# Note on generating function of higher dimensional bell numbers 

A. Joseph Kennedy ${ }^{1 *}$, P. Jaish ${ }^{2}$ and P. Sundaresan ${ }^{3}$


#### Abstract

In this paper, we study the generating function of the Higher dimensional Bell number, which are arises as dimensions of the class partition algebras an important subalgebra of the tensor product partition algebra $P_{k}(x) \otimes P_{k}(y)$, denoted by $P_{k}(x, y)$.


## Keywords

Partition algebra, Bell number, Stirling number, wreath product.

## AMS Subject Classification

16S20, 16S50, 05E18.
1,2,3 Department of Mathematics, Pondicherry University, Pondicherry-605014, India.
Corresponding author: ${ }^{1}$ kennedy.pondi@gmail.com
Article History: Received 19 November 2019; Accepted 13 February 2020

## Contents

$\qquad$
1 Introduction 369

2 The action of the wreath product and its orbit.... 369
3 Two dimensional Bell numbers ....................... 370
4 Higher dimensional Bell numbers ................... 371
References ................................................... . 371

## 1. Introduction

The partition algebras $P_{k}(x)$ have been studied independently by Martin and Jones as generalizations of the TemperleyLieb algebras and the Potts model in statistical mechanics [5]. In 1993, Jones considered the algebra $P_{k}(n)$, as the centralizer algebra of the symmetric group $S_{n}$ on $V^{\otimes k}$ (see, [3]).

In this paper, we study the generating function of the Higher dimensional Bell number, which are arises as dimensions of the class partition algebras an important subalgebra of the tensor product partition algebra $P_{k}(x) \otimes P_{k}(y)$, denoted by $P_{k}(x, y)$. The algebras $P_{k}(n, m)$ are the centralizer algebras of the wreath product $S_{m} 2 S_{n}$ on their permutation module $W^{\otimes k}$, where $W=\mathbb{C}^{n m}$, (see, [4]).

## 2. The action of the wreath product and its orbit

For each positive integer $n$, let $[n]$ denote the set $\{1,2, \ldots, n\}$. Let $X\left(m, m^{\prime}\right)=[m] \times\left[m^{\prime}\right]$. We will often abbreviate $X\left(m, m^{\prime}\right)$
to $X$ in this article. The set $X$ can be viewed as a disjoint union of $m$ copies of $\left[m^{\prime}\right]$ :

$$
X=X_{1} \bigsqcup X_{2} \bigsqcup \cdots \bigsqcup X_{m}
$$

where $X_{i}=\left\{(i, j) \mid j \in\left[m^{\prime}\right]\right\}$ for each $i \in[m]$. Consider the action of the direct product of the symmetric group $\left(S_{m^{\prime}}\right)^{m}$ on $X$ given by:
$\left(\sigma_{1}, \sigma_{2}, \ldots, \sigma_{m}\right)(i, j)=\left(i, \sigma_{i}(j)\right)$, where $\sigma_{r} \in S_{m^{\prime}}, r=1,2, \ldots m$
(i.e.) the $i$ th copy of $\left(S_{m^{\prime}}\right)^{m}$ acts on $X_{i}$, and the action of $S_{m}$ on $X$ by

$$
\pi(i, j)=(\pi(i), j), \text { where } \pi \in S_{m} .
$$

These actions extend to an action of the wreath product of the two symmetric group $G:=S_{m^{\prime}}$ 久 $S_{m}$ (i.e. the semidirect product of $\left(S_{m^{\prime}}\right)^{m}$ with $\left.S_{m}\right)$ on $X$ by

$$
\pi\left(\sigma_{1}, \sigma_{2}, \ldots, \sigma_{m}\right)(i, j)=\left(\pi(i), \sigma_{i}(j)\right)
$$

for all $\pi\left(\sigma_{1}, \sigma_{2}, \ldots, \sigma_{m}\right) \in S_{m^{\prime}} \backslash S_{m}$. Our goal is to analyze the number of $G$-orbits of the diagonal action of $G$ on $X^{n}$ as a sequence in $n$.
Definition 2.1. [Type of a tuple]. Given $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in$ $X^{n}$, where $x_{k}=\left(i_{k}, j_{k}\right)$, let

$$
\mu_{i}=\#\left\{j \in\left[m^{\prime}\right] \mid\left(i_{k}, j_{k}\right)=(i, j) \text { for some } k \in[n]\right\},
$$

In other words, the number of distict second coordinates of those $x_{1}, x_{2}, \ldots, x_{n}$ whose first coordinate is $i$. Let $\lambda$ be the integer partition obtained by sorting $\left(\mu_{1}, \mu_{2}, \ldots, \mu_{m}\right)$ into weakly
decreasing order and discarding the trailing zeroes. Then the partition $\lambda$ is called the type of $x$.

Example 2.2. Let $m=3, m^{\prime}=4$ and $n=5$. Consider the sequence $((2,1),(3,2),(2,3),(3,2),(2,1)) \in X^{5}$. Here the $\mu_{1}=$ $0, \mu_{2}=2$ and $\mu_{3}=1$. Hence the type of this sequence is $(2,1)$.

Observe that if $\lambda$ is the type of an element of $X^{n}$, then $|\lambda| \leq n$, the parts of $\lambda$ are bounded above by $m^{\prime}$ and the number of parts of $\lambda$ is bounded above by $m$. In other words, the Young diagram of $\lambda$ fits inside a $m^{\prime} \times m$ square. We describe this situation by writing $\lambda \subset m^{\prime} \times m$.

## 3. Two dimensional Bell numbers

Definition 3.1. [Partition Stirling number of the second kind] Given a partition $\lambda$ such that $\lambda \subset m^{\prime} \times m$, let $S(n, \lambda)$ denote the number of $G$-orbits in $X^{n}$ of type $\lambda$. Then the number of $G$-orbits in $X^{n}$ of type $\lambda$, denoted $S(n, \lambda)$ does not depend on $m$ or $m^{\prime}$, and is called the partition Stirling number of the second kind.

A part of the above definition is the assertion that $S(n, \lambda)$ does not depend on $m$ or $m^{\prime}$. This will follow from ...

Example 3.2. Take $\lambda=\left(1^{r}\right)$ for some positive integer $r$. Then $S\left(n,\left(1^{r}\right)\right)$ is the number of orbits in $X^{n}$ which have at most one element for each $X_{i}$. By using the action of $\left(S_{m^{\prime}}\right)^{m}$, one can assume that each entry $x_{k}=\left(i_{k}, j_{k}\right)$ has $j_{k}=1$. Thus, the orbit of $\left(\left(i_{1}, j_{1}\right),\left(i_{2}, j_{2}\right), \ldots,\left(i_{n}, j_{n}\right)\right)$ of type $\left(1^{r}\right)$ in $X^{n}$ are completely determined by the $S_{m}$-orbit of the sequence $\left(i_{1}, i_{2}, \ldots, i_{n}\right)$. The number of such orbits is $S(n, r)$, a Stirling number of the second kind; see section 4 of [1]:

$$
S\left(n,\left(1^{r}\right)\right)=S(n, r)
$$

For a partition $\lambda$, let $\lambda^{-}$denote the set of partitions whose Young diagram is obtained by removing one box from the Young diagram of $\lambda$. If $\mu \in \lambda^{-}$, then $\mu$ is obtained by subtracting 1 from one of the parts $\lambda_{i}$ of $\lambda$. Let $b_{\mu \lambda}$ denote the number of times the integer $\lambda_{i}-1$ occurs in $\mu$. For example, if $\mu=(4,2,2,2,1)$ and $\lambda=(4,3,2,2,1)$, then $\mu$ was obtained from $\lambda$ by changing 3 to 2 . Since 2 occurs three times in $\mu, b_{\mu \lambda}=3$.

Theorem 3.3. Let $\lambda \subset\left[m^{\prime}\right] \times[m]$ be a partition. Then for each positive integer $n$,

$$
S(n, \lambda)=|\lambda| S(n-1, \lambda)+\sum_{\mu \in \lambda^{-}} b_{\mu \lambda} S(n-1, \mu)
$$

Proof. The function $\left(x_{1}, \ldots, x_{n}\right) \mapsto\left(x_{1}, \ldots, x_{n-1}\right)$ induces a surjective function from $G \backslash X^{n} \rightarrow G \backslash X^{n-1}$.

Corollary 3.4. The number of orbits for the diagonal action of $G$ on $X\left(m, m^{\prime}\right)^{n}$ is

$$
B_{n}^{(2)}\left(m^{\prime}, m\right)=\sum_{\lambda \subset\left[m^{\prime}\right] \times[m]} S(n, \lambda) .
$$

In particular, if $m^{\prime} \geq n$ and $m \geq n$, then the value of $B_{n}^{(2)}\left(m^{\prime}, m\right)$ does not depend on $m^{\prime}$ and $m$. This stable value is given by

$$
B_{n}^{(2)}=\sum_{\lambda} S(n, \lambda) .
$$

The sum on the right hand side of the above expression is over the set of all partitions of all integers. It ends up being finite because $S(n, \lambda)=0$ if $|\lambda|>n$.

The numbers $B_{n}^{(2)}$ are known as two-dimensional Bell numbers (sequence A000258 in the OEIS [6]). By definition, $B_{n}^{(2)}$ is the number of pairs of set partitions $\left(d, d^{\prime}\right)$ of $[n]$ such that $d^{\prime}$ is finer than $d$. In order to see this, fix $m$ and $m^{\prime}$, both at least as large as $n$. Given $\left(\left(i_{1}, j_{1}\right),\left(i_{1}, j_{1}\right), \ldots,\left(i_{n}, j_{n}\right) \in\right.$ $X\left(m, m^{\prime}\right)^{n}$, let $S_{i}=\left\{k \in[n] \mid i_{k}=i\right\}$, and further, for each $i$, let $S_{i j}=\left\{k \in S_{i} \mid j_{k}=j\right\}$. Then the collection of non-empty $S_{i}$ 's is a set partition $d$ of [ $n$ ], and the collection of non-empty $S_{i j}$ 's is a set partition $d^{\prime}$ of $[n]$ which is finer than $d$. This construction gives rise to a bijection from the set of $G$-orbits in $X\left(m, m^{\prime}\right)^{n}$ onto the set of pairs of set partitions $\left(d, d^{\prime}\right)$ such that $d^{\prime}$ is finer than $d$.

We now proceed to derive rational generating functions for the partition Stirling numbers of the second kind and the two-dimensional Bell numbers. For each partition $\lambda$, define

$$
S_{\lambda}(t)=\sum_{n=0}^{\infty} S(n, \lambda) t^{n}
$$

Then Theorem 2.1 gives

$$
\begin{equation*}
(1-|\lambda| t) \mathbf{S}_{\lambda}(t)=t \sum_{\mu \in \lambda^{-}} b_{\mu \lambda} \mathbf{S}_{\mu}(t) \tag{3.1}
\end{equation*}
$$

Let $\lambda$ be a partition of $r$. Each sequence $\lambda^{(0)}, \lambda^{(1)}, \ldots, \lambda^{(r)}$ of partitions, where $\lambda^{(i-1)} \in \lambda^{(i)-}$ for each $1 \leq i \leq r$, and $\lambda^{(r)}=\lambda$ can be represented by a unique standard Young tableau $T$ of shape $\lambda$. In this tableau, the unique box in $\lambda^{(i)}$ which is not in $\lambda^{(i-1)}$ is filled with the integer $i$. If $T$ is the tableau corresponding to the sequence $\left(\lambda^{(0)}, \ldots, \lambda^{(r)}\right)$, then define

$$
b_{T}=\prod_{i=1}^{r} b_{\lambda^{(i-1)} \lambda^{(i)}}
$$

Iterating the identity (3.1) gives:

$$
\mathbf{S}_{\lambda}(t)=\frac{1}{(1-t)(1-2 t) \cdots(1-r t)} \sum_{T \in T(\lambda)} b_{T}
$$

For each partition $\lambda$, define

$$
\begin{equation*}
B_{\lambda}=\sum_{T \in T(\lambda)} b_{T} \tag{3.2}
\end{equation*}
$$

Recall that the generating function for Stirling numbers of the second kind is given by

$$
\mathbf{S}_{r}(t):=\sum_{n=0}^{\infty} S(n, r) t^{n}=\frac{1}{(1-t)(1-2 t) \cdots(1-r t)}
$$

As a result we have:

Theorem 3.5. For every partition $\lambda$ of $r$,

$$
\boldsymbol{S}_{\lambda}(t)=B_{\lambda} \boldsymbol{S}_{r}(t)
$$

The partition statistic $B_{\lambda}$ is nothing but the number of set partitions whose sorted block sizes correspond to the partition $\lambda$. This is clear from the relation:

$$
B_{\lambda}=\sum_{\mu \in \lambda^{-}} b_{\mu \lambda} B_{\mu}
$$

In the Find Stat database [2], this statistic has identifier St000049. Obviously, the $r$ th Bell number is given by

$$
B_{r}=\sum_{\lambda \vdash r} B_{\lambda} .
$$

Combining this with (3.2), we get an expression for Bell numbers:

$$
B_{r}=\sum_{T \in \mathrm{~T}(r)} b_{T} .
$$

Here $\mathrm{T}(r)$ denotes the set of standard Young tableaux of size $r$. In view of the Robinson-Schensted correspondence, $|\mathrm{T}(r)|$ is the number of permutations whose square is the identity. Since $b_{T} \geq 1$ for each tableau $T$, we have

$$
B_{r} \geq \#\left\{w \in S_{r} \mid w^{2}=1\right\}
$$

We are now ready to write down an expression for the rational generating function for the two-dimensional Bell numbers:

Theorem 3.6. The generating function for two dimensional Bell numbers is given by

$$
\boldsymbol{B}^{(2)}(t)=\sum_{n=0}^{\infty} B_{n}^{(2)} t^{n}=\sum_{r=0}^{\infty} B_{r} \boldsymbol{S}_{r}(t)
$$

## 4. Higher dimensional Bell numbers

Let $\mathbf{m}=\left\{m_{1}, m_{2}, \ldots, m_{k}\right\}$ be a sequence of positive integers. Consider the sequence $\left\{G_{k}\right\}$ of groups defined by

$$
G_{1}=S_{m_{1}} ; \quad G_{k}=G_{k-1} \imath S_{m_{k}}
$$

Let $\left\{X_{k}(\mathbf{m})\right\}$ be a sequence of spaces defined by:

$$
X_{k}=\left[m_{1}\right] \times\left[m_{2}\right] \times \cdots \times\left[m_{k}\right] .
$$

$G_{1}$ acts on $X_{1}$ by the standard permutation action. View $X_{k}$ as the disjoint union of $m_{k}$ copies of $X_{k-1}$. Inductively define the action of $G_{k}$ on $X_{k}$ as follows: the $i$ th copy of $G_{k-1}$ in $G_{k}$ acts on $\{i\} \times X_{k-1} \subset X_{k}$ (the $i$ th copy of $X_{k-1}$ in $X_{k}$ ), and $S_{m_{k}}$ acts by permuting these $m_{k}$ copies.

Theorem 4.1. The set of orbits for the action of $G_{k}$ on $X_{k}^{n}$ are in bijective correspondence with the set of sequences $\left(b_{1}, b_{2}, \ldots, b_{k}\right)$ of set partitions of $n$, where $b_{r}$ is a refinement of $b_{r-1}$ for each $1<r \leq k$.

Proof. Given $\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in X^{n}$, say $x_{r}=\left(i_{r_{1}}, i_{r_{2}}, \ldots, i_{r_{k}}\right)$, let $b_{s}$ be the set partition whose subsets are the non-empty sets among

$$
S_{i_{1}, i_{2}, \ldots, i_{s}}=\left\{r \in[n] \mid i_{r j}=i_{j} \text { for } 1 \leq j \leq s\right\}
$$

By induction on $k$, one should be able to prove bijection.
A two-dimensional type is just a partition. Each element of $X_{2}$ has a two-dimensional type as in Definition 2.1. For $k>2$, a $k$-dimensional type is an unordered multiset of $k-1$ dimensional types. The size $|\tau|$ of $\tau=\left\{\tau_{1}, \tau_{2}, \ldots, \tau_{m_{k}}\right\}$ is defined as $\sum_{j=1}^{m_{k}}\left|\tau_{j}\right|$ of the constituent types. To each sequence we may associate

Definition 4.2. [Type of a sequence].
The type of an $n$-tuple $\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in X_{k}^{n}$ is defined as the unordered multiset $\tau=\left\{\tau_{1}, \tau_{2}, \ldots, \tau_{m_{k}}\right\}$, where $\tau_{j}$ is the type of the subsequence of $x_{1}, x_{2}, \ldots, x_{n}$ consisting of elements of the from $\left(j, i_{2}, \ldots, i_{k}\right)$, viewed as a sequence in $X_{k-1}$.

For each $k$-dimensional type $\tau$, let $\tau^{-}$denote the set of $k$-dimensional types $\rho$ all of whose elements $\rho_{1}, \rho_{2}, \ldots$ are the same as those of $\tau$, except for exactly one, say $\rho_{i}$ which lies in $\tau_{i}^{-}$. Given $\rho \in \tau^{-}$, define $b_{\rho \tau}$ to be the number of times $\rho_{i}$ occurs in $\rho$, where $\rho_{i}$ is the element of $\rho_{i}$ is the element of $\rho$ in which $\rho$ and $\tau$ differ.

Let $S(n, \tau)$ denote the number of $G_{k}$-orbits in $S_{k}$ of type $\tau$. Then

$$
S(n, \tau)=|\tau| S(n-1, \tau)+\sum_{\rho \in \tau^{-}} b_{\rho \tau} S(n-1, \rho)
$$

Let $\tau$ be a $k$-dimensional type of size $r$. Let $\mathrm{T}^{(k)}(r)$ be the set of all chains $\tau^{(1)}, \tau^{(2)}, \ldots, \tau^{(r)}=\tau$, where $\left|\tau^{(j)}\right|=j$ and $\tau^{(j)} \in \tau^{(j+1)-}$ for $1 \leq j<r$. Given $T \in \mathrm{~T}^{(k)}(r)$, define $b_{T}=\prod_{i=1}^{r-1} b_{\tau^{(i)} \tau^{(i+1)}}$. Then we have:

$$
\mathbf{S}_{\tau}(t)=B_{\tau} \mathbf{S}_{r}(t),
$$

which is the Stirling numbers of the second kind for Higher dimensional Bell numbers.

## References

[1] Amritanshu Prasad, Equivalence Classes of Nodes in Tree and Rational Generating Functions, 2014, http://arxiv.org/abs/1407.5284.
${ }^{[2]}$ C. Berg and C. Stump, etal, The Combinatorial Statistic Finder, 2014, http://findstat.org.
${ }^{\text {[3] }}$ V.F.R Jones, The Potts model and the symmetric group, in "Subfactors: Proceedings of the Taniguchi Symposium on Operater Algebra, Kyuzeso, 1993," pp. 259-267, World Scientific, River edge, NJ,1994.
${ }^{\text {[4] }}$ A. J. Kennedy, Class partition algebras as centralizer algebras, Communications in Algebra, 35(2007), 145170.
[5] P. P. Martin and A. Elgamal, Ramified partition algebras, Math. Z., 246(2004), 473-500, (math.RT/0206148).
${ }^{[6]}$ N.J.A. Sloane, The On-Line Encyclopedia of Integer Sequences., www.research.att.com/njas/sequences/.

$$
\star \star \star \star \star \star \star \star \star
$$

ISSN(P):2319-3786
Malaya Journal of Matematik
ISSN(O):2321-5666

