( f x, f y))2/5(d( f x,Ty))1/5(d(T x, f y))1/5

=
d(x

1
3 ,y

1
3 )

(d(x
1
2 ,y

1
2 ))2/5(d(x

1
2 ,y

1
3 ))1/5(d(x

1
3 ,y

1
2 ))1/5

.

We consider two cases:
Case 1: If x1/3 ≥ y1/2, we have

Γ =

x1/3

y1/3

( x1/2

y1/2 )
2/5 ( x1/2

y1/3 )
1/5 ( x1/3

y1/2 )
1/5

=(
x
y
)−1/30,

≤1, because
x
y
≥ 1.

Case 2: If x1/3 < y1/2, we have

Γ =

x1/3

y1/3

( x1/2

y1/2 )
2/5 ( x1/2

y1/3 )
1/5 ( y1/2

x1/3 )
1/5

<

x1/3

y1/3

( x1/2

y1/2 )
2/5 ( x1/2

y1/3 )
1/5 ( x1/3

y1/2 )
1/5

= (
x
y
)−1/30,

≤ 1.

From the theorem, f and T have a unique fixed point at
z = 1 which can be found by the Picard iteration f xn+1 = T xn
using x0 as an arbitrary point in X .

5. Conclusion
In this paper, an approach has been developed for exis-

tence and uniqueness of fixed point for the maps involving
implicit relations in multiplicative metric spaces. Illustrative
examples are aslo given to support the theorems.
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