C++ Programme for total dominator chromatic number of cycles using elementary transformations

A. Vijayalekshmi1* and J. Virgin Alangara Sheeba2

Abstract
A total dominator coloring of a graph \(G = (V, E) \) without isolated vertices is a proper coloring together with each vertex in \(G \) properly dominates a color class. The total dominator chromatic number of \(G \) is the minimum number of color classes with additional condition that each vertex in \(G \) properly dominates a color class and is denoted by \(\chi_{td}(G) \). In this paper, we find the total dominator chromatic number of cycles using elementary transformations through C++ programme.

Keywords
Coloring, Total dominator coloring, Total dominator chromatic number.

AMS Subject Classification
05C69, 68W25.

1 Department of Mathematics, S.T.Hindu College, Nagercoil-629002, Tamil Nadu, India.
2 Research Scholar [Reg. No:11813], Department of Mathematics, S.T.Hindu College, Nagercoil-629002, Tamil Nadu, India.
1, 2 Affiliated to Manonmaniam Sundaranar University, Abishekapatni, Tirunelveli-627012, Tamil Nadu, India.
*Corresponding author:vijimath.a@gmail.com

Article History: Received 21 February 2020; Accepted 27 April 2020©2020 MJM.

Contents
1 Introduction .. 616
2 Preliminaries .. 616
3 Main Result .. 617
4 Conclusion .. 621
References .. 621

1. Introduction
In this paper we only consider cycles. Further details in graph theory can be found in F. Harrary [4]. Let \(G = (V, E) \) be a graph with minimum degree at least one. A cycle on \(n \) vertices denoted by \(C_n \) is a connected graph where each vertex has degree two. We label the vertices of \(C_n \) as \(v_i \) for \(1 \leq i \leq n \) and let \((v_i, v_{i+1})\) be an edge of \(C_n \).

A proper coloring of \(G \) is an assignment of colors to the vertices of \(G \), such that adjacent vertices have different colors. The smallest number of colors for which there exists a proper coloring of \(G \) is called a chromatic number of \(G \), and is denoted by \(\chi(G) \). A total dominator coloring \((td-coloring) \) of \(G \) is a proper coloring of \(G \) with extra property that every vertex in \(G \) properly dominates color class. The total dominator chromatic number is denoted by \(\chi_{td}(G) \) and is defined by the minimum number of colors needed in a total dominator coloring of \(G \). This concept was introduced by Vijayalekshmi in [1]. This notion is also referred as a smarandachely \(k \)-dominator coloring of \(G \), \((k \geq 1) \) and was introduced by Vijayalekshmi in [2]. For an integer \(k \geq 1 \), a smarandachely \(k \)-dominator coloring of \(G \) is a proper coloring of \(G \), such that every vertex in a graph \(G \) properly dominates a \(k \) color class. The smallest number of colors for which there exists a smarandachely \(k \)-dominator coloring of \(G \) is called the smarandachely \(k \)-dominator chromatic number of \(G \) and is denoted by \(\chi_{s,td}^k(G) \).

In a proper coloring \(C \) of a graph \(G \), a color class of \(C \) is a set consisting of all those vertices assigned the same color. Let \(C \) be a minimum \(td \)-coloring of \(G \). We say that a color class is called a non-dominated color class \((n-d \text{ color class}) \) if it is not dominated by any vertex of \(G \) and these color classes are also called repeated color classes.

For more details on this theory and its applications, we suggest the reader to refer [3, 5, 6].

2. Preliminaries
In this section, we recall the crucial theorem [3] which is very useful in our work. The total dominator chromatic number of cycles was found in the following observation.
Let G be C_n. Then

$$
\chi_{td}(C_n) = \begin{cases}
2\lfloor \frac{n}{4} \rfloor + 2, & \text{if } n \equiv 0(\text{mod}4) \\
2\lfloor \frac{n}{4} \rfloor + 3, & \text{if } n \equiv 1(\text{mod}4) \\
2\lfloor \frac{n+2}{4} \rfloor + 2, & \text{otherwise}.
\end{cases}
$$

In this paper, we obtain a C++ programme to find the td-chromatic number of cycles by using elementary transformations.

3. Main Result

In this section, We have to find the total dominator chromatic number of cycles using C++ programme. The C++ programme is successfully compiled and run on C++ platform. The runtime test is included.

Programme as follows

```cpp
#include "stdafx.h"
#include <Windows.h>
#include <conio.h>
#include <iostream>
using namespace std;

int main()
{
    int inpt;
    cout << "Enter the Value of Cn" << endl;
    cin >> inpt;
    int N = inpt, M = inpt; int** ary = new int*[N]; int** mat = new int*[N];
    int** mat1 = new int*[N]; int** matsum = new int*[N];
    for (int i = 0; i < N; ++i)
    {
        ary[i] = new int[M], mat[i] = new int[M], mat1[i] = new int[M], matsum[i] = new int[M];
    }
    int k, l, sum;
    HANDLE p = GetStdHandle(STD_OUTPUT_HANDLE);
    SetConsoleTextAttribute(p, FOREGROUND_INTENSITY | FOREGROUND_INTENSITY);
    for (int i = 0; i < N; ++i)
    for (int j = 0; j < M; ++j)
    ary[i][j] = i;
    cout << "\n" << "The Adjacency Matrix for C" << N << "\n" << "\n";
    for (int i = 0; i < N; i++)
    { for (int j = 0; j < M; j++)
      { if (ary[j][i] == i + 1 | ary[j][i] == i - 1 | ary[j][i] == i + (N - 1) | ary[j][i] == i - (N -1))
        { mat[i][j] = 1;
          cout << mat[i][j] << " ";
        }
      else
      { mat[i][j] = 0;
        cout << mat[i][j] << " ";
      }
    } cout << "\n";
    for (int i = 0; i < N; i++)
    {
        for (int j = 0; j < N; ++j)
        { if (ary[j][i] == i + 1 | ary[j][i] == i - 1 | ary[j][i] == i + (N - 1) | ary[j][i] == i - (N -1))
            { mat1[i][j] = 1;
              cout << mat1[i][j] << " ";
            }
        else
        { mat1[i][j] = 0;
          cout << mat1[i][j] << " ";
        }
      } cout << "\n";
    }
}
```
```c++
for (int j = 0; j < N; j++)
{
    if (i % 2 == 0)
    {
        if (i >= 2)
        {
            mat1[i][j] = mat[i][j] - mat1[i - 2][j];
        }
        else
        {
            mat1[i][j] = mat[i][j];
        }
    }
    else
    {
        mat1[i][j] = mat[i][j];
    }
}
for (int i = 0; i < N; i++)
{
    for (int j = 0; j < N; j++)
    {
        if (i % 2 == 0)
        {
            if (mat1[i][j] == 1 && mat1[i][N-1] == 1 && i < N-2)
            {
                mat1[i][(N - 1)] = mat1[i][j] - mat1[i][(N - 1)];
            }
            else if (mat1[i][j] == 1 && mat1[i][N - 1] == -1 && i < N-2)
            {
                mat1[i][(N - 1)] = mat1[i][j] + mat1[i][(N - 1)];
            }
            else
            {
                mat1[i][j] = mat1[i][j];
            }
        }
        else
        {
            mat1[i][j] = mat[i][j];
        }
    }
}
for (int i = 0; i < N; i++)
{
    for (int j = 0; j < N; j++)
    {
        if (j % 2 == 0)
        {
            if (j >= 2)
            {
                mat1[i][j] = mat1[i][j] - mat1[i][j - 2];
            }
            else
            {
                mat1[i][j] = mat[i][j] - mat1[i][j - 2];
            }
        }
    }
}
```
```cpp
mat1[i][j] = mat1[i][j];
}
else
{
    mat1[i][j] = mat1[i][j];
}
}
cout << "\n" << "The Matrixes after subtracting Column negative values" << "\n";
for (int i = 0; i < N; i++)
{
    for (int j = 0; j < N; j++)
    {
        if (j % 2 == 0)
        {
            if (mat1[i][j] == 1 && mat1[N-1][j] == 1)
            {
                mat1[N-1][j] = mat1[i][j] - mat1[(N-1)][j];
                cout << mat1[i][j] << " ";
            }
            else if (mat1[i][j] == 1 && mat1[(N-1)][j] == -1)
            {
                mat1[(N - 1)][j] = mat1[i][j] + mat1[(N - 1)][j];
                cout << mat1[i][j] << " ";
            }
            else
            {
                mat1[i][j] = mat1[i][j];
                cout << mat1[i][j] << " ";
            }
        }
        else
        {
            mat1[i][j] = mat1[i][j];
            cout << mat1[i][j] << " ";
        }
    }
    cout << "\n";
}
for (int i = 0; i < N; i++)
{
    for (int j = 0; j < N; j++)
    {
        if (mat1[i][j] == 2 || mat1[i][j] == -2)
        {
            mat1[i][j] = mat1[i][j] / 2;
        }
    }
}
if (mat1[N - 1][N - 1] == 1 || mat1[N - 1][N - 1] == -1)
{
    for (int i = 0; i < N; i++)
    {
```
if (mat1[N - 1][N - 1] == 1)
{
 mat1[N - 1][i] = mat1[N - 1][i] - 1;
}
else
{
 mat1[N - 1][i] = mat1[N - 1][i] + 1;
}
for (int i = 0; i < N; i++)
{
 for (int j = 0; j < N; j++)
 {
 if (mat1[i][j] == 1 && mat1[N - 1][j] == -1)
 {
 mat1[N - 1][j] = mat1[N - 1][j] + mat1[i][j];
 } else if (mat1[i][j] == 1 && mat1[N - 1][j] == 1)
 {
 mat1[N - 1][j] = mat1[N - 1][j] - mat1[i][j];
 } else
 {
 mat1[i][j] = mat1[i][j];
 }
 }
}
for (int i = 0; i < N; i++)
{
 for (int j = 0; j < N; j++)
 {
 if (j % 2 == 0 && i % 2 == 0 && mat1[i][j] == 0 && mat1[i][j + 1] == 1
 || mat1[i][j] == 1)
 {
 SetConsoleTextAttribute(p, FOREGROUND_RED | FOREGROUND_INTENSITY);
 cout << mat1[i][j] << " ";
 } else if (j % 2 != 0 && i % 2 != 0 && mat1[i][j] == 0 && mat1[i][j - 1] == 1)
 {
 SetConsoleTextAttribute(p, FOREGROUND_RED | FOREGROUND_INTENSITY);
 cout << mat1[i][j] << " ";
 } else
 {
 SetConsoleTextAttribute(p, FOREGROUND_INTENSITY | FOREGROUND_INTENSITY);
 cout << mat1[i][j] << " ";
 }
 }
 cout << "\n";
}
SetConsoleTextAttribute(p, FOREGROUND_INTENSITY | FOREGROUND_INTENSITY);
int O = 0;
for (int i = 0; i < N; i++)
{
 for (int j = 0; j < N; j++)
C++ Programme for total dominator chromatic number of cycles using elementary transformations

```cpp
if (i+1 < N && mat1[i][j] == 1 && mat1[i + 1][j - 1] == 1)
{
    O = O + 1;
}
}
}

cout << "\n" << "TOTAL DOMINATOR CHROMATIC NUMBER IS " << O + 3 << "\n" << "\n";

system("Pause");

return 0;
}
}

for (int i = 0; i < N; ++i)
{
    delete[] ary[i], ary, mat1[i], mat1, mat[i], mat, matsum[i], matsum;
}

return 0;
}

*************
ISSN(P):2319 – 3786
Malaya Journal of Matematik
ISSN(O):2321 – 5666
*************

4. Conclusion

In this manuscript, we find the total dominator chromatic number of cycles using elementary transformations through C++ programme in simplified and improved manner.

References