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Abstract
In this paper, we study the generating function of the Higher dimensional Bell number, which are arises as
dimensions of the class partition algebras an important subalgebra of the tensor product partition algebra
Pk(x)⊗Pk(y), denoted by Pk(x,y).
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1. Introduction
The partition algebras Pk(x) have been studied indepen-

dently by Martin and Jones as generalizations of the Temperley-
Lieb algebras and the Potts model in statistical mechanics [5].
In 1993, Jones considered the algebra Pk(n), as the centralizer
algebra of the symmetric group Sn on V⊗k (see, [3]).

In this paper, we study the generating function of the
Higher dimensional Bell number, which are arises as dimen-
sions of the class partition algebras an important subalgebra of
the tensor product partition algebra Pk(x)⊗Pk(y), denoted by
Pk(x,y). The algebras Pk(n,m) are the centralizer algebras of
the wreath product Sm oSn on their permutation module W⊗k,
where W = Cnm, (see, [4]).

2. The action of the wreath product and
its orbit

For each positive integer n, let [n] denote the set {1,2, ...,n}.
Let X(m,m′) = [m]× [m′]. We will often abbreviate X(m,m′)

to X in this article. The set X can be viewed as a disjoint
union of m copies of [m′]:

X = X1
⊔

X2
⊔
· · ·

⊔
Xm,

where Xi = {(i, j) | j ∈ [m′]} for each i ∈ [m]. Consider the
action of the direct product of the symmetric group (Sm′)

m on
X given by:

(σ1,σ2, ...,σm)(i, j)= (i,σi( j)), where σr ∈ Sm′ , r = 1,2, . . .m

(i.e.) the ith copy of (Sm′)
m acts on Xi, and the action of Sm

on X by
π(i, j) = (π(i), j), where π ∈ Sm.

These actions extend to an action of the wreath product of
the two symmetric group G := Sm′ o Sm (i.e. the semidirect
product of (Sm′)

m with Sm) on X by

π(σ1,σ2, ...,σm)(i, j) = (π(i),σi( j)),

for all π(σ1,σ2, ...,σm) ∈ Sm′ oSm. Our goal is to analyze the
number of G-orbits of the diagonal action of G on Xn as a
sequence in n.

Definition 2.1. [Type of a tuple]. Given x = (x1,x2, ...,xn) ∈
Xn, where xk = (ik, jk), let

µi = #{ j ∈ [m′] | (ik, jk) = (i, j) for some k ∈ [n]},

In other words, the number of distict second coordinates of
those x1,x2, ...,xn whose first coordinate is i. Let λ be the inte-
ger partition obtained by sorting (µ1,µ2, ...,µm) into weakly
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decreasing order and discarding the trailing zeroes. Then the
partition λ is called the type of x.

Example 2.2. Let m = 3,m′ = 4 and n = 5. Consider the se-
quence ((2,1),(3,2),(2,3),(3,2),(2,1))∈X5. Here the µ1 =
0,µ2 = 2 and µ3 = 1. Hence the type of this sequence is (2,1).

Observe that if λ is the type of an element of Xn, then
|λ | ≤ n, the parts of λ are bounded above by m′ and the
number of parts of λ is bounded above by m. In other words,
the Young diagram of λ fits inside a m′ ×m square. We
describe this situation by writing λ ⊂ m′×m.

3. Two dimensional Bell numbers
Definition 3.1. [Partition Stirling number of the second kind]
Given a partition λ such that λ ⊂ m′×m, let S(n,λ ) denote
the number of G-orbits in Xn of type λ . Then the number of
G-orbits in Xn of type λ , denoted S(n,λ ) does not depend
on m or m′, and is called the partition Stirling number of the
second kind.

A part of the above definition is the assertion that S(n,λ )
does not depend on m or m′. This will follow from ...

Example 3.2. Take λ = (1r) for some positive integer r. Then
S(n,(1r)) is the number of orbits in Xn which have at most
one element for each Xi. By using the action of (Sm′)

m, one
can assume that each entry xk = (ik, jk) has jk = 1. Thus,
the orbit of ((i1, j1),(i2, j2), . . . ,(in, jn)) of type (1r) in Xn

are completely determined by the Sm-orbit of the sequence
(i1, i2, . . . , in). The number of such orbits is S(n,r), a Stirling
number of the second kind; see section 4 of [1]:

S(n,(1r)) = S(n,r).

For a partition λ , let λ− denote the set of partitions whose
Young diagram is obtained by removing one box from the
Young diagram of λ . If µ ∈ λ−, then µ is obtained by sub-
tracting 1 from one of the parts λi of λ . Let bµλ denote the
number of times the integer λi−1 occurs in µ. For example, if
µ = (4,2,2,2,1) and λ = (4,3,2,2,1), then µ was obtained
from λ by changing 3 to 2. Since 2 occurs three times in
µ,bµλ = 3.

Theorem 3.3. Let λ ⊂ [m′]× [m] be a partition. Then for
each positive integer n,

S(n,λ ) = |λ |S(n−1,λ )+ ∑
µ∈λ−

bµλ S(n−1,µ).

Proof. The function (x1, . . . ,xn) 7→ (x1, . . . ,xn−1) induces a
surjective function from G\Xn→ G\Xn−1. �

Corollary 3.4. The number of orbits for the diagonal action
of G on X(m,m′)n is

B(2)
n (m′,m) = ∑

λ⊂[m′]×[m]

S(n,λ ).

In particular, if m′≥ n and m≥ n, then the value of B(2)
n (m′,m)

does not depend on m′ and m. This stable value is given by

B(2)
n = ∑

λ

S(n,λ ).

The sum on the right hand side of the above expression is
over the set of all partitions of all integers. It ends up being
finite because S(n,λ ) = 0 if |λ |> n.

The numbers B(2)
n are known as two-dimensional Bell

numbers (sequence A000258 in the OEIS [6]). By definition,
B(2)

n is the number of pairs of set partitions (d,d′) of [n] such
that d′ is finer than d. In order to see this, fix m and m′,
both at least as large as n. Given ((i1, j1),(i1, j1), . . . ,(in, jn)∈
X(m,m′)n, let Si = {k ∈ [n] | ik = i}, and further, for each i,
let Si j = {k ∈ Si | jk = j}. Then the collection of non-empty
Si’s is a set partition d of [n], and the collection of non-empty
Si j’s is a set partition d′ of [n] which is finer than d. This
construction gives rise to a bijection from the set of G-orbits
in X(m,m′)n onto the set of pairs of set partitions (d,d′) such
that d′ is finer than d.

We now proceed to derive rational generating functions
for the partition Stirling numbers of the second kind and the
two-dimensional Bell numbers. For each partition λ , define

Sλ (t) =
∞

∑
n=0

S(n,λ )tn.

Then Theorem 2.1 gives

(1−|λ |t)Sλ (t) = t ∑
µ∈λ−

bµλ Sµ(t). (3.1)

Let λ be a partition of r. Each sequence λ (0),λ (1), . . . ,λ (r)

of partitions, where λ (i−1) ∈ λ (i)− for each 1 ≤ i ≤ r, and
λ (r) = λ can be represented by a unique standard Young
tableau T of shape λ . In this tableau, the unique box in λ (i)

which is not in λ (i−1) is filled with the integer i. If T is the
tableau corresponding to the sequence (λ (0), . . . ,λ (r)), then
define

bT =
r

∏
i=1

b
λ (i−1)λ (i) .

Iterating the identity (3.1) gives:

Sλ (t) =
1

(1− t)(1−2t) · · ·(1− rt) ∑
T∈T(λ )

bT .

For each partition λ , define

Bλ = ∑
T∈T(λ )

bT . (3.2)

Recall that the generating function for Stirling numbers of the
second kind is given by

Sr(t) :=
∞

∑
n=0

S(n,r)tn =
1

(1− t)(1−2t) · · ·(1− rt)
.

As a result we have:
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Theorem 3.5. For every partition λ of r,

Sλ (t) = Bλ Sr(t).

The partition statistic Bλ is nothing but the number of set
partitions whose sorted block sizes correspond to the partition
λ . This is clear from the relation:

Bλ = ∑
µ∈λ−

bµλ Bµ .

In the Find Stat database [2], this statistic has identifier St000049.
Obviously, the rth Bell number is given by

Br = ∑
λ`r

Bλ .

Combining this with (3.2), we get an expression for Bell
numbers:

Br = ∑
T∈T(r)

bT .

Here T(r) denotes the set of standard Young tableaux of size
r. In view of the Robinson-Schensted correspondence, |T(r)|
is the number of permutations whose square is the identity.
Since bT ≥ 1 for each tableau T, we have

Br ≥ #{w ∈ Sr | w2 = 1}.

We are now ready to write down an expression for the rational
generating function for the two-dimensional Bell numbers:

Theorem 3.6. The generating function for two dimensional
Bell numbers is given by

B(2)(t) =
∞

∑
n=0

B(2)
n tn =

∞

∑
r=0

BrSr(t).

4. Higher dimensional Bell numbers

Let m = {m1,m2, . . . ,mk} be a sequence of positive inte-
gers. Consider the sequence {Gk} of groups defined by

G1 = Sm1 ; Gk = Gk−1 oSmk .

Let {Xk(m)} be a sequence of spaces defined by:

Xk = [m1]× [m2]×·· ·× [mk].

G1 acts on X1 by the standard permutation action. View Xk as
the disjoint union of mk copies of Xk−1. Inductively define the
action of Gk on Xk as follows: the ith copy of Gk−1 in Gk acts
on {i}×Xk−1 ⊂ Xk (the ith copy of Xk−1 in Xk), and Smk acts
by permuting these mk copies.

Theorem 4.1. The set of orbits for the action of Gk on Xn
k

are in bijective correspondence with the set of sequences
(b1,b2, . . . ,bk) of set partitions of n, where br is a refinement
of br−1 for each 1 < r ≤ k.

Proof. Given (x1,x2, . . . ,xn) ∈ Xn, say xr = (ir1 , ir2 , . . . , irk),
let bs be the set partition whose subsets are the non-empty
sets among

Si1,i2,...,is = {r ∈ [n] | ir j = i j for 1≤ j ≤ s}.

By induction on k, one should be able to prove bijection. �

A two-dimensional type is just a partition. Each element
of X2 has a two-dimensional type as in Definition 2.1. For
k > 2, a k-dimensional type is an unordered multiset of k−1-
dimensional types. The size |τ| of τ = {τ1,τ2, . . . ,τmk} is
defined as ∑

mk
j=1 |τ j| of the constituent types. To each sequence

we may associate

Definition 4.2. [Type of a sequence].
The type of an n-tuple (x1,x2, . . . ,xn) ∈ Xn

k is defined as the
unordered multiset τ = {τ1,τ2, . . . ,τmk}, where τ j is the type
of the subsequence of x1,x2, . . . ,xn consisting of elements of
the from ( j, i2, . . . , ik), viewed as a sequence in Xk−1.

For each k-dimensional type τ , let τ− denote the set of
k-dimensional types ρ all of whose elements ρ1,ρ2, . . . are the
same as those of τ, except for exactly one, say ρi which lies
in τ

−
i . Given ρ ∈ τ−, define bρτ to be the number of times ρi

occurs in ρ, where ρi is the element of ρi is the element of ρ

in which ρ and τ differ.

Let S(n,τ) denote the number of Gk-orbits in Sk of type
τ. Then

S(n,τ) = |τ|S(n−1,τ)+ ∑
ρ∈τ−

bρτ S(n−1,ρ).

Let τ be a k-dimensional type of size r. Let T(k)(r) be
the set of all chains τ(1),τ(2), . . . ,τ(r) = τ, where |τ( j)| = j
and τ( j) ∈ τ( j+1)− for 1 ≤ j < r. Given T ∈ T(k)(r), define
bT = ∏

r−1
i=1 b

τ(i)τ(i+1) . Then we have:

Sτ(t) = Bτ Sr(t),

which is the Stirling numbers of the second kind for Higher
dimensional Bell numbers.
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