Stability and optimal control analysis of Zika virus with saturated incidence rate

Naba Kumar Goswami¹* and B. Shanmukha²

Abstract
Stability analysis of a non-linear mathematical model is studied and analyzed the transmission dynamics of the Zika virus disease. In our model, the human to human sexual transmission of Zika virus is modeled by considering the saturated incidence rate. This assumption is reasonable as it incorporates the behavioral change of the susceptible individuals and the crowding effect of the infective individuals. The equilibria of the proposed model are obtained and the basic reproduction number \(R_0 \) is computed. The model also exhibits backward bifurcation where the stable disease-free equilibrium coexists with a stable endemic equilibrium, which suggests that the \(R_0 < 1 \) is not enough to eradicate the disease. The sensitivity analysis of the parameters of the basic reproduction number of the model is presented. The sensitivity analysis is performed to distinguish the main variables that affect the basic reproduction number, which can be regulated to control the transmission dynamics of the Zika. Finally, the optimal control strategies are incorporated into the model and performed a numerical simulation to support our analytical findings.

Keywords
Zika virus, basic reproduction number, bifurcation analysis, stability analysis, sensitivity Analysis.

AMS Subject Classification
34K18,34D20,34D23,37C75,49Q12,49J15,90C31,93C15,93D05.

1. Introduction

Zika virus (ZIKV) is a major public health challenge in Brazil and Latin American countries recently. ZIKV is primarily spread to the human population by the contact of an infected Aedes genes species female mosquito [1]. Sexual transmission and blood transfusion are also the main cause of the spread of ZIKV [10]. In 2007 to 2018 Zika outbreak is identified in the Island of Yap, Micronesia [3], France Polynesia (42 GBS cases) [1], South Pacific, South American countries, especially in Brazil and Colombia [8]. From October 2013 to April 2014 the largest outbreak was reported in South Pacific, French Polynesia. In February, 2016 the World Health Organization announced Zika outbreak [24] is a Public Health Emergency of International Concern(PHEIC) as it developed Guillain-Barre Syndrome (GBS) [17] and vertical transmission, specifically microcephaly [5]. As a result of GBS and vertical transmission, many people suffered neurological problems in 2016. The first sexual transmission of Zika wears found in France (2016) [1]. During the 2015 outbreak, sexual transmission Zika has been investigated in many countries. It was confirmed that in the year 2016 more than 1,40,000, people [10] have been affected by ZIKA. In Brazil, from October 2015 to February 2016 many people suffered ZIKV including 139 congenital microcephaly cases identified [1]. The symptoms of the disease are very mild and there is no particular medicine to treat and vaccine for the disease.

Agusto F B et al. [2] proposed a deterministic model to study the vertical transmission of ZIKV disease. Bonyah E et al. [3] proposed and analysis a ZIKV model with simple mass-action type incidence and used different types as a control strategy to reduce the disease. Daozhou G et al. [10] developed a ZIKV epidemic model and computed the basic reproduction number. Moreno V M et al. [14] presented a multi-patch model to see the effect of the role of short-term dispersal dynamics of ZIKV disease. Srivastav A K et al. [21] constructed a new ZIKV model with media impact for the human population and standard mass-action type incidence to reduce the transmission.

In this paper, we have formulated a deterministic model
for ZIKV considering the standard incident type of interaction and saturated incidence rate for the human to human sexual transmission. The study of ZIKV is certainly necessary as at present more than 84 countries [24] people are suffering the disease. This paper is organized as follows: Section 2 formulates the mathematical model; Section 3 analysis of the model and existence of equilibrium; Section 4 discussed the existence of bifurcation of the model; Section 5 present the sensitivity of the parameters of R0; section 6 demonstrate the numerical simulation results and finally in Section 9 we conclude our paper.

2. The Model

We have proposed a new model for the transmission dynamics of ZIKV with the saturated incidence rate. In the formulation of the proposed model the human population has been classified into four categories such as Susceptible is denoted by (S_h), Infected is denoted by (I_h) and recovered is denoted by (R_h). Similarly, the mosquito population has been classified into two categories such as susceptible is denoted by (S_v) and infected is denoted by (I_v) mosquitoes. There are three types of transmission are possible in the dynamical system between human to human, human to mosquito and mosquito to human. Here, we have incorporated a nonlinear incidence function for the human to human transmission, which consists of a saturated incidence type to reduce the transmission. Also, we have incorporated three types incidence rate [12] such as the bilinear incidence rate of the form \((\beta_1 S_h I_h)\), the saturated incidence rate of the form \(\left(\frac{\beta_1 S_h I_h}{1 + p_1 S_h}\right)\), where \(p_1\) is a positive constant and another one saturated incidence rate of the form \(\left(\frac{\beta_1 S_h I_h}{1 + p_2 S_h}\right)\), where \(p_2\) is a positive constant. Some authors have studied in detail this type of nonlinear incidence function [4, 14, 20, 25] in their respective model. Based on the above assumptions we have constructed the following system of model:

\[
\begin{align*}
\frac{dS_h}{dt} &= \Lambda_h - \beta_1 \left(\frac{I_h}{1 + p_1 S_h + p_2 I_h}\right) S_h - \mu_h S_h \\
\frac{dI_h}{dt} &= \beta_1 \left(\frac{I_h}{1 + p_1 S_h + p_2 I_h}\right) S_h + \beta_2 \left(\frac{I_v}{N_h}\right) S_h - (\gamma_h + \mu_h + \mu_v) I_h \\
\frac{dR_h}{dt} &= \gamma_h I_h - \mu_h R_h \\
\frac{dS_v}{dt} &= \Lambda_v - \beta_v \left(\frac{I_v}{N_h}\right) S_v - \mu_v S_v \\
\frac{dI_v}{dt} &= \beta_v \left(\frac{I_v}{N_h}\right) S_v - \mu_v I_v.
\end{align*}
\]

Here \(\Lambda_h\) is the recruitment rate of human population; \(\Lambda_v\) is the recruitment of vector(mosquito) population; \(\beta_i\) is the transmission rate between \(S_h\) and \(I_h\); \(\beta_2\) is the transmission rate between \(S_h\) and \(I_v\); \(\beta_v\) is the transmission rate between \(I_v\) and \(S_v\); \(\mu_h\) is natural death rate of human population; \(\mu_1\) is the natural death rate of human population due to infection; \(\mu_v\) is the natural death rate of mosquito population; \(\gamma_h\) is the recovery rate of symptomatic infective(human) population; \(S_h\) is the susceptible individuals who can suffer the disease but are not yet infective; \(I_h\) is the infected individuals one who is suffering the disease and are carriers and \(R_h\) is the recovered individuals who has been recovered or removed from the host population by either permanent immunity and temporarily immunity or isolated or dead.

2.1 Positvity and boundedness of the solutions

Consider a feasible region

\[\Omega = (S_h, I_h, R_h, S_v, I_v) \in R^5_+ : 0 \leq N_h \leq \frac{\Lambda_h}{\mu_h}, 0 \leq N_v \leq \frac{\Lambda_v}{\mu_v}\]

Let \(N_h = S_h + I_h + R_h\) and \(N_v = S_v + I_v\) are the total population sizes of human and mosquitoes. Then

\[
\begin{align*}
\frac{dN_h}{dt} &= \Lambda_h - \mu_h N_h - \mu_1 I_h \\
\frac{dN_v}{dt} &= \Lambda_v - \mu_v N_v.
\end{align*}
\]

Clearly, whenever \(N_h > \frac{\Lambda_h}{\mu_h}, N_v > \frac{\Lambda_v}{\mu_v}\), \(\frac{dN_h}{dt} < 0\) and \(\frac{dN_v}{dt} < 0\).

Here, \(\frac{dN_h}{dt}\) and \(\frac{dN_v}{dt}\) are bounded by \((\Lambda - \mu N_h)\) and \((\Lambda_v - \mu_v N_v)\). By using the standard comparison theorem as described in, [13], we get

\[0 \leq N_h(t) \leq \frac{\Lambda_h}{\mu_h} (1 - e^{-\mu_h t}) + N_h(0) e^{-\mu_h t}\]

and

\[0 \leq N_v(t) \leq \frac{\Lambda_v}{\mu_v} (1 - e^{-\mu_v t}) + N_v(0) e^{-\mu_v t}\]
We find the basic reproduction number \(R_0 \) as

\[
N_h(0) \leq \frac{\Lambda_h}{\mu_h}, N_v(0) \leq \frac{\Lambda_v}{\mu_v}
\]

if \(N_h \) and \(N_v \) are non-negative. Hence the biological feasible region

\[
\{ \Omega = (S_h, I_h, R_h, S_v, I_v) \in R^5_+ : 0 \leq N_h \leq \frac{\Lambda_h}{\mu_h}, 0 \leq N_v \leq \frac{\Lambda_v}{\mu_v} \}
\]

is positively invariant and bounded by \((\Lambda_h - \mu_h N_h)\) and \((\Lambda_v - \mu_v N_v)\).

As \(N_h = S_h + I_h + R_h \) and \(N_v = S_v + I_v \), we write the system of eqs. (2.1) in the following form for further analysis:

\[
\begin{align*}
\frac{dN_h}{dt} &= \Lambda_h - \mu_h N_h - \mu_1 I_h \\
\frac{dI_h}{dt} &= \frac{\beta_1 (N_h - I_h - R_h) I_h}{1 + p_1 (N_h - I_h - R_h) + p_2 h} + \frac{\beta_2 (N_h - I_h - R_h) I_v}{N_h} - (\gamma_h + \mu_h + \mu_1) I_h \\
\frac{dR_h}{dt} &= \gamma_h - \mu_h R_h \\
\frac{dS_v}{dt} &= \Lambda_v - \mu_v N_v \\
\frac{dI_v}{dt} &= \beta_v \frac{(N_v - I_v) I_h}{N_v} - \mu_v I_v.
\end{align*}
\]

(2.2)

3. Existence of Equilibria

3.1 Disease-free equilibrium and The Basic Reproduction Number

The disease-free equilibrium point \(E_0 = (N_h^0, I_h^0, R_h^0, N_v^0, I_v^0) = (\frac{\Lambda_h}{\mu_h}, 0, 0, \frac{\Lambda_v}{\mu_v}, 0) \) for the model (2.2).

We find the basic reproduction number \(R_0 \) by following the next generation matrix method as described in [6, 9]. Following the same notations as in [6, 9] we get:

\[
\mathcal{F} = \begin{pmatrix}
\frac{\beta_1 (N_h - I_h - R_h) I_h}{1 + p_1 (N_h - I_h - R_h) + p_2 h} & \frac{\beta_2 (N_h - I_h - R_h) I_v}{N_h} \\
\beta_v \frac{(N_v - I_v) I_h}{N_v} & 0
\end{pmatrix}
\]

and

\[
\mathcal{V} = \begin{pmatrix}
\gamma_h + \mu_h + \mu_1 & 0 \\
0 & \mu_v
\end{pmatrix}
\]

and it follows that

\[
FV^{-1} = \begin{pmatrix}
\frac{\beta_1 N_h^0}{(1 + p_1 N_h^0)(\gamma_h + \mu_h + \mu_1)} & \frac{\beta_2}{\mu_v} \\
\frac{\beta_1 N_h^0}{N_h^0 (\gamma_h + \mu_h + \mu_1)} & 0
\end{pmatrix}
\]

The spectral radius of the matrix \(\rho(FV^{-1}) \) is called the basic reproduction number \(R_0 \) and it follows that:

\[
R_0 = \frac{\beta_1 N_h^0 d_1}{(1 + p_1 N_h^0)} + \sqrt{(\frac{\beta_1 N_h^0 d_1}{(1 + p_1 N_h^0)})^2 + \frac{4 \beta_2 \beta_v N_h^0 d_1}{\mu_v N_h^0}}
\]

\[
= \frac{R_1 + \sqrt{(R_1)^2 + 4 R_2}}{2}
\]

where,

\[
R_1 = \frac{\beta_1 N_h^0 d_1}{(1 + p_1 N_h^0)}, \quad R_2 = \frac{4 \beta_2 \beta_v N_h^0 d_1}{\mu_v N_h^0}, \quad d_1 = \frac{1}{\gamma_h + \mu_h + \mu_1}
\]

Here \(R_1 \) denotes the basic reproduction due to human to human transmission by ignoring the transmission due to vectors. Similarly, \(R_2 \) denotes the basic reproduction due to interactions with vectors in the absence of human to human transmission. The reproduction number \(R_0 \) gives the average number of infected individuals generated by the one infected in a fully susceptible population and for our model it is given by above expression of \(R_0 \).

3.2 The Endemic Equilibrium

For the system (2.2), we get the endemic equilibrium point as \(E_1 = (N_h^*, I_h^*, R_h^*, N_v^*, I_v^*) \),

where

\[
N_h^* = \frac{\Lambda_h - \mu_h I_h^*}{\mu_h}, \quad R_h^* = \frac{\gamma_h I_h^*}{\mu_h}, \quad N_v^* = \frac{\Lambda_v}{\mu_v}, \quad I_v^* = \frac{\Lambda_h \beta_v I_h^*}{\mu_v \mu_h + \beta_v (\Lambda_h - \mu_h I_h^*)} \quad \text{provided} \quad \Lambda_h > I_h^*
\]

For \(I_h^* \), we substituting the value of \(N_h^* \), \(R_h^* \), \(N_v^* \), \(I_v^* \) in the equilibrium \(\frac{dI_h^*}{dt} \), we get the following equation

\[
g(I_h) = \frac{(\Lambda_h - \Lambda) \beta_1 (\Lambda_h - \mu_h I_h)}{\mu_h + p_1 \Lambda_h - p_1 \Lambda I_h + p_2 \mu_h I_h}
\]

\[
+ \frac{(\Lambda_h - \Lambda) \beta_2 \mu_v \mu_h \Lambda_v}{\beta_2 \mu_v \mu_h I_h + (\Lambda_h - \mu_h I_h) \mu_v^2}
\]

\[
- \frac{(\Lambda_h - \Lambda) \beta_1 (\Lambda_h - \mu_h I_h)}{\mu_h + p_1 \Lambda_h - p_1 \Lambda I_h + p_2 \mu_h I_h}
\]

\[
- (\Lambda_h - \mu_h I_h) (\mu_1 + \mu_v + \gamma_h) = 0
\]

\[
g(0) = \Lambda_h \left[\frac{\beta_1 \Lambda_h}{\mu_h + p_1 \Lambda_h} + \frac{\beta_2 \mu_v \mu_h \Lambda_v}{\Lambda_h \mu_v^2} \right] - \Lambda_h (\mu_1 + \mu_v + \gamma_h) > 0
\]
where the phenomenon of backward bifurcation exist for any type of $0 < \mu < \Lambda$. Therefore, in the interval $0 < I < \frac{\Lambda}{\mu}$ there is no root, as there is no sign change of $g(I)$. Hence, there is one or more root are possible in the interval $0 < I < \frac{\Lambda}{\mu}$ of $g(I) = 0$.

Clearly, $g(I)$ is negative in the interval $\frac{\Lambda}{\mu} < I < \frac{\Lambda}{\mu + h + \gamma}$. Hence, there is one root I^*_h of $g(I) = 0$. Also it is clear that if $\frac{d g(I_h)}{d I_h} < 0$ at $I < \frac{\Lambda}{\mu + h + \gamma}$ then it must be negative for all I_h in the interval $0 < I < \frac{\Lambda}{\mu + h + \gamma}$. Hence we get the positive equilibrium point $E_1 = (N_h^*, I_h^*, R_h^*, N_s^*, I_s^*)$ with respect to the above conditions. But if $\frac{d g(I_h)}{d I_h}$ is not negative throughout the interval $0 < I < \frac{\Lambda}{\mu + h + \gamma}$, then there is a probability of getting two or more roots the equation $g(I) = 0$. Hence the phenomenon of backward bifurcation exist for any type of mosquito-borne disease model with respect to the endemic equilibrium points for $R_0 < 1$.

4. Analysis of Backward Bifurcation

Let us consider the following change of variables $N_h = x_1, I_h = x_2, R_h = x_3, N_s = x_4, I_s = x_5$. Also further by using vector notation $X = (x_1, x_2, x_3, x_4, x_5)^T$, our system (2.2) can be formulated.

\[
\frac{dX}{dt} = F(x), \text{where} \ F = (f_1, f_2, f_3, f_4, f_5)^T
\]

Consider the case $R_0 = 1$. Suppose, further, that $\beta_1 = \beta_1^*$ is chosen as a bifurcation parameter. Solving for $\beta_1 = \beta_1^*$ from $R_0 = 1$ gives

\[
\beta_1^* = \left(\frac{\mu_b + p_1\Lambda h}{\mu + h + \gamma} \right) \left(1 - \frac{\mu_b \beta_2 \Lambda v}{\mu \mu_b (\mu + h + \gamma)} \right)
\]

The Jacobian of the above system at disease-free equilibrium point is given by

\[
J(\beta_1) = \begin{pmatrix}
-\mu_b & -\mu_1 & 0 & 0 & 0 \\
0 & m_{22} & 0 & 0 & \beta_2 \\
0 & \gamma & -\mu_h & 0 & 0 \\
0 & 0 & 0 & -\mu_v & 0 \\
0 & \beta_1 \frac{x_1}{x_1} & 0 & 0 & -\mu_v
\end{pmatrix}
\]

where, $x_1 = \frac{\Lambda_h}{\mu_h}, x_4 = \frac{\Lambda_s}{\mu_s}, m_{22} = \frac{\beta_2 x_1}{1 + P_1 x_1} - \frac{\mu_b + p_1 \Lambda h}{\mu + h + \gamma}$. According to Castillo-Chavez and Song [7], we use the center manifold theory and analyze it, which is shown below.

Theorem 4.1. Consider the following general system of ordinary differential equations with a parameter ϕ.

\[
\frac{dx}{dt} = f(x, \phi),
\]

\[
f : \mathbb{R}^n \times \mathbb{R} \rightarrow \mathbb{R}
\]

and

\[
f \in C^2(\mathbb{R}^n \times \mathbb{R})
\]

where 0 is the equilibrium point of the system (i.e., $f(0, \phi) = 0$ for all ϕ) and

(i). $A = D_x f(0, 0) = \left(\frac{\partial f}{\partial x_j}(0, 0)\right)$ is the linearization matrix of the system around the equilibrium 0 with f evaluated at 0;

(ii). Zero is the simple eigenvalue of A and other eigenvalues of A Has negatives real parts;

(iii). Matrix A has a right eigenvector w and a left eigenvector v corresponding to the zero eigenvalue.

Let f_k be the kth component of f and

\[
a_k = \sum_{i,j=1}^n v_i w_j \frac{\partial^2 f_k}{\partial x_i \partial x_j}(0, 0)
\]
It follows from the above expressions that
\[
\begin{align*}
\frac{\partial^2 f_2}{\partial x_1 \partial x_2} &= \frac{-2p_1}{(1 + p_1 x_1)^2}, \\
\frac{\partial^2 f_2}{\partial x_2 \partial x_2} &= \frac{-2\beta_1 (1 + p_1 x_1)}{x_1 (1 + p_1 x_1)^2}, \\
\frac{\partial^2 f_2}{\partial x_2 \partial x_3} &= \frac{-2\beta_1 x_1}{x_1 (1 + p_1 x_1)^2}, \\
\frac{\partial^2 f_2}{\partial x_3 \partial x_3} &= \frac{-\beta_2 x_1}{x_1 (1 + p_1 x_1)^2},
\end{align*}
\]

4.3 Computation of \(b_1 \)
For the system (4.1), the associated non-zero partial derivatives are given by
\[
\frac{\partial^2 f_2}{\partial x_1 \partial x_1} = \frac{x_1}{1 + p_1 x_1}
\]
It follows from the above expressions that
\[
b_1 = \frac{v_2}{w_2} \left(\frac{x_1}{1 + p_1 x_1} \right) = \frac{\Lambda h}{\mu_h + \mu v + \mu_h p_2 + 2 \gamma_h}
\]
Clearly, the coefficient \(b_1 \) is positive and according to the Theorem (4.1), the sign of the coefficient \(a_1 \), which decides the local dynamics of the model around the disease-free equilibrium for \(\beta_1 = \beta_1^* \).

5. Stability Analysis

Theorem 5.1. If \(R_0 < 1 \), the disease-free equilibrium \(E_0 \) is locally asymptotically stable otherwise it is unstable.

The Jacobian matrix of the model (2.2) at disease-free equilibrium point \(E_0 = (N^0_h, 0, 0, N^0_v, 0) \) is given by:
\[
J_0 = \begin{pmatrix}
-\mu_h & -\mu_1 & 0 & 0 & 0 \\
0 & m_{22} & 0 & 0 & \beta_2 \\
0 & -\gamma_h & -\mu_h & 0 & 0 \\
0 & 0 & 0 & -\mu_v & 0 \\
0 & \beta_v N^0_v & 0 & 0 & -\mu_v \\
\end{pmatrix}
\]
where,
\[
m_{22} = \beta_1 \left(\frac{N^0_h}{1 + p_1 N^0_v} \right) - (\mu_1 + \mu_h + \gamma_h)
\]
The three eigenvalues of the above matrix \(J_0 \) are clearly negative, that is, \(-\mu_h, -\mu_v \), and \(-\mu_v \) and the remaining two eigenvalues are the roots of the following characteristic equation:
\[
\lambda^2 + A_1 \lambda + A_2 = 0
\]
Where,
\[A_1 = \mu_v - m_2 = \mu_v - (1 - R_1)(\gamma_h + \mu_h + \mu_1) \] for \(R_1 < 1 \)
\[A_2 = -\left(\mu_v m_{22} + \beta_2 \beta_5 \frac{N_{h}^0}{N_{h}^0} \right) \]
\[= -\mu_v \left[\beta_1 \left(\frac{N_{h}^0}{1 + p_1 N_{v}^0} \right) - (\mu_1 + \mu_h + \gamma_h) \right] - \beta_2 \beta_5 \frac{N_{v}^0}{N_{h}^0} \]
\[= \mu_v (\mu_1 + \mu_h + \gamma_h) [1 - (R_1 + R_2)] \] for \((R_1 + R_2) < 1 \)

It is observed that \(R_1 < 1 \) and \((R_1 + R_2) < 1 \). If \(A_1 > 0, A_2 > 0 \) then both the eigenvalues of the quadratic equation will have negative real part. Hence our system (2.2) is stable if \(R_0 < 1 \). Hence the disease-free equilibrium \(E_0 \) is locally asymptotically stable.

Theorem 5.2. The disease-free equilibrium \(E_0 \) is globally asymptotically stable under some restriction of parameters if \(R_0 < 1 \), otherwise it is unstable.

Proof. Using the comparison theorem [13], we proved the theorem. The equations of exposed and infected compartment of the system (2.1) we re-write as follows:

\[
\begin{pmatrix}
I_h \\
I_v
\end{pmatrix} = (F_1 - V_1) \begin{pmatrix}
I_h \\
I_v
\end{pmatrix} - \left(\begin{pmatrix}
\frac{\beta_1 I_h}{K} + \frac{\beta_2 I_v}{N_{h}^0} (S_{h}^0 - S_h) \\
\beta_v \frac{I_h}{N_{h}^0} (S_{v}^0 - S_v)
\end{pmatrix} \right)
\]

where, \(K = 1 + p_1 S_h + p_2 I_h \),

\[
F_1 = \begin{pmatrix}
\frac{\beta_1 N_{h}^0}{1 + p_1 N_{v}^0} & \beta_2 \\
\beta_v N_{v}^0 & 0
\end{pmatrix}
\]

and \(V_1 = \begin{pmatrix} A & 0 \\ 0 & \mu_v \end{pmatrix} \)

As \(S_{h}^0 > S_h \) and \(S_{v}^0 > S_v \), we get

\[
\begin{pmatrix}
I_h \\
I_v
\end{pmatrix} \leq (F_1 - V_1) \begin{pmatrix}
I_h \\
I_v
\end{pmatrix}
\]

Here,

\[
F_1 - V_1 = \begin{pmatrix}
\beta_1 \frac{N_{h}^0}{1 + p_1 N_{v}^0} - (\mu_1 + \mu_h + \gamma_h) & \beta_2 \\
\beta_v N_{v}^0 & -\mu_v
\end{pmatrix}
\]

The associate characteristic equation of the matrix \((F_1 - V_1)\) is obtain by

\[
\lambda^2 + B_1 \lambda + B_2 = 0
\]

Where,

\[
B_1 = \mu_v - (1 - R_1)(\gamma_h + \mu_h + \mu_1)
\]
\[
B_2 = \mu_v (\mu_1 + \mu_h + \gamma_h) [1 - (R_1 + R_2)]
\]

Here it is observed that \(R_1 < 1 \) and \((R_1 + R_2) < 1 \) whenever \(R_0 < 1 \). If \(B_1 > 0, B_2 > 0 \) then both the eigenvalues of \((F_1 - V_1)\) will have negative real part. Hence our model (2.2) is stable if \(R_0 < 1 \). So \((I_h, I_v) \to (0,0)\) as \(t \to \infty \). According to comparison theorem [13] it follows that \((I_h, I_v) \to (0,0)\) and \(N_h^* \to N_{h0} \) as \(t \to \infty \). Hence \((S_h, I_h, R_h, I_v, S_v) \to E_0\) as \(t \to \infty \). Hence \(E_0 \) is globally asymptotically stable for \(R_0 < 1 \), if \(B_1 > 0, B_2 > 0 \).

Theorem 5.3. When \(R_0 > 1 \), then endemic equilibrium \((E_1) \) is locally asymptotically stable under some conditions, otherwise it is unstable.

The Jacobian matrix of the model (2.2) at endemic equilibrium point \(E_1 = (N_h, I_h, R_h, N_v, I_v) \) is obtained as follows:

\[
J_1 = \begin{pmatrix}
-\mu_h & -\mu_1 & 0 & 0 & 0 \\
k_{21} & k_{22} & k_{23} & 0 & k_{25} \\
0 & \gamma_h & -\mu_h & 0 & 0 \\
0 & 0 & 0 & -\mu_v & 0 \\
k_{51} & k_{52} & 0 & k_{54} & k_{55}
\end{pmatrix}
\]

where,

\[
k_{21} = \frac{(1 + p_1 I_h^*) \beta_1 I_h^*}{(1 + p_1 (N_h^* - I_h^* - R_h^*) + p_2 I_h^*)^2} \frac{(N_{h0})^2}{N_h^*}
\]
\[
k_{22} = - \beta_2 \beta_5 \left[\frac{(1 + p_1 (N_h^* - I_h^* - R_h^*) + p_2 I_h^*)^2}{(1 + p_1 (N_h^* - I_h^* - R_h^*) + p_2 I_h^*)^2} \frac{\beta_2 I_h^*}{N_h^*} \frac{N_{h0}}{N_h^*} \right]
\]
\[
k_{23} = - \frac{(1 + p_1 I_h^*) \beta_1 I_h^*}{(1 + p_1 (N_h^* - I_h^* - R_h^*) + p_2 I_h^*)^2} \frac{\beta_2 I_h^*}{N_h^*}
\]
\[
k_{25} = \beta_2 \left[\frac{I_v^*}{N_v^*} \right] \frac{N_{v0}}{N_{v0}}
\]
\[
k_{51} = - \beta_6 \left[\frac{I_h^* (N_{h0} - I_h^*)}{(N_h^*)^2} \right]
\]
\[
k_{52} = \beta_6 \left[\frac{N_{v0} - I_v^*}{(N_v^*)^2} \right]
\]
\[
k_{54} = \beta_6 \frac{I_h^*}{N_h^*} ; k_{55} = - \left(\beta_6 \frac{I_h^*}{N_h^*} + \mu_h \right)
\]

Clearly, two eigenvalues of the matrix \(J_1 \) are negative such as \(-\mu_h, -\mu_v\) and the remaining three roots possible to determined by the following cubic equation:

\[
\lambda^3 + X \lambda^2 + Y \lambda + Z = 0
\]

where,

\[
X = (\mu_h - k_{22} - k_{55})
\]
\[
Y = \{k_{22} k_{55} - \mu_h (k_{22} + k_{55} - k_{22} k_{55}) - \gamma_h k_{23} - \mu_1 k_{21}\}
\]
\[
Z = (\mu_h k_{22} k_{55} + \gamma_h k_{22} k_{55} - \mu_1 k_{21} k_{55} + \mu_1 k_{31} k_{25})
\]
According to the Routh-Hurwitz Conditions, the three roots of the cubic equation will have negative roots or roots with negative real parts, if

\[X > 0, \ Y > 0, \ Z > 0, \ XY - Z > 0 \]

\[AB - C = -\mu_2^2 (k_{22} + 55) - \mu_2 (k_{22} + k_{25}) - \gamma_h k_2 + \mu_1 k_{21} + k_{22} k_{25} - k_{22} k_{55} + k_{22} k_{55} - k_{22} k_{55} + \mu_1 (k_{21} k_{22} + k_{25} k_{51}) - k_{22} k_{55} (k_{22} + k_{25} - \mu_2^2) + \gamma_h k_{22} k_{55} - k_{22} k_{55} - \mu_2^2 \]

Thus, the endemic equilibrium point \(E_1 \) of the system (2.2) is locally asymptotically stable.

6. Sensitivity Analysis

For the model system, the parameters \(\beta_1, \beta_2, \beta_r \) are the main parameters which regulate the basic reproduction number \(R_0 \). The algebraic representations of the sensitivity index of \(R_0 \) to the parameters \(\beta_1, \beta_2, \beta_r \) as described in [22, 23], we get:

\[
\frac{\partial R_0}{\partial \beta_1} = \frac{N_h(0)d_1}{2(1 + p_1 N_h^0)} + \frac{\beta_1 N_h(0)d_1}{2(1 + p_1 N_h^0)} \sqrt{B}
\]

\[
\frac{\partial R_0}{\partial \beta_2} = \frac{\beta_1 N_h(0)d_1}{2(1 + p_1 N_h^0)} \sqrt{B}
\]

\[
\frac{\partial R_0}{\partial \beta_r} = \frac{\beta_1 N_h(0)d_1}{2(1 + p_1 N_h^0)} \sqrt{B}
\]

where \(B = \frac{1}{\left(\frac{\beta_1 N_h(0)d_1}{2(1 + p_1 N_h^0)}\right)^2 + \frac{4\beta_2 \beta_r N_h(0)d_1 d_2}{N_h}} \)

The above mathematics expression \(\frac{\partial R_0}{\partial \beta_1}, \frac{\partial R_0}{\partial \beta_2}, \frac{\partial R_0}{\partial \beta_r} \) are positive. Hence we can conclude that if any of the parameter \(\beta_1, \beta_2, \beta_r \) increases, the basic reproduction number \(R_0 \) also increases. We compute the elasticities to see the proportional change of effect of the parameters \(R_0 \). Elasticity is nothing but the proportional response to a proportional perturbation.

\[
E_{\beta_1} = \frac{\beta_1 \partial R_0}{R_0 \partial \beta_1} = \frac{\beta_1 N_h(0)d_1}{2R_0(1 + p_1 N_h^0)} + \frac{\beta_1 N_h(0)d_1}{2(1 + p_1 N_h^0)} \sqrt{B}
\]

\[
E_{\beta_2} = \frac{\beta_2 \partial R_0}{R_0 \partial \beta_2} = \frac{\beta_2 \beta_1 N_h(0)d_1}{2R_0 \mu_1 N_h^0} \sqrt{B}
\]

\[
E_{\beta_r} = \frac{\beta_2 \partial R_0}{R_0 \partial \beta_r} = \frac{\beta_2 \beta_r N_h(0)d_1}{2R_0 \mu_1 N_h^0} \sqrt{B}
\]

\[
E_{\beta_2} = E_{\beta_r}
\]

It is observed that, from the above expressions \(E_{\beta_1}, E_{\beta_2}, E_{\beta_r} \) are positive. As \(E_{\beta_2} = E_{\beta_r} \), we can say that \(\beta_2 \) and \(\beta_r \) will have same influence on basic reproduction number \(R_0 \). The minor change in parameters \(\beta_1, \beta_2, \beta_r \) will have massive change in \(R_0 \). In Figures 2 and 3, we have demonstrated the effect of the parameters \(\beta_1, \beta_2, \beta_r \) on \(R_0 \).

7. Numerical Simulation

Here for the simulation of the model system (2.2) is established to support our mathematical findings and we consider all the parameters are in per day basis. To find the stability of disease-free equilibrium, we consider the following set of parameters.

\(\Lambda_h = 2; \ A_v = 40; \ \gamma_h = 1.436; \ \beta_1 = 0.051; \ \beta_2 = 0.051; \ \mu_1 = 2; \ \beta_r = 0.06; \ p_1 = 0.1; \ p_2 = 0.2; \ \mu_h = 0.047; \ \mu_1 = 0.0523 \)

We get \(R_0 = 0.9921 < 1 \) for above set of parameters and disease-free equilibrium point \(E_0(995.51, 0.0.29831, 0) \). The result is illustrated in Figure 4. For endemic equilibrium we consider \(\beta_1 \) from 0.051 to 0.001, \(\Lambda_h \) from 2 to 10 and \(\gamma_h \) from 1.436 to 0.09. Here we found \(R_0 = 1.4178 > 1 \), and the endemic equilibrium \(E_1(85.34, 200.32, 90.15, 987.31, 45.51) \).

Which is performed in Figure 5. The variation of \(\Lambda_h \) for different values of \(\gamma_h \) is shown in Figure 6. In figure 7, we have demonstrated the effect of \(R_0, \beta_1 \) and \(\gamma_h \).

8. Optimal Control Model

In this section, three time-dependent control parameters \(u_1(t), u_2(t), \) and \(u_3(t) \) are incorporate in model (2.1). With the help of Pontryagin’s maximum principle [15] the optimal control theory is used to get the necessary conditions for optimal control strategies to preventing and controlling the spread of the ZIKV. The optimal control parameters and conditions are consider as follows:

(i) the control variable \(u_1(t) \) which represents the reductions in the transmission between human to human.
the stability of endemic equilibrium point.

Figure 4. Variation of S_h, I_h, R_h, S_v and I_v with time showing the stability of disease-free equilibrium point.

Figure 5. Variation of S_h, I_h, R_h, S_v and I_v with time showing the stability of endemic equilibrium point.

Figure 6. Variation of I_h with time when γ_h is increasing.

Figure 7. Effect of R_0, β_1 and γ_h

(ii) The control variable $u_2(t)$ which represents the use of insecticide-treated bed nets and the use of mosquito repulsive lotions and electronic devices, to reduce mosquito biting rate. (iii) The control variable $u_3(t)$ corresponds to the additional death rate of mosquitoes due to control efforts.

(iv) If $u_2(t)$ and $u_3(t)$ are equal to zero, then there is no significant effort in these control measures.

(v) If $u_2(t)$ and $u_3(t)$ are equal to one, then the maximum effort being significant.

Based on the above assumptions, the optimal control model as follows:

\[
\begin{align*}
\frac{dS_h}{dt} &= \Lambda_h - (1 - u_1)\beta_1 \frac{S_h I_h}{1 + p_1 S_h + p_2 I_h} - (1 - u_2)\beta_2 \frac{S_h I_v}{N_h} - \mu_h S_h \\
\frac{dI_h}{dt} &= (1 - u_1)\beta_1 \frac{S_h I_h}{1 + p_1 S_h + p_2 I_h} + (1 - u_2)\beta_2 \frac{S_h I_v}{N_h} - (\gamma_h + \mu_h + \mu_1) I_h \\
\frac{dR_h}{dt} &= \gamma_h - \mu_h R_h \\
\frac{dS_v}{dt} &= \Lambda_v - (1 - u_2)\beta_2 \frac{S_v I_h}{N_h} - (\mu_v + u_3) S_v \\
\frac{dI_v}{dt} &= (1 - u_2)\beta_2 \frac{S_v I_h}{N_h} - (\mu_v + u_3) I_v.
\end{align*}
\]

\[(8.1)\]

8.1 The Optimal Control Analysis

In this section, we analyze the behavior of the given model by using optimal control theory. The objective functional for fixed time t_f. Following the same notation as described in [20, 21] we get:

\[
\begin{align*}
J &= \int_0^{t_f} \left[P_1 I_h + P_2 (S_v + I_v) + \frac{1}{2} P_3 u_1^2 + \frac{1}{2} P_4 u_2^2 + \frac{1}{2} P_5 u_3^2 \right] dt \\
\end{align*}
\]

\[(8.2)\]

Here the parameter $P_1 \geq 0$, $P_2 \geq 0$, $P_3 \geq 0$, $P_4 \geq 0$, $P_5 \geq 0$ and they represent the weight constants. Our main purpose is to determined the control parameters u_1^*, u_2^*, u_3^* such that

\[
J(u^*) = \min_{u \in \Omega} J(u_1, u_2, u_3),
\]

\[(8.3)\]

where the control set Ω is defined as

$\Omega = \{u_1, u_2, u_3 : \text{measurable and } 0 \leq u_1 \leq 1, 0 \leq u_2 \leq 1, 0 \leq u_3 \leq 1 \}$ and $t \in [0, t_f]$.

The Lagrangian of this problem is defined as :

\[
L(I_h, S_v, I_v, u_1, u_2, u_3) = P_1 I_h + P_2 (S_v + I_v) + \frac{1}{2} P_3 u_1^2 + \frac{1}{2} P_4 u_2^2 + \frac{1}{2} P_5 u_3^2
\]
For our problem, we formed Hamiltonian \mathcal{H}:

$$\mathcal{H} = L(I_h, S_r, I_r, u_1, u_2, u_3) + \lambda_1 \frac{dS_h}{dt} + \lambda_2 \frac{dI_h}{dt} + \lambda_3 \frac{dR_h}{dt} + \lambda_4 \frac{dS_v}{dt} + \lambda_5 \frac{dI_v}{dt}$$

where $\lambda_1, \lambda_2, \lambda_3, \lambda_4, \lambda_5$ are the adjoint variables. Now the differential equation corresponding to adjoint variables can be rearranged as

$$\frac{d\lambda_1}{dt} = \mu_h \lambda_1 + (1 - u_1) \frac{\beta_1 (1 + p_2 I_r)}{(1 + p_1 S_h + p_2 I_h)^2} (\lambda_1 - \lambda_2)$$

$$+ (1 - u_2) \frac{\beta_2 S_h I_v}{N_h} (\lambda_2 - \lambda_3)$$

$$+ (1 - u_2) \frac{\beta_3 S_h I_v}{N_h} (\lambda_2 - \lambda_3)$$

$$\frac{d\lambda_2}{dt} = -P_1 + (1 - u_1) \frac{\beta_1 (1 + p_1 S_h I_h)}{(1 + p_1 S_h + p_2 I_h)^2} (\lambda_1 - \lambda_2)$$

$$+ (1 - u_2) \frac{\beta_2 S_h I_v}{N_h} (\lambda_2 - \lambda_3)$$

$$+ A \lambda_2 + (1 - u_2) \frac{\beta_3 S_h (N_h - I_h)}{N_h} (\lambda_4 - \lambda_5)$$

$$\frac{d\lambda_3}{dt} = \mu_h \lambda_3$$

$$+ (1 - u_2) \frac{\beta_2 S_h I_v}{N_h} (\lambda_2 - \lambda_3)$$

$$+ (1 - u_2) \frac{\beta_3 S_h I_v}{N_h} (\lambda_2 - \lambda_3)$$

$$\frac{d\lambda_4}{dt} = -P_2 + (\mu_h + u_1) \lambda_4 + (1 - u_2) \frac{\beta_4 I_h}{N_h} (\lambda_4 - \lambda_5)$$

$$\frac{d\lambda_5}{dt} = -P_2 + (\mu_h + u_3) \lambda_5 + (1 - u_2) \frac{\beta_4 I_h}{N_h} (\lambda_4 - \lambda_5)$$

Let the respective optimal values of S_h, I_h, R_h, S_r, I_r be $\tilde{S}_h, \tilde{I}_h, \tilde{R}_h, \tilde{S}_r, \tilde{I}_r$ and the solutions of the system (8.4) be $\lambda_1, \lambda_2, \lambda_3, \lambda_4, \lambda_5$.

Theorem 8.1. There exist optimal controls $(u_1^*, u_2^*, u_3^*) \in \Omega$ such that $J(u_1^*, u_2^*, u_3^*) = \min J(u_1, u_2, u_3)$ subject to system (8.1).

Proof. To prove this theorem we use [15, 19]. Here the state variables and the controls are positive. For this minimizing problem, the necessary convexity of the objective functional in (u_1, u_2, u_3) is satisfied. The control variable set $u_1, u_2, u_3 \in \Omega$ is also convex and closed by the definition. The integrand of the functional $P_1 I_h + P_2 (S_v + I_v) + \frac{1}{2} P_3 u_1^2 + \frac{1}{2} P_4 u_2^2 + \frac{1}{2} P_5 u_3^2$ is convex on the control set Ω and the state variables are bounded.

Since there exist optimal controls for minimizing the functional subject to systems (8.1) and (8.4), we use Pontryagin’s maximum principle to derive the necessary conditions to find the optimal solutions as follows:

If (x, u) is an optimal solution of an optimal control problem, then there exist a non-trivial vector function $\lambda = \lambda_1, \lambda_2, \ldots, \lambda_n$ satisfying the following equalities.

$$\frac{dx}{dt} = \frac{\partial H(x, u, \lambda)}{\partial \lambda}$$

$$0 = \frac{\partial H(x, u, \lambda)}{\partial u}$$

$$\frac{d\lambda}{dt} = -\frac{\partial H(x, u, \lambda)}{\partial x}$$

With the help of Pontryagin’s maximum principle [19] and theorem (8.1), we prove the following theorem:

Theorem 8.2. The optimal controls (u_1^*, u_2^*, u_3^*) which minimizes J over the region Ω given by

$$u_1^* = \min \{1, \max(0, \tilde{u}_1)\}$$

$$u_2^* = \min \{1, \max(0, \tilde{u}_2)\}$$

$$u_3^* = \min \{1, \max(0, \tilde{u}_3)\}$$

where,

$$\tilde{u}_1 = \beta_1 \left[\left(1 + p_1 S_h^*\right) S_h^* N_h + (1 + p_2 I_h^*) I_h^* \right]^2 (\lambda_2 - \lambda_1)$$

$$\tilde{u}_2 = \frac{(\beta_2 S_h^* I_v^*) (\lambda_2 - \lambda_1) + (\beta_3 S_h^* I_v^*) (\lambda_4 - \lambda_5)}{P_5 N_h^*}$$

$$\tilde{u}_3 = \frac{S_h^* \lambda_4 + I_v^* \lambda_5}{P_5}$$

Proof. Using optimally condition:

$$\frac{\partial \mathcal{H}}{\partial u_1} = 0, \frac{\partial \mathcal{H}}{\partial u_2} = 0, \frac{\partial \mathcal{H}}{\partial u_3} = 0$$

we get,

$$u_1 P_3 + \beta_1 \left[\left(1 + p_1 S_h^*\right) S_h^* N_h + (1 + p_2 I_h^*) I_h^* \right]^2 (\lambda_2 - \lambda_1) = 0$$

This implies,

$$u_1 = \beta_1 \left[\left(1 + p_1 S_h^*\right) S_h^* N_h + (1 + p_2 I_h^*) I_h^* \right]^2 (\lambda_2 - \lambda_1)$$

$$\frac{\partial \mathcal{H}}{\partial u_2} = u_2 P_3 + \frac{\beta_2 S_h^* I_v^*}{N_h^*} (\lambda_2 - \lambda_1) + \frac{\beta_3 S_h^* I_v^*}{N_h^*} (\lambda_4 - \lambda_4) = 0$$

This implies,

$$u_2 = \frac{(\beta_2 S_h^* I_v^*) (\lambda_2 - \lambda_1) + (\beta_3 S_h^* I_v^*) (\lambda_4 - \lambda_5)}{P_5 N_h^*}$$

And,

$$\frac{\partial \mathcal{H}}{\partial u_3} = u_3 P_3 = S_h^* \lambda_4 + I_v^* \lambda_5$$

339
This implies,

$$u_3 = \frac{S_v^* \lambda_4 + I_v^* \lambda_5}{P_3}$$

Again upper and lower bounds for these control are 0 and 1 respectively. i.e. $u_1 = u_2 = u_3 = 0$ if $u_1 < 0, u_2 < 0, u_3 < 0$ and $u_1 = u_2 = u_3 = 1$ if $\tilde{u}_1 > 1, \tilde{u}_2 > 1$ and $\tilde{u}_3 > 1$ otherwise $u_1 = \tilde{u}_1, u_2 = \tilde{u}_2$ and $u_3 = \tilde{u}_3$. Hence for these controls u_1^*, u_2^*, u_3^*, we get optimum value of the function J.

9. Numerical Simulation of Optimal Control

We simulate our optimal control model by keeping the parameters corresponding to stability of endemic equilibrium point E_1 of the model (2.1). With the help of MATLAB the optimal control model is simulated. The weight constants for the optimal control problem are taken as

$$P_1 = 1, P_2 = 1, P_3 = 45, P_4 = 65, P_5 = 75$$

We solve the optimality system (8.1) by iterative method with the help of forward and backward difference approximations [19]. We consider the time interval as [0, 150]. Here in Figure 8, is showing the control profile of u_1, in Figure 9, is showing the control profile of u_2, in Figure 10, is showing the control profile of u_3 and finally in the Figure 11, is plotted to observe the effects of optimal controls for infected human against time with and without optimal control. It is easy to notice that optimal control is more effective in reducing the number of infective is considered period of time. The all three optimal control application is the best control strategy to minimize the number of infective, which will definitely reduce of the spread of ZIKV.

10. Conclusion

A deterministic model for transmission dynamics of the Zika virus is designed and analyzed. Here we considered the human to human sexual transmission of ZIKV as a saturated incidence rate. In summary, the study shows the following

(i) The equilibria of the proposed model and the basic reproduction number (R_0) are computed.
(ii) It is found that for $R_0 < 1$, the disease-free equilibrium point (E_0) is locally asymptotically stable. It also globally asymptotically stable for $R_0 < 1$ under some restriction of parameters.

(iii) The system also exhibits backward bifurcation which suggests that merely reducing R_0 below one is not enough to make disease-free equilibrium to be globally stable.

(iv) The endemic equilibrium point (E_1) also locally asymptotically stable for $R_0 > 1$.

(v) Sensitivity analysis is performed to determine which parameter is more sensitive to basic reproduction number (R_0). The sensitivity of (R_0) with parameters $\beta_1, \beta_2, \beta_3$; it is found that ($R_0$) is very sensitive to the parameter corresponding to the transmission.

(vi) The model is extended to the optimal control model and is analyzed by using Pontryagin’s Maximum Principle. It is observed that the optimal control model gives better effective results to reduce the infection than the model without optimal.

(vii) The numerical simulations are performed to support our analytical findings and to compare our model with the existing model in [11]. Through the numerical simulation, we can conclude that the parameter (γ_0) increases, as a result, the human infective population is decreasing in the equilibrium level. These results will help the policymakers as well as public health for future implications.

Acknowledgment

The authors would like to thank the editor and anonymous referees for their valuable comments and suggestions which led to an improvement of our original manuscript.

References

Stability and optimal control analysis of Zika virus with saturated incidence rate — 342/342

ISSN(P): 2319 – 3786
Malaya Journal of Matematik
ISSN(O): 2321 – 5666
