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Abstract
Conjugate gradient-based projection methods are widely used for solving large-scale nonlinear monotone
equations. This is due to their simplicity and that they are derivative-free. In this paper, we propose another
conjugate gradient-based projection method for large-scale nonlinear monotone equations. We show that the
method satisfies the descent condition independent of line searches and that the method is globally convergent.
Numerical results show that the method is both efficient and effective.
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1. Introduction
Consider the constrained nonlinear monotone equations

F(x) = 0, x ∈Ω, (1.1)

where F : Rn→ Rn is continuous and satisfies the monotonic-
ity condition

(F(x)−F(y))T (x− y)≥ 0, ∀x,y ∈ Rn, (1.2)

and Ω⊆ Rn is a nonempty closed convex set.

Nonlinear monotone equations arise in many applications
such as subproblems in the generalized proximal algorithms
with Bregman distances [7]. Some monotone variational in-
equality problems can also be converted into systems of non-
linear monotone equations by means of fixed point maps or
normal maps if the underlying function satisfies some coer-
cive conditions [21].

The study of iterative methods for solving Problem (1.1)
with Ω = Rn has received much attention. For instance,
Solodov and Svaiter [15], proposed an inexact Newton method
which is a combination of Newton method and hyperplane
projection strategy. By the monotonicity of F , for any x∗ such
that F(x∗) = 0, we have

F(zk)
T (x∗− zk)≤ 0,

where zk = xk +αkdk, xk is the current iterate, αk is the step
length and dk is the search direction. Thus, by performing
some kind of line search procedure along the direction dk, a
point zk can be computed such that

F(zk)
T (xk− zk)> 0.
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The above two inequalities indicate that the hyperplane

Hk = {x ∈ Rn | F(zk)
T (x− zk) = 0}

strictly separates the current iterate xk from the solution set
of Problem (1.1). Using the hyperplane Hk, the next iterate is
obtained by

xk+1 = xk−
F(zk)

T (xk− zk)

‖F(zk)‖2 F(zk), (1.3)

which is a projection of xk onto Hk.
Conjugate gradient-based projection methods [1, 2, 4–

6, 8, 9, 11, 12, 17–20, 22] are probably the most popular meth-
ods for solving nonlinear monotone equations (1.1). These
methods are motivated by the hyperplane projection method
in [15]. Recently, Ou and Li [14] presented a new derivative-
free SCG-type projection method for nonlinear monotone
equations with convex constraints in which

dk =

{
−Fk, if k = 0,
−Q̃kFk, if k ≥ 1,

where the matrix Q̃k ∈ Rn×n is defined by

Q̃k = θ̃kI− θ̃k
wksT

k + skwT
k

wT
k sk

+

(
1+ θ̃k

wT
k wk

wT
k sk

)
sksT

k

wT
k sk

,

with

θ̃k =
‖sk‖2

wT
k sk

,

Fk = F(xk), sk = xk− xk−1 and wk = Fk−Fk−1 + tsk, where
t > 0 is a constant. The next iterate xk+1 in [14] is computed
by projecting xk onto the hyperplane Hk and then onto the
feasible set Ω as

xk+1 = PΩ

[
xk−

F(zk)
T (xk− zk)

‖F(zk)‖2 F(zk)

]
, (1.4)

where PΩ[x] : Rn→Ω is a projection operator

PΩ[x] = argmin
y∈Ω
‖x− y‖, ∀x ∈ Rn,

which is nonexpansive, i.e.

‖PΩ[x]−PΩ[y]‖ ≤ ‖x− y‖, ∀x,y ∈ Rn. (1.5)

This method was shown to be globally convergent and effi-
cient.

In this paper, we present a new derivative-free conjugate
gradient-based projection method for solving convex con-
strained nonlinear monotone equations and perform some
numerical experiments to test its efficiency and effectiveness.
This proposed method is presented in the next section and the
rest of this paper is organized as follows. In Section 3, we
show that the proposed method satisfies the descent property
and also establish its global convergence. We also show the
method converges R-linearly in Section 4. Numerical results
follow in Section 5 and conclusion in Section 6.

2. Motivation and the algorithm

The method we propose is motivated by the work of
Livieris et al. [13], Stanimirović et al. [16] and Liu and
Feng [10]. Livieris et al. [13] recently proposed a hybrid
conjugate gradient method based on the memorylesss BFGS
update for solving the unconstrained optimization problem

min{ f (x) |x ∈ Rn}

where f : Rn→ R is continuously differentiable. This is an
iterative method that generates a sequence of points {xk},
starting from an initial point x0 ∈ Rn, using the recurrence

xk+1 = xk +αkdk, k = 0,1,2, . . . ,

where αk > 0 is the stepsize obtained by some line search,
and dk is the search direction defined by

dk =

−gk , if k = 0,

−
(

1+β
HCG+
k

gT
k dk−1
‖gk‖2

)
gk +β

HCG+
k dk−1, if k ≥ 1,

where

β
HCG+
k = λkβ

DY
k +(1−λk)β

HS+
k ,

with

β
DY
k =

‖gk‖2

dT
k−1yk−1

, β
HS+
k = max{β HS

k ,0},

and

β
HS
k =

gT
k yk−1

dT
k−1yk−1

.

The parameter λk ∈ [0,1] is given by

λk =
sT

k gk−1

‖gk−1‖2

[
sT

k yk−1

‖sk‖2 −
1

ϑk

‖yk−1‖2

sT
k yk−1

−1
]

+

(
1

ϑk
−1
)

yT
k−1gk−1

‖gk−1‖2 ,

where sk = xk− xk−1, yk−1 = gk− gk−1 and gk = ∇ f (xk) is
the gradient of f at xk. Two different parameters of ϑk are
presented, ϑk =max{θ OL

k ,1} and ϑk =max{θ OS
k ,1}, in order

to give two methods ADHCG1 and ADHCG2 respectively,
with

θ
OL
k =

sT
k yk−1

‖sk‖
and θ

OS
k =

‖yk−1‖2

sT
k yk−1

. (2.1)

These methods satisfy the sufficient descent property

dT
k gk ≤−‖gk‖2, ∀k ≥ 0.
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The methods were shown to perform well numerically as
compared to other methods in the literature and global con-
vergence was established by means of the strong Wolfe line
search technique.

Stanimirović et al. [16], on the other hand, suggested a
hybridization

dk =

{
−gk, if k = 0,

−
(

1+β LSCD
k

gT
k dk−1
‖gk‖2

)
gk +β LSCD

k dk−1, if k ≥ 1,

where

β
LSCD
k = max{0,min{β LS

k ,βCD
k }},

with

β
LS
k =−

gT
k yk−1

dT
k−1gk−1

and β
CD
k =− ‖gk‖2

dT
k−1gk−1

.

This method was shown to be efficient and convergent.
In another recent work, Liu and Feng [10] presented a

derivative-free method for nonlinear monotone equations (1.1)
with

dk =

{
−Fk, if k = 0,
−θkFk +β PDY

k dk−1, if k ≥ 1,

where

β
PDY
k =

‖Fk‖2

dk−1uk−1
, θk = c−

FT
k dk−1

dT
k−1uk−1

,

with uk−1 = yk−1 + tk−1dk−1, yk−1 = Fk −Fk−1, tk−1 = 1+

max
{

0,− dT
k−1yk−1

dT
k−1dk−1

}
and c > 0 a constant. The global con-

vergence of the method was established and its efficacy was
tested against other competing methods.

Now, inspired by the work of Livieris et al. [13], Liu
and Feng [10] and that of Stanimirović [16] , we define our
proposed method as

dk =

{
−Fk, if k = 0,

−
(

1+βk
FT

k sk−1
‖Fk‖2

)
Fk +βksk−1, if k ≥ 1,

(2.2)

where

βk = max{β HCG+
k ,β LSCD

k }, (2.3)

with

β
HCG+
k = λkβ

DY
k +(1−λk)β

HS+
k ,

β
DY
k =

‖Fk‖2

dT
k−1wk

and β
HS+
k = max{β HS

k ,0},

where

β
HS
k =

FT
k wk

dT
k−1wk

,

and

β
LSCD
k = max{0,min{β LS

k ,βCD
k }},

β
LS
k =−

FT
k wk

dT
k−1Fk−1

, and β
CD
k =− ‖Fk‖2

dT
k−1Fk−1

.

The parameter λk ∈ [0,1] is given by

λk =
sT

k−1Fk−1

‖Fk−1‖2

[
sT

k−1wk

‖sk−1‖2 −
1

θ M
k

‖wk‖2

sT
k−1wk

−1

]

+

(
1

θ M
k
−1
)

wT
k Fk−1

‖Fk−1‖2 ,

where

θ
M
k = c−

FT
k sk−1

sT
k−1wk

with c being a positive constant. Here, wk = F(zk−1)−Fk−1 +
rsk−1, sk = zk− xk = αkdk and r ∈ (0,1). We state the algo-
rithm as follows.

Algorithm 2.1. Memoryless BFGS Conjugate Gradient-based
Method (MBCG)

1: Give x0 ∈Ω and the parameters σ ,r,ρ ∈ (0,1). Set k = 0.

2: for k = 0,1, . . . do
3: If ‖Fk‖= 0, then stop. Otherwise, go to Step 4.
4: Compute dk by (2.2) and (2.3).
5: Compute zk = xk + αkdk where

αk = max{ρ i : i = 0,1,2, ...} such that the inequality

−F(xk +αkdk)
T dk ≥ σαk‖F(zk)‖‖dk‖2 (2.4)

is satisfied.
6: If z ∈Ω and ‖F(zk)‖= 0, then stop. Otherwise, com-

pute xk+1 using (1.4).
7: Set k = k+1 and go to Step 3.
8: end for

3. Global convergence
In this section, we analyze the global convergence of Al-

gorithm 2.1. For this purpose, we first make the following
assumptions.

Assumption 3.1. (i) The function F(·) is monotone on Rn,
i.e. (F(x)−F(y))T (x− y)≥ 0, ∀x,y ∈ Rn.

(ii) The solution set Ω∗ is nonempty.
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(iii) The function F(·) is Lipschitz continuous on Rn, i.e.
there exists a positive constant L such that

‖ F(x)−F(y) ‖≤ L ‖ x− y ‖, ∀x,y ∈ Rn.
(3.1)

Lemma 3.2. Let the sequences {dk} and {Fk} be generated
by Algorithm 2.1. Then we have

FT
k dk = −‖Fk‖2, ∀k ≥ 0. (3.2)

Proof. Since d0 =−F0, we have FT
0 d0 =−‖F0‖2, which sat-

isfies (3.2). For k ≥ 1, by taking the inner product of (2.2)
with the vector Fk, we have

FT
k dk = −

(
1+βk

FT
k sk−1

‖Fk‖2

)
‖Fk‖2 +βkFT

k sk−1

=−‖Fk‖2.

Thus (3.2) holds.

Lemma 3.3. Let {xk} and {zk} be generated by Algorithm 2.1.
Then

αk ≥ min
{

1,
ρ‖Fk‖2

(L+σ‖F(z′k)‖)‖dk‖2

}
, (3.3)

where z′k = xk +ρ−1αkdk.

Lemma 3.4. Suppose Assumption 3.1 holds and sequences
{xk} and {zk} are generated by Algorithm 2.1. Then {xk} and
{zk} are both bounded. Furthermore, it holds that

lim
k→∞
‖xk− zk‖ = 0. (3.4)

Proof. From (2.4), we have

F(zk)
T (xk− zk)≥ σ‖F(zk)‖‖xk− zk‖2 > 0. (3.5)

For x∗ ∈Ω we have from (1.4) and (1.5) that

‖xk+1− x∗‖2 =‖PΩ[xk−ξkF(zk)]− x∗‖2

≤‖xk−ξkF(zk)− x∗‖2

=‖xk− x∗‖2−2ξkF(zk)
T (xk− x∗)

+ξ
2
k ‖F(zk)‖2, (3.6)

where ξk =
F(zk)

T (xk−zk)
‖F(zk)‖2

. By the monotonicity of F , it follows
that

F(zk)
T (xk− x∗) = F(zk)

T (xk− zk)+F(zk)
T (zk− x∗)

≥ F(zk)
T (xk− zk)+F(x∗)T (zk− x∗)

= F(zk)
T (xk− zk). (3.7)

From (3.5)-(3.7), we obtain

‖xk+1− x∗‖2 ≤‖xk− x∗‖2−2ξkF(zk)
T (xk− zk)

+ξ
2
k ‖F(zk)‖2

=‖xk− x∗‖2− (F(zk)
T (xk− zk))

2

‖F(zk)‖2

≤‖xk− x∗‖2−σ
2‖xk− zk‖4. (3.8)

Hence the sequence {xk− x∗} is decreasing and convergent,
thus {xk} is bounded. From (3.5), we get

σ‖F(zk)‖‖xk− zk‖2 ≤ F(zk)
T (xk− zk)

≤ ‖F(zk)‖‖xk− zk‖, (3.9)

which shows that

σ‖xk− zk‖ ≤ 1,

indicating that {zk} is bounded. It then follows from (3.8) that

σ
2

∞

∑
k=0
‖xk− zk‖4 ≤

∞

∑
k=0

(‖xk− x∗‖2−‖xk+1− x∗‖2)< ∞,

which implies

lim
k→∞
‖xk− zk‖ = 0.

Note that {xk} and {zk} bounded imply that there exist
constants M > 0 and M0 > 0 such that ‖sk‖ = ‖αkdk‖ ≤M,
and that both ‖Fk‖ ≤ M0 and ‖F(zk)‖ ≤ M0. That is, the
sequences {sk} and {Fk} are bounded.

Theorem 3.5. Suppose that Assumption 3.1 holds, and the
sequence {xk} is generated by Algorithm 2.1. Then

lim
k→∞

inf‖Fk‖= 0. (3.10)

Proof. Suppose (3.10) does not hold. Then there is a constant
ε0 > 0 such that

‖Fk‖ ≥ ε0, ∀k ≥ 0.

By (3.2) we have that

‖dk‖ ≥ ‖Fk‖ ≥ ε0, ∀k ≥ 0.

By definition of wk we have that there exist constants γ and
M1 such that

‖wk‖ ≤ γ and dT
k−1wk ≥M1‖dk−1‖, ∀k ≥ 0.

Now, if βk = β
HCG+
k , we have that

β
HCG+
k ≤ ‖Fk‖2 +‖Fk‖‖wk‖

dT
k−1wk

(3.11)

≤ M0(M0 + γ)

M1‖dk−1‖
. (3.12)

This gives that

‖dk‖ ≤ ‖Fk‖+2β
HCG+
k αk−1‖dk−1‖

≤ M0 +2
M0(M0 + γ)

M1
= γ1. (3.13)
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On the other hand, if βk = β LSCD
k we obtain that βk ≤ βCD

k .
Hence

‖dk‖ ≤ ‖Fk‖+2β
CD
k ‖sk−1‖

≤ M0 +2
‖Fk‖2

‖Fk−1‖2 ‖sk−1‖

≤ M0 +
2M2

0

ε2
0

αk−1‖dk−1‖ (3.14)

for all k ≥ 0.
Since (3.4) holds, we obtain that for every ε1 > 0 there is

a k0 such that αk−1‖dk−1‖< ε1 for all k > k0. Now, choosing
ε1 = ε2

0 and ϖ = max{γ1,‖d0‖,‖d1‖, · · · ,‖dk0‖,γ2}, where
γ2 = M0 +2M2

0 , it holds that

‖dk‖ ≤ ϖ , ∀k ≥ 0.

From (3.3) we have that

αk‖dk‖ ≥ min
{

1,
ρ‖Fk‖2

(L+σ‖F(z′k)‖)‖dk‖2

}
‖dk‖

= min
{
‖dk‖,

ρ‖Fk‖2

(L+σ‖F(z′k)‖)‖dk‖

}
≥ min

{
ε0,

ρε2
0

(L+σM0)ϖ

}
> 0.

This contradicts (3.4), therefore (3.10) holds.

4. R-linear convergence rate

In this section, we discuss the R-linear convergence rate
for Algorithm 2.1. From Theorem 3.5, we know that the
sequence {xk} converges to a solution of Problem (1.1). Thus,
we always assume that xk→ x∗ as k→ ∞, where x∗ ∈Ω∗. To
prove the R-linear convergence of {xk}, we need the following
assumption.

Assumption 4.1. For any x∗ ∈Ω∗, there exist µ ∈ (0,1) and
δ > 0 such that

µdist(x,Ω∗) ≤ ‖F(x)‖2, ∀x ∈Nδ (x
∗), (4.1)

where Nδ (x∗) is the neighbourhood of x∗ defined by Nδ (x∗)=
{x ∈ Rn : ‖x− x∗‖ ≤ δ} and dist(x,Ω∗) denotes the distance
from x to the solution set Ω∗.

Theorem 4.2. Suppose that Assumptions 3.1 and 4.1 hold.
Let the sequence {xk} be generated by Algorithm 2.1. Then
the sequence {dist(xk,Ω

∗)} is Q-linearly convergent to 0, and
so the sequence {xk} is R-linearly convergent to x∗.

Proof. Let x̄k := argmin{‖xk− x‖ : x ∈ Ω∗}, which implies
that x̄k is the closest solution to xk, namely,

‖xk− x̄k‖= dist(xk,Ω
∗).

From (3.2), (3.8) and (4.1), for x̄k ∈Ω∗ we have

dist(xk+1,Ω
∗)2 = ‖xk+1− x̄k‖2

≤ dist(xk,Ω
∗)2−σ

2‖αkdk‖4

≤ dist(xk,Ω
∗)2−σ

2
α

4
k ‖Fk‖4

≤ dist(xk,Ω
∗)2−µ

2
σ

2
α

4
k dist(xk,Ω

∗)2

= (1−µ
2
σ

2
α

4
k )dist(xk,Ω

∗)2.

Since µ ∈ (0,1), σ ∈ (0,1) and αk ∈ (0,1], we have that
(1− µ2σ2α4

k ) ∈ (0,1). Therefore, we obtain that the se-
quence {dist(xk,Ω

∗)} Q-linearly converges to 0. Therefore,
the whole sequence {xk} converges to x∗ R-linearly.

5. Numerical Experiments
In this section, numerical results are given to substantiate

the efficacy of the proposed Algorithm 2.1, herein denoted
as MBCG. We compare it with two other methods from the
literature, namely, an efficient three-term conjugate gradient
method for nonlinear monotone equations with convex con-
straints [4], herein denoted as ET T , and a derivative-free iter-
ative method for nonlinear monotone equations with convex
constraints, denoted as PDY [10]. The methods are compared
using NI, NFE and CPU , where NI presents the number of it-
erations, NFE is the number of function evaluations and CPU
is the time in seconds. All codes are written in MATLAB
R2016a and are tested using the following test problems with
different initial starting points and various dimensions.

Problem 1. [10].

Fi(x) = exi −1, i = 1,2,3, ...,n,

and Ω = Rn
+.

Problem 2. [10].

F1(x) = x1− ecos( x1+x2
n+1 ),

Fi(x) = xi− ecos(
xi−1+xi+xi+1

n+1 ), i = 2,3, ...,n−1,

Fn(x) = 2xn− ecos(
xn−1+xn

n+1 ),

and Ω = Rn
+.

Problem 3. [2].

Fi(x) = xi− sin(|xi−1|), i = 1,2,3, ...,n,

and Ω = {x ∈ R : ∑
n
i=1 xi ≤ n,xi ≥ 0}.

Problem 4. [10].

F1(x) = 2x1 +0.5h2(x1 +h)3− x2,

Fi(x) = 2xi +0.5h2(xi + ih)3− xi−1 + xi+1,

i = 2,3, ...,n−1,

Fn(x) = 2xn +0.5h2(xn +nh)3− xn−1,
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where h = 1
n+1 and Ω = Rn

+.

Problem 5. [4].

Fi(x) = xi− sin(|xi|−1), i = 1,2,3, ...,n,

where Ω = {x ∈ R : ∑
n
i=1 xi ≤ n,xi ≥−1}.

Problem 6. [5].

Fi(x) = e2xi +3sin(xi)cos(xi)−1, i = 1,2,3, ...,n,

and Ω = Rn
+.

In our experiments, all the algorithms are stopped when-
ever the inequality ‖Fk‖ ≤ 10−5 is satisfied, or the total num-
ber of iterations exceeds 5000. The parameters used in ET T
and PDY methods are set as in respective papers. The param-
eters in MBCG are selected as σ = 10−4, ρ = 0.5, r = 10−2

and c = 1. The results are listed in Table 1, where DIM
stands for the dimension of the test problems. We tested
the given problems with initial points x1

0 = (10,10, ...,10)T ,
x2

0 = (−10,−10, ...,−10)T , x3
0 = (0.1,0.1, ...,0.1)T and x4

0 =
(−0.1,−0.1, ...,−0.1)T .

We see in Table 1 that the proposed MBCG method per-
forms generally better than the other two methods. In order
to further make detailed comparison of the proposed method
with the other methods, we use the performance profiles tool
proposed by Dolan and Moré [3]. We show the performance
profiles in Figures 1-3, where Figure 1 shows performance
profile of number of iterations, Figure 2 gives performance
profile of number of function evaluations and Figure 3 is the
performance profile of CPU time. From Figures 1-3, it can be
readily seen that the proposed MBCG method out-performed
both the two methods in all the comparable characteristics,
hence the proposed method is both effective and efficient.

6. Conclusion
In this paper, we proposed a derivative-free conjugate

gradient-based projection method based on the memoryless
BFGS update. The proposed method is free from derivative
evaluations, and therefore, is suitable for solving large-scale
nonlinear monotone equations with convex constraints. The
method also satisfies the descent condition independent of any
line search. Global convergence of the proposed method was
established and numerical results from a number of bench-
mark test problems from the literature validate the efficacy of
the method.

Table 1. Numerical results for Problems 1-6.
Prob x0 DIM NI NFE CPU

MBCG ETT PDY MBCG ETT PDY MBCG ETT PDY

1 x1
0 50000 24 31 43 85 102 402 0.3379 0.0893 0.3123

100000 24 32 56 85 105 577 0.1367 0.1476 0.8077
150000 25 32 68 88 105 740 0.3053 0.3072 2.0467

x2
0 50000 1 1 1 3 3 5 0.0026 0.0023 0.0037

100000 1 1 1 3 3 5 0.0056 0.0057 0.0080
150000 1 1 1 3 3 5 0.0090 0.0086 0.0139

x3
0 50000 19 25 12 54 72 33 0.0420 0.0496 0.0239

100000 20 26 13 57 75 36 0.1052 0.1025 0.0535
150000 20 27 13 57 78 36 0.2110 0.2280 0.1125

x4
0 50000 1 1 1 3 3 3 0.0016 0.0016 0.0016

100000 1 1 1 3 3 3 0.0033 0.0032 0.0032
150000 1 1 1 3 3 3 0.0083 0.0075 0.0079

2 x1
0 50000 25 34 36 72 99 179 0.3151 0.3953 0.6906

100000 26 35 47 75 102 267 0.6156 0.8341 2.1092
150000 26 35 53 75 102 315 1.0008 1.2912 3.7593

x2
0 50000 18 23 21 50 65 76 0.2236 0.2759 0.3326

100000 2 2 26 2 2 109 0.0184 0.0159 0.8587
150000 2 2 28 2 2 121 0.0247 0.0222 1.4422

x3
0 50000 24 32 20 69 93 69 0.2718 0.3640 0.2954

100000 24 33 25 69 96 101 0.5701 0.7771 0.8108
150000 25 33 26 72 96 107 0.9508 1.1478 1.3061

x4
0 50000 24 32 21 69 93 74 0.2523 0.3776 0.2711

100000 25 33 25 72 96 101 0.5704 0.7538 0.7864
150000 25 33 27 72 96 114 0.9425 1.1584 1.4236

3 x1
0 50000 7 13 17 18 36 67 0.0750 0.0393 0.0600

100000 8 15 19 21 42 75 0.0512 0.0768 0.1235
150000 8 15 21 21 42 86 0.0954 0.1534 0.2696

x2
0 50000 10 16 23 26 44 96 0.0271 0.0430 0.0827

100000 10 17 23 26 47 96 0.0577 0.0858 0.1580
150000 10 17 26 26 47 118 0.1100 0.1565 0.3636

x3
0 50000 8 14 17 21 39 63 0.0209 0.0410 0.0622

100000 8 14 18 21 39 68 0.0451 0.0639 0.1013
150000 8 14 18 21 39 68 0.0826 0.1254 0.2031

x4
0 50000 8 14 18 21 39 68 0.0209 0.0349 0.0571

100000 8 14 18 21 39 68 0.0407 0.0673 0.1099
150000 8 14 20 21 39 77 0.0869 0.1254 0.2366

4 x1
0 50000 27 255 49 104 783 316 0.9618 7.3459 3.1238

100000 27 256 60 104 786 420 1.9393 14.3162 7.8144
150000 28 256 71 108 786 528 3.0205 21.2274 14.5829

x2
0 50000 1 109 1 5 328 9 0.0406 2.9721 0.0725

100000 1 109 1 5 328 9 0.0811 5.9591 0.1522
150000 1 109 1 5 328 10 0.1257 9.2021 0.2518

x3
0 50000 21 243 15 79 737 62 0.7953 6.5503 0.5490

100000 22 244 14 83 740 57 1.5362 13.2444 1.0798
150000 22 244 14 83 740 57 2.3883 20.5879 1.5491

x4
0 50000 1 81 1 4 244 5 0.0373 2.2469 0.0492

100000 1 81 1 5 244 5 0.0789 4.4413 0.0797
150000 1 81 1 5 244 5 0.1233 6.7274 0.1332

5 x1
0 50000 9 14 19 23 38 76 0.0262 0.0347 0.0682

100000 10 16 24 26 44 100 0.0527 0.0785 0.1618
150000 10 16 26 26 44 113 0.1113 0.1795 0.3531

x2
0 50000 8 15 19 21 42 75 0.0347 0.0413 0.0627

100000 8 15 19 21 42 76 0.0462 0.0825 0.1236
150000 8 15 21 21 42 86 0.1048 0.1499 0.2912

x3
0 50000 8 14 18 21 39 67 0.0207 0.0373 0.0563

100000 8 15 20 21 42 77 0.0404 0.0713 0.1174
150000 8 15 20 21 42 77 0.0844 0.1351 0.2348

x4
0 50000 8 14 17 21 39 63 0.0198 0.0354 0.0501

100000 8 14 18 21 39 68 0.0367 0.0656 0.0979
150000 8 14 18 21 39 68 0.0892 0.1312 0.2091

6 x1
0 50000 23 9 40 110 50 629 0.2870 0.1101 1.1184

100000 23 9 53 110 50 889 0.4219 0.2140 3.0590
150000 24 9 59 114 50 1008 0.7554 0.3450 5.8129

x2
0 50000 19 9 14 68 22 56 0.1164 0.0361 0.0893

100000 19 9 14 68 22 56 0.2292 0.0712 0.1821
150000 20 9 17 72 22 74 0.4294 0.1282 0.4235

x3
0 50000 16 10 11 75 36 50 0.0789 0.0363 0.0501

100000 16 10 11 75 36 50 0.1590 0.0720 0.1004
150000 16 10 11 75 36 50 0.3070 0.1338 0.1919

x4
0 50000 16 10 10 75 36 45 0.0758 0.0363 0.0445

100000 16 10 11 75 36 50 0.1647 0.0735 0.1064
150000 16 11 11 75 40 50 0.3029 0.1515 0.1902
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Figure 1. Iterations performance profile
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Figure 2. Function evaluations performance profile
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Figure 3. Cpu time performance profile
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