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1. Introduction

In the last years, a number of researchers have found in-
equalities and application by means results about fractional
integrals such as Riemann-Liouville fractional integral op-
erator, Hadamard integral operator, Saigo integral operator,
Erdeyi-Kober integral operator, Katugampola fractional inte-
gral, see [1-3, 5, 7-12, 15-17, 19, 21]. Fractional inequalities
play major role in the development of fractional differential,
integral equations and other fields of sciences and technology.
Recently, In 2019, V.L. Chinchane and D.B. Pachpatte have
studied inequalities using Saigo fractional integral, see [6].

Theorem 1.1. Let f, h be two positive continuous functions
on [0,0) and f < h on [0,). If% is decreasing, f is increas-
ing on [0,0) and for any convex function ¢, ¢$(0) = 0, then

fort >0, a>max{0,—B}, B <1, B—1<n <0, we have

L) Moo
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and

(1.1

Theorem 1.2. Let f, h be two positive continuous functions
on [0,) and f < h on [0,). lf{ is decreasing, f is increas-
ing on [0,0) and for any convex function ¢, ¢(0) =0, then
we have inequality

PO [ (e + 1 )G 0 (h0))

> 1
P OV [0 () + 1 ) ISP o (£(1))]
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(1.2)

where for all t >0, ot > max{0,—B}, y >max{0,—0}, B <
LB-1<n<0,6<1,6-1<{<0.

In the literature, some fractional inequalities are obtain
by using Generalized Katugampola fractional integral, see
[1, 4, 14, 18]. Motivated by above work in this paper we have
obtain some new inequalities using generalized Katugampola
fractional integral for convex functions.

2. Preliminaries

Here, we devoted to basic concepts of Generalized Katugam-
pola fractional integral,see [1, 13, 20].
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Definition 2.1. Consider the space X! (a,b)(c e R,1 < p <
o), of those complex valued Lebesgue measurable functions
f on (a,b) for which the norm || f||xr < oo, such that

Il = ([ berw ) (<p<e

and

flxp = supesse(a,p) X[ f1]-

In particular, when ¢ = %,the space X! (a,b) coincides
with the space LP(a,b)

Definition 2.2. The left and right sided fractional integrals
of a function f where f € xF(a,b), o0 >0 and B,p,n,k €R,
are defined respectively by

P(n+1)-1

p! Py
o | oyt
0<a<x<b<eo,

a+ n, kf( ) T)dfa (21)

and
1-B kp k+p—1
p! Px T

0<a<x<b<<b<oo,

b n, kf( ) (22)

if the integral exist.
To represent and discuss our new results in this paper we use
the left sided fractional integrals, the right sided fractional can
be proved similarly, also we consider a = 0, in (2.1), to obtain

plﬁx/(/x P(n+1)-1
o (

P g r) = Ty b Gp eyl (e 23)

The above fractional integrals has the following composition
(index) formulae

aLBir p g .B _p guto,pi+p

a+;n1,ky a+2712-,—P771f(x) - a-+;no,ky f(x) (2.4)
ay,Bi o g%.B _p gouto,Bit+p

b—m,—pm b*;nzﬁsz(x) o a+i1n;,ka f(x)

For the convenience of establishing our results we define the
following function as in [1]: let x > 0,0 > 0,p,k, 8,1 € R,
then

'(n+1)

_ S\ Bl ktp(nta)
F(n+a+1)p o ’

AP (o) = 2.5)
Remark 2.3. The fractional integral (2.1) contain five well-
known fractional integral as its particular cases, see [1, 13,
20]

1. Setting k =0, = 0,a = 0 and taking the limit p —
1 in (2.1), the integral operator (2.1) reduces to the
Riemann-Liouville fractional integral.
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2. Setting k =0,m = 0 and taking the limit p — 1 in (2.1),
the integral operator (2.1) reduces to the Liouville frac-
tional integral.

3. Setting B = a,n = 0 and taking the limit p — 0" with
L’ Hospital rule in (2.1), the integral operator (2.1)
reduces to the Hadamard fractional integral.

4. Setting B =0,k = —p(a+n) in (2.1), the integral
operator (2.1) reduces to the Erdelyi-Kober fractional
integral.

5. Setting B = a,k=0and 1 =0 in (2.1), the integral
operator (2.1) reduces to the Katugampola fractional
integral.

3. Fractional integral inequalities
involving convex functions

In this section, we prove some fractional integral inequali-
ties involving convex function using generalized Katugampola
fractional integral,

Theorem 3.1. Let p, r be two positive continuous functions on
[0,00) and p < r on [0,0). If £ is decreasing, p is increasing

on [0,0) and for any convex function ®, ®(0) = 0, then for
alla>0,t>0,B,p,1n,k € R we have,
ik PO) P Syl 1@ (1) an
P IIO] T P AP @)

Proof. 1f the function ® is convex with ®(0) = 0, then the
2(p(1)

(1
( s increasing. Since p is increasing, then =0

is also increasing. Clearly (()) is decreasing, for all 7,0 €

[0,0), and

function

@(p(1))  ®(p(0)) (plo) p(7)
(e ) (e %) 20 e
which implies that
2(p(7) p(o) | 2(p(0)) p(7)
»@ o) plo) "D .
_2(p(1) p(r) _ ®(p(0)) p(0) _ '
p(r) r(r)  plo) r(o) ~
Multiplying equation (3.3) by r(7)r(c), we have
@(p(7)) P(p(o))
p(‘C) ( )r(T) + p(G) (T>r(o-)_
P(p(1) P(p(0) L, Y
p(T) (T)V(G) - p(o_) (G)F(T) =
Multiplying both sides of (3.4) by PPk cplnih) € (0,1)

T(@) (P—wp)—a>
which is positive, and integrating obtained result with respect

009 nn,,
5:

; ‘a’uv
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to 7 from O to ¢, we have

oy il | 20|

~ror st |

D(p(0) s

’w\/
—~
~
~— ~
~—

(

(3.5)
=Bk Gp(n+1)-1
Multiplying both sides of (3.5) by a) P—op)a €(0,1)

which is positive, and integrating obtained result with respect
to o from O to ¢, we have

a,B @(p(t))
o) 73 20 ] +
o | 20|l 1ot

kL p(r) ok
>0 gl o) gl | 2R pio | +

p(t)
ap [@(p(1))
L 0]

It follows that

(3.6)

wPipan e gf
3.7

>? 74P ()

, a.f [ ep()
OIS o d)

PIEIO) P gl [ yo)]

(3.8)

Since p < ron [0,%0) and function <p( L

7,0 € [0,00), we have
P(p()) _
p(tr) —

is increasing, then for

(3.9)
Multiplying (3.9) by 212" B rar(7),7 € (0,1) which
is positive, and integrating equation (3.9) on both side with
respective T from O to 7, we get

pl Pk pr P @(p(r))

(o) / (P — P )T '

pl Bt [ P P(r(r))
o (P —1P)

T(a) Jo (0 —1P)l-0

(3.10)

which implies that,

ap | P ap | P(r
i |5 re) <ot 5

Hence, from (3.8) and (3.11) we obtain required inequality
3.1). O

r(t)} . (3.11)

811

Theorem 3.2. Let p, r be two positive continuous functions on
[0,00) and p < r on [0,0). If £ is decreasing, p is increasing
on [0,00) and for any convex function ®, ®(0) = 0, then for
allk>0,t>0,a,0 >0,t>0,B,7,p,n,k €R we have,

P P Ip@)P ZIEOr o)) +P 72 ()P 7P [@(r(1))]

b Bl 0)e ZEF@(p()] 40 200 2P [@(p(1)
217

(3.12)

Proof. If function ® is convex with ®(0) = 0, then ( ) is in-

creasing. Since p is increasing, then % is also increasing.
Clearly (<)) is decreasing, for all 7,0 € [0,7) t > 0. Multi-
Tk Ggp(n+1)-1

F ) (tp gp)l R E(Ovt)7t€R»
which remains positive. Now integrating obtained result with
respect to o from O to 7, we have

R ap | P
At sif | 2o

wogar [P0 0] o pief ot
> P P i) P 23T [@(p(r)]
+P 7P [@(p(0)] P 2T ().
<I><)

plying equation (3.5) by 2

(3.13)

Since p < r on [0,0) and as function
7,0 € [0,1) t > 0, we have

@ (r(7))
r(t)

is 1ncreasmg, for

@(p(7))
p(7)

< (3.14)

Multiplying both sides of (3.14) by 25" R
T € (0,1),t € R positive, and integrating obtained result with

respect to 7 from O to ¢, we have

p SO F(P(f))
IO

0] <2 A R0 315

Hence, using (3.13) and (3.15), we obtain required inequality
(3.12). O

Now, we prove our main result.

Theorem 3.3. Let p, r and q be three positive continuous func-
tions on [0,00) and p < ron [0,0). If L is decreasing, p and q
are increasing functions on [0,0), and for any convex function
¢ such that $(0) =0, then forall o > 0,t > 0,4,p,n,k €R

we have,
@) Pl Llr)a] 16
gl pfaﬁ[q)(r(t))q(t)]
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Proof: Since p < r on [0,) and function ¢< L

ing, then for 7,0 € [0,¢), t > 0, we have

6(p(x)) _ 90r(®)

p(7) r(7)
!Bk fom+1)-1

Multlplylng both sides of (3 17) by T(a) W
itive, and integrating obtained result with respect to T from 0
to ¢, we have

{(P (p(1))
p(t)
On the other hand, since the fact that the function ¢ is convex
with ¢ (0) =

is increasing,

P
(r)

¢(p(1))
p(7)

< 3.17)

o,p
n.k

a.f
n.k

[0(r(1))q()]. (3.18)

r<r>q<r>] <P

0. Then the function q)() is increasing. Since p

9(p(1) +
()

that 2+ is decreasing, for all 7,0 € [0,7)t >0

(

which implies that

#(p(7))q(7)
p(7)
(p

¢(p(0))

Q(T)i p(O')

(3.19)

I
<

Hence, we can write

or sl |

+¢(’z(")>) r(0)q(0)? 7%

(0)° 25 19(p(1)a(0)]

;&f)p(cmwm:ff 0] 20

with the same argument as before, we have
PIE 0] 2 2l 19(p(0)a(0)
o g%B r(t)] P ())r( 1q(t )}

n.k nk [ )

¢(p(1))
p(t)

ol

P p(n)]
(3.21)

(3.22)

is increas-

r(T) pos-

is also increasing. Clearly we can say

q<o>) (p(0)r(5) = p()r(0)) 20,

Hence, using equation (3.18) and (3.22), we obtain (3.16).

Now, we give generalization of Theorem 3.3.

Theorem 3.4. Let p, r and q be three positive continuous
functions on [0,00) and p < r on [0,0). If £ is decreasing, p
and q are increasing functions on [0,0), and for any convex
Sunction ¢ such that ¢(0) =0, then for allk>0,t>0, o, 0 >
0,t>0,8,7,p,n,k € R we have,

P 7P Ip@]? FyTo(r(0)an]+° Fip0)]P 70l [9(r(1)a(r)]
o 2P )e £ 7F9(p(0)a()] +0 2y Irn)]P 2P lo(p(1)a(r)] (3.23)

> 1.
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pl=mk Gp(n+1)-1

T(0) (P—oP) 0>
(0,1),t € R, which remains positive . Then integrate the re-
sulting identity with respect to ¢ from 0 to 7, we have

Proof:- Multiplying equation (3.21) by

b i [p(t)]”/,ff’f {d’(p}(?t()t))q(t) r(,)} Y { (P[()(t))Q() ()} y
”/ﬁf}{ﬁ [p(1)] = p/ﬁvﬁ [r(0)]P i [0(p(1))a(1)]
+P 25P 10(p(0)a0] P 70T r(0)],
(3.24)
and since p < r on [0,00) and use the fact that M is
increasing, we obtain
B [9(p(1)g() ] B
P I T S P I [0(r(1))q(1)], (3.25)
and
N)gq(t) ]
ot | PP | <2 g lor)ato)]. 626)

Hence, from equation (3.24), (3.25) and (3.26), we obtain
(3.23).

4. Other fractional integral inequalities

In [9], authors have proved the inequalities using Riemann-
Liouville fractional integral. Now, we prove the similar results
using generalized Katugampola fractional integral

Theorem 4.1. Let p, g be two positive and continuous func-

tions on [0,00) such that p is decreasing and q is increasing
on [0,00), then for all o« > 0,1 > 0,3, p,M,k € R we have,
e sl o) P gl ()
Lk > 15 . 4.1
P i (0] P 7y g ()]
Proof. Consider 0,7 € (0,¢), we have
(¢"(0) —4"(7)) (pl(f)p’”(d) - p’"(f)p’(G)) >0,
which implies that
q"(0)p (7)p" (o) + 4" (7)p" (7)p'(0) “42)
(0)p"(2)p' (o) + 4" (2)p" (0)p (),
Multiplying both sides of (4.2) by 202 P e i

T(@) P&
positive, and integrating obtained result with respect to 7 from
0 to ¢, we have

7'(0)p"(0) 7L o)+ (o) 75l g p( 1
>¢'(0)f7(0) 7P 1f (t>]+p’"< o) saPld'p

o c
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Now, multiplying both side of (4.3) by 22" S which

is positive from (2.4). Now integrating obtained result with
respect to o from O to 7, we have

P gl o 2P o)
>0 gl p P £ 1 o),

which gives the inequality 4.1. O

“4.4)

Theorem 4.2. Let p, g be two positive and continuous func-
tions on [0,00) such that p is decreasing and q is increasing on
ﬁg,w). then forallk>0,t>0, a,0 >0,t>0,B,7,p,1m,k€
, we have,
P Ik P OF 2T a0+ S 01 £ la (1)
P O A O+ AL P e )] @)
>1.

-7k _
pl=Fk Gp(n+1)-1
(0) (tP—oP)I—0 (o€

(0,¢), t > 0), which remains positive. Then integrate the
resulting identity with respect to ¢ from O to 7, we obtain the
result 4.5. O

Proof. Multiplying equation (4.3) by

Theorem 4.3. Let p, q be two positive and continuous func-
tions on [0,0) such that p is decreasing and q is increasing
on [0,00), Such that

p aBr nti wBronyl
1 LSO ! POl o we
P Il ] P o)

Proof. Consider 7,0 € (0,), we get

(h"(0)4(0) ~ p(@)q"()) (" (0)P' () ~ p"(1)p!(0)) 0.

and using the same arguments as in Theorem [4.1]. we obtain
the result.
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