

https://doi.org/10.26637/MJM0803/0028

Analytic odd mean labeling of Corona graphs

P. Jeyanthi¹ and R. Gomathi^{2*}

Abstract

The concept of an analytic odd mean labeling was introduced in [3] and further studied in [4 - 7]. In this work, we show that the graphs TL_n , $TL_n \odot K_1$, $T_n \odot K_1$, $Q_n \odot K_1$ and $[A(T_n)]AK_1$ admit an analytic odd mean labeling.

Keywords

Analytic odd mean labeling, analytic odd mean graph.

AMS Subject Classification

05C78.

¹Research Centre, Department of Mathematics, Govindammal Aditanar College for Women, Tiruchendur-628215, Tamil Nadu, India. ²Research Scholar, Reg.No.:11825, Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli-627012, Tamil Nadu, India.

*Corresponding author: ¹ jeyajeyanthi@rediffmail.com; ²gomathikarthi97@gmail.com

Article History: Received 12 January 2020; Accepted 24 April 2020

©2020 MJM.

Contents

1		898
2	Preliminaries	898
3	Main Results	899
4	Example	901
5	Conclusion	902
	References	902

1. Introduction

The graph represented here are only finite, simple and undirected graph G = (V, E) with p vertices and q edges. For mathematical notations we refer Harary [2]. Over the last six decades, the graph labeling concept gained more popularity in the field of graph theory. During this period, several methods of graph labeling are introduced and studied which are available as a ready reference in [1]. One such labeling is called an analytic mean labeling [8]. A graph G is an analytic mean graph if it admits a bijection $f: V \rightarrow V$ $\{0, 1, 2, \dots, p-1\}$ such that the induced edge labeling f^* : $E \to Z$ given by $f^*(uv) = \left\lceil \frac{f(u)^2 - f(v)^2}{2} \right\rceil$ with f(u) > f(v) is injective. Motivated by the concept of analytic mean labeling, we extended this concept and introduced a new labeling called analytic odd mean labeling [3]. A graph G is an analytic odd mean if there exist an injective function $f: V \rightarrow V$ $\{0, 1, 3, 5, \dots, 2q-1\}$ with an induce edge labeling $f^*: E \rightarrow$ Z such that for each edge uv with $f(u) < f(v), f^*(uv) =$

 $\begin{cases} \left\lceil \frac{f(v)^2 - (f(u)+1)^2}{2} \right\rceil, & if \ f(u) \neq 0\\ \left\lceil \frac{f(v)^2}{2} \right\rceil, & if \ f(u) = 0 \end{cases} \text{ is injective. We say that}$

f is an analytic odd mean labeling of *G*. In [4 - 7], we proved that cycle C_n , path P_n , *n*-bistar, comb $P_n \odot K_1$, graph $L_n \odot K_1$, wheel graph W_n , flower graph Fl_n , fan F_n , double fan $D(F_n)$, double wheel $D(W_n)$, closed helm CH_n , total graph of cycle $T(C_n)$, total graph of path $T(P_n)$, armed crown $C_n \Theta P_m$, generalized Peterson graph GP(n,2), the square graph of P_n , C_n , $B_{n,n}$, *H*-graph and $H \odot mK_1$, subdivision and super subdivision of cycle C_n , star $K_(1,n)$, comb $P_n \odot K_1$, path on the comb and *H*-super subdivision of path and cycle are analytic odd mean graphs.

2. Preliminaries

In this section, we recall some definitions which will be used throughout the paper.

Definition 2.1. TL_n graph is obtained from L_n by adding the edges $u_iv_{i+1} 1 \le i \le n-1$, where u_i and $v_i, 1 \le i \le n$ are the vertices of L_n such that u_1, u_2, \ldots, u_n and v_1, v_2, \ldots, v_n are two paths of length n in the graph L_n .

Definition 2.2. T_n graph is obtained from a path with vertices v_1, v_2, \dots, v_n by joining v_i and v_{i+1} to a new vertex u_i for $i = 1, 2, 3, \dots, n-1$.

Definition 2.3. Q_n graph is obtained from a path $u_1, u_2, ..., u_n$ by joining u_i and u_{i+1} to the new vertices u_i and $w_i, 1 \le i \le n-1$ respectively and then join v_i and w_i .

Definition 2.4. $A(T_n)$ graph is obtained from a path

 u_1, u_2, \ldots, u_n by joining u_i and u_{i+1} (alternately) to a new vertex v_i .

Definition 2.5. $A(Q_n)$ graph is obtained from a path u_1, u_2, \ldots, u_n by joining u_i and u_{i+1} (alternately) to the new vertices v_i and w_i .

Definition 2.6. The corona $G_1 \odot G_2$ of graphs G_1 and G_2 is obtained by taking one copy of G_1 , has p_1 vertices and p_1 copies of G_2 , and then joining the i^{th} vertex of G_1 by an edge to every vertex in the i^{th} copy of G_2 .

3. Main Results

In this section, we prove that the graphs TL_n , $TL_n \odot K_1$, $T_n \odot K_1$, $Q_n \odot K_1$ and $[A(T_n)]AK_1$ admit an analytic odd mean labeling.

Theorem 3.1. *Triangular ladder* TL_n *admits an analytic odd mean labeling.*

Proof. Let $u_1, u_2, ..., u_n$ and $v_1, v_2, ..., v_n$ be two paths of length n. Join u_i and v_i for $1 \le i \le n$. Join u_i and v_{i+1} for $1 \le i \le n-1$. The graph obtained TL_n has 2n vertices and 4n-3 edges.

A function *f* from *V* to $\{0, 1, 3, 5, \dots, 8n - 7\}$ by $f(v_i) = 2i - 1$ and $f(u_i) = 6n + 2i - 7$ for $i = 1, 2, \dots, n$. The edge labeling f^* induced by the above function *f* i

The edge labeling f^* induced by the above function f is as follows:

For $i = 1, 2, ..., n, f^*(u_i v_i) = 6n(3n-7) + 2i(6n-7) + 25$. For i = 1, 2, ..., n-1, $f^*(u_i u_{i+1}) = 6n + 2i - 5$, $f^*(v_i v_{i+1}) = 2i + 1$ and $f^*(u_i v_{i+1}) = 3n(3n-7) + 3i(4n-6) + 23$.

We observe that the edge labels of u_iu_{i+1} and v_iv_{i+1} are increased by 2 and the edge labels of u_iv_i are increased by 12n - 14 as *i* increases from 1 to *n* and the edge labels of u_iv_{i+1} are increased by 12n - 18 as *i* increases from 1 to n - 1. Hence all the edge labels are odd and distinct. Therefore TL_n admits an analytic odd mean labeling.

Theorem 3.2. $TL_n \odot K_1$ admits an analytic odd mean labeling.

Proof. Let u_i and v_i , $1 \le i \le n$ be the vertices of TL_n . Let x_i and y_i , $1 \le i \le n$ be the vertices are attached with v_i and u_i respectively. The graph obtained TL_n has 4n vertices and 6n - 3 edges.

A function *f* from *V* to $\{0, 1, 3, 5, ..., 12n - 7\}$ is defined by $f(v_i) = 2i - 1$ for i = 1, 2, ..., n, $f(u_i) = 2n + 2i + 1$ for i = 1, 2, ..., n, $f(x_i) = 4n + 2i + 5$ for i = 1, 2, ..., nand $f(y_i) = 10n + 2i - 7$ for i = 1, 2, ..., n. The edge labeling f^* induced by the above function *f* is as follows: For i = 1, 2, ..., n, $f^*(u_i v_i) = 2n(n + 1) + 2i(2n + 1) + 1$, $f^*(v_i x_i) = 4n(2n + 5) + 2i(4n + 5) + 13$,

$$f^{*}(u_{i}y_{i}) = 2n(24n - 37) + 2i(8n - 9) + 23.$$

For $i = 1, 2, ..., n - 1$,
 $f^{*}(u_{i}u_{i+1}) = 2n + 2i + 3$,
 $f^{*}(v_{i}v_{i+1}) = 2i + 1$

and $f^*(u_i v_{i+1}) = 2n(n+1) + 2i(2n-1) - 1$.

We observe that the edge labels of u_iu_{i+1} and v_iv_{i+1} are increased by 2 and the edge labels of u_iv_i are increased by 4n + 2 as *i* increases from 1 to *n* and the edge labels of u_iv_{i+1} are increased by 4n - 2 as *i* increases from 1 to n - 1. Also the edge labels of x_iv_i are increased by 8n + 10 and the edge labels of u_iy_i are increased by 16n - 18 as *i* increases from 1 to *n*. Hence all the edge labels are odd and distinct. Therefore $TL_n \odot K_1$ admits an analytic odd mean labeling.

Theorem 3.3. $T_n \odot K_1$ admits an analytic odd mean labeling.

Proof. Let $u_1, u_2, ..., u_n$ be a path of length *n*. Let v_i be a new vertex joined with u_i and u_{i+1} . The graph obtained is T_n . Let x_i be the vertex joined with u_i , $1 \le i \le n$. Let y_i be the vertex joined with v_i , $1 \le i \le n-1$. The graph obtained $T_n \odot K_1$ has 4n-2 vertices and 5n-4 edges.

A function *f* from *V* to $\{0, 1, 3, 5, ..., 10n - 9\}$ is defined by $f(u_i) = 2n + 2i - 3$ for i = 1, 2, ..., n,

 $f(x_i) = 5n + 2i - 4$ if *n* is odd for i = 1, 2, ..., n,

 $f(x_i) = 5n + 2i - 5$ if *n* is even for i = 1, 2, ..., n,

 $f(v_i) = 2i - 1$ and $f(y_i) = 8n + 2i - 7$ for i = 1, 2, ..., n - 1. The edge labeling f^* induced by the above function f is as

follows:
For
$$i = 1, 2, ..., n$$
,
 $f^*(u_i x_i) = \frac{(7n+4i-6)(3n-2)+1}{2}$ if *n* is odd,
 $f^*(u_i x_i) = \frac{(7n+4i-7)(3n-3)+1}{2}$ if *n* is even.
For $i = 1, 2, ..., n-1$,
 $f^*(u_i v_i) = 2n(n-3) + 2i(2n-3) + 5$,
 $f^*(u_i u_{i+1}) = 2n + 2i - 1$,
 $f^*(v_i u_{i+1}) = 2n(n-1) + 2i(2n-1) + 1$

and $f^*(v_i y_i) = 8n(4n-7) + 2i(8n-7) + 25$.

Hence all the edge labels are odd and distinct. Therefore $T_n \odot K_1$ admits an analytic odd mean labeling.

Theorem 3.4. $Q_n \odot K_1$ admits an analytic odd mean labeling.

Proof. Let u_1, u_2, \ldots, u_n be a path of length *n*. Let v_i and w_i be two vertices joined with u_i and u_{i+1} and join v_i and w_i , $1 \le i \le n-1$. The graph obtained is Q_n . Let x_i be the vertex joined with u_i , $1 \le i \le n$. Let y_i be the vertex joined with v_i , $1 \le i \le n-1$. Let z_i be the vertex joined with w_i , $1 \le i \le n-1$. The graph obtained $Q_n \odot K_1$ has 4n + 2 vertices and 7n - 6 edges.

A function *f* from *V* to $\{0, 1, 3, 5, ..., 14n - 13\}$ is defined by $f(u_i) = 2i - 1$ for i = 1, 2, ..., n,

 $f(x_i) = 7n + 2i - 6 \text{ if } n \text{ is odd for } i = 1, 2, \dots, n,$ $f(x_i) = 7n + 2i - 7 \text{ if } n \text{ is even for } i = 1, 2, \dots, n,$ $f(v_i) = 2n + 2i - 1 \text{ for } i = 1, 2, \dots, n - 1,$ $f(w_i) = 4n + 2i - 3 \text{ for } i = 1, 2, \dots, n - 1,$ $f(y_i) = 10n + 2i - 9 \text{ for } i = 1, 2, \dots, n - 1$

and $f(z_i) = 12n + 2i - 11$ for $1 \le i \le n - 1$.

The edge labeling f^* induced by the above function f is as follows:

For
$$i = 1, 2, ..., n$$
,
 $f^*(u_i x_i) = \frac{(7n+4i-6)(7n-6)+1}{2}$ if *n* is odd,
 $f^*(u_i x_i) = \frac{(7n+4i-7)(7n-7)+1}{2}$ if *n* is even.
For $i = 1, 2, ..., n-1$,
 $f^*(u_i v_i) = 2n(n-1) + 2i(2n-1) + 1$,
 $f^*(u_i u_{i+1}) = 2i + 1$,
 $f^*(w_i u_{i+1}) = 4n(2n-3) + 2i(4n-5) + 3$,
 $f^*(y_i v_i) = \frac{(12n+4i-9)(8n-9)}{2} + \frac{1}{2}$,
 $f^*(w_i z_i) = \frac{(16n+4i-13)(8n-9)}{2} + \frac{1}{2}$
and $f^*(v_i w_i) = 6n(n-2) + 2i(2n-3) + 5$.
Hence all the edge labels are odd and distingt

Hence all the edge labels are odd and distinct. Therefore $Q_n \odot K_1$ admits an analytic odd mean labeling.

Theorem 3.5. $[A(T_n)]AK_1$ admits an analytic odd mean labeling.

Proof. Let u_1, u_2, \ldots, u_n be a path of length *n*. Let v_i be the vertex joined with u_i and u_{i+1} alternately. The graph obtained is $A(T_n)$. Let x_i and y_i be the vertex joined with u_i and v_i respectively. The graph obtained is $[A(T_n)]AK_1$. Let $G = [A(T_n)]AK_1$. Here we consider two cases.

Case (1): $A(T_n)$ starts from u_2 . Here we have two subcases. **Subcase (1)(i)**: If *n* is odd and n = 3 + 4i where i = 0, 1, 2, ..., the graph has 3n - 2 vertices and $\frac{7n-7}{2}$ edges.

An injective function $f: V(G) \rightarrow \{0, 1, 3, 5, \dots, 7n-8\}$ is defined by

$$f(v_i) = 2i - 1 \text{ for } i = 1, 2, \dots, \frac{n-1}{2},$$

$$f(u_{2i-1}) = n + 4i - 4 \text{ for } i = 1, 2, \dots, \frac{n+1}{2},$$

$$f(u_{2i}) = n + 4i - 2 \text{ for } i = 1, 2, \dots, \frac{n-1}{2},$$

$$f(x_{2i-1}) = \frac{7n + 8i - 7}{2} \text{ for } i = 1, 2, \dots, \frac{n-1}{2},$$

$$f(x_{2i}) = \frac{7n + 8i - 7}{2} \text{ for } i = 1, 2, \dots, \frac{n-1}{2}.$$

The edge labeling f^* induced by the above function f is as follows:
For $i = 1, 2, \dots, \frac{n-1}{2},$

$$f^*(u_{2i-1}u_{2i}) = n + 4i - 2,$$

$$f^*(u_{2i}u_{2i+1}) = n + 4i,$$

$$f^*(u_{2i+1}v_i) = \frac{(n+6i)(n+2i)+1}{2},$$

$$f^*(u_{2i}v_i) = \frac{(n+6i-2)(n+2i-2)+1}{8} + \frac{1}{2},$$

$$f^*(u_{2i+1}x_{2i}) = \frac{(9n+16i-13)(5n-9)}{8} + \frac{1}{2},$$

$$f^*(u_{2i+1}x_{2i}) = \frac{(9n+16i-5)(5n-9)}{8} + \frac{1}{2},$$

and $f^*(y_iv_i) = 6n(3n-7) + 2i(6n-7) + 25.$
Subcase (1)(ii): If n is odd and $n = 5 + 4i$ where $i = 0, 1, 2, \dots,$
the graph has $3n - 2$ vertices and $\frac{7n-7}{2}$ edges.
An injective function $f: V(G) \to \{0, 1, 3, 5, \dots, 7n-8\}$ is defined by

$$f(v_i), f(u_{2i-1}), f(u_{2i}) \text{ and } f(v_i) \text{ are as in Subcase (1)(i)}$$

 $f(v_i), f(u_{2i-1}), f(u_{2i})$ and $f(y_i)$ are as in Subcat $f(x_{2i-1}) = \frac{7n+8i-9}{2}$ for $i = 1, 2, \dots, \frac{n-1}{2}$ and $f(x_{2i}) = \frac{7n+8i-5}{2}$ for $i = 1, 2, \dots, \frac{n-1}{2}$.

The edge labeling f^* induced by the above function f is as follows:

 $f^*(u_{2i-1}u_{2i}), f^*(u_{2i}u_{2i+1}), f^*(u_{2i+1}v_i), f^*(u_{2i}v_i) \text{ and } f^*(y_iv_i)$

are as in Subcase (1)(i) For $i = 1, 2, ..., \frac{n-1}{2}$, $f^*(u_{2i}x_{2i-1}) = \frac{(9n+16i-11)(5n-7)}{8} + \frac{1}{2}$ and $f^*(u_{2i+1}x_{2i}) = \frac{(9n+16i-3)(5n-7)}{8} + \frac{1}{2}$. Clearly all the edge labels are odd and distinct. Therefore the graph G admits an analytic odd mean labeling. **Subcase (2)(i)**: If *n* is even and n = 4 + 4i where i = 0, 1, 2, ...,the graph has 3n - 4 vertices and $\frac{7n-12}{2}$ edges. An injective function $f: V(G) \rightarrow \{\overline{0}, 1, 3, 5, \dots, 7n-13\}$ is defined by $f(v_i) = 2i - 1$ for $i = 1, 2, \dots, \frac{n-2}{2}$, $f(u_{2i-1}) = n + 4i - 5$ for $i = 1, \overline{2}, \dots, \frac{n}{2}$, $f(u_{2i}) = n + 4i - 3$ for $i = 1, 2, \dots, \frac{n}{2}$, $f(x_{2i-1}) = \frac{7n+8i-14}{2} \text{ for } i = 1, 2, \dots, \frac{n-2}{2}$ $f(x_{2i}) = \frac{7n+8i-10}{2} \text{ for } i = 1, 2, \dots, \frac{n-2}{2}$ and $f(y_i) = 6n + 2i - 11$ for $i = 1, 2, ..., \frac{n-2}{2}$. The edge labeling f^* induced by the above function f is as follows: For $i = 1, 2, ..., \frac{n}{2}$, $f^*(u_{2i-1}u_{2i}) = n + 4i - 3,$ $f^*(u_{2i}u_{2i+1}) = n + 4i - 1,$ For $i = 1, 2, \dots, \frac{n-2}{2}$, $f^*(u_{2i+1}v_i) = \frac{(n+\tilde{6}i-1)(n+2i-1)+1}{2}$ $f^{*}(u_{2i}+1v_{i}) = \frac{2}{2},$ $f^{*}(u_{2i}v_{i}) = \frac{(n+6i-3)(n+2i-3)+1}{2},$ $f^{*}(u_{2i}x_{2i-1}) = \frac{(9n+16i-18)(5n-10)}{8} + \frac{1}{2}$ $f^*(u_{2i+1}x_{2i}) = \frac{(9n+16i-10)(5n-10)}{8} + \frac{1}{2}$ and $f^*(y_i v_i) = 6n(3n-11) + 2i(6n-11) + 61$. Subcase (2)(ii): If n is even and n = 6+4i where $i = 0, 1, 2, \dots$, the graph has 3n-4 vertices and $\frac{7n-12}{2}$ edges. An injective function $f: V(G) \rightarrow \{\overline{0}, 1, 3, \overline{5}, \dots, 7n-13\}$ is defined by $f(v_i), f(u_{2i-1}), f(u_{2i})$ and $f(y_i)$ are as in Subcase (2)(i) $f(x_{2i-1}) = \frac{7n+8i-12}{2}$ for $i = 1, 2, \dots, \frac{n-2}{2}$ and $f(x_{2i}) = \frac{7n+8i-8}{2}$ for $i = 1, 2, \dots, \frac{n-2}{2}$. The edge labeling f^* induced by the above function f is as follows: $f^*(u_{2i-1}u_{2i}), f^*(u_{2i}u_{2i+1}), f^*(u_{2i+1}v_i), f^*(u_{2i}v_i)$ and $f^*(v_iv_i)$ are as in Subcase (2)(i) For $i = 1, 2, ..., \frac{n-2}{2}$, $f^*(u_{2i}x_{2i-1}) = \frac{(9n+16i-18)(5n-6)}{8} + \frac{1}{2}$ and $f^*(u_{2i+1}x_{2i}) = \frac{(9n+16i-8)(5n-8)}{8} + \frac{1}{2}$. Clearly all the edge labels are odd and distinct. Therefore the graph G admits an analytic odd mean labeling. **Case** (2): $A(T_n)$ starts from u_1 . Here also we have two sub-

Case (2). $A(I_n)$ starts from u_1 . Here also we have two subcases. Subases (1)(i): If *n* is odd and n = 2 + 4i where i = 0, 1, 2.

Subcase (1)(i): If *n* is odd and n = 3 + 4i where i = 0, 1, 2, ..., the graph has 3n - 2 vertices and $\frac{7n-7}{2}$ edges.

An injective function $f: V(G) \rightarrow \{0, 1, 3, 5, \dots, 7n-8\}$ is defined by

 $f(v_i), f(u_{2i-1}), f(u_{2i}), f(x_{2i-1}), f(x_{2i})$ and $f(y_i)$ are as in Subcase (1)(i) in Case (1).

The edge labeling f^* induced by the above function f is as follows:

 $f^*(u_{2i-1}u_{2i}), f^*(u_{2i}u_{2i+1}), f^*(u_{2i}v_i)$ and $f^*(y_iv_i)$ are as in Subcase (1)(i) in Case (1). For $i = 1, 2, ..., \frac{n-1}{2}$,

$$f^*(u_{2i-1}x_{2i-1}) = \frac{(9n+16i-17)(5n-5)}{8} + \frac{1}{2},$$

$$f^*(u_{2i}x_{2i}) = \frac{(9n+16i-9)(5n-5)}{8} + \frac{1}{2}$$

and
$$f^*(u_{2i-1}v_i) = \frac{(n+6i-4)(n+2i-4)+1}{2}.$$

Subcase (1)(ii): If *n* is odd and n = 5+4i where i = 0, 1, 2, ..., the graph has 3n - 2 vertices and $\frac{7n-7}{2}$ edges.

An injective function $f: V(G) \rightarrow \{0, 1, 3, 5, \dots, 7n-8\}$ is defined by

 $f(v_i), f(u_{2i-1}), f(u_{2i}), f(x_{2i-1}), f(x_{2i})$ and $f(y_i)$ are as in Subcase (1)(i) in Case (1).

The edge labelings f^* induced by the above function f is as follows:

 $f^*(u_{2i-1}u_{2i}), f^*(u_{2i}u_{2i+1}), f^*(u_{2i}v_i)$ and $f^*(y_iv_i)$ are as in Subcase (1)(i) in Case (1).

For
$$i = 1, 2, ..., \frac{n-2}{2}$$
,
 $f^*(u_{2i-1}x_{2i-1}) = \frac{(9n+16i-15)(5n-3)}{8} + \frac{1}{2}$,
 $f^*(u_{2i}x_{2i}) = \frac{(9n+16i-7)(5n-3)}{8} + \frac{1}{2}$
and $f^*(u_{2i-1}v_i) = \frac{(n+6i-4)(n+2i-4)+1}{2}$.

Clearly all the edge labels are odd and distinct. Therefore the graph *G* admits an analytic odd mean labeling.

The examples of an analytic odd mean labeling of $[A(T_7)]AK_1$ and $[A(T_9)]AK_1$ are given in Figure 9. Subcase (2)(i): If n is even and n = 4 + 4i where $i = 0, 1, 2, \dots$, the graph has 3n vertices and $\frac{7n-2}{2}$ edges. An injective function $f: V(G) \rightarrow \{0, 1, 3, 5, \dots, 7n-3\}$ by $f(v_i) = 2i - 1$ for $i = 1, 2, \dots, \frac{n}{2}$, $f(u_{2i-1}) = n + 4i - 3$ for $i = 1, 2, \dots, \frac{n}{2}$, $f(u_{2i}) = n + 4i - 1$ for $i = 1, 2, \dots, \frac{n}{2}$, $f(x_{2i}) = \frac{7n+8i-6}{2} \text{ for } i = 1, 2, \dots, \frac{n}{2},$ $f(x_{2i}) = \frac{7n+8i-2}{2} \text{ for } i = 1, 2, \dots, \frac{n}{2},$ and $f(y_i) = 6n+2i-3 \text{ for } i = 1, 2, \dots, \frac{n}{2}.$ The edge labeling f^* induced by the above function f is as follows: For $i = 1, 2, ..., \frac{n}{2}$, $f^*(u_{2i-1}u_{2i}) = n + 4i - 1,$ $f^*(u_{2i}u_{2i+1}) = n + 4i + 1,$ $f^*(u_{2i-1}v_i) = \frac{(n+6i-3)(n+2i-3)+1}{2}$ $f^*(u_{2i}v_i) = \frac{(n+6i-1)(n+2i-1)+1}{2}$ $f^*(u_{2i}x_{2i}) = \frac{(9n+16i-2)(5n-2)}{2} + \frac{1}{2}$ $f^{*}(u_{2i-1}x_{2i-1}) = \frac{\binom{9n+16i-10}{(5n-2)} + \frac{2}{2}}{8}$ and $f^{*}(y_{i}v_{i}) = 18n(n-1) + 6i(2n-1) + 5.$ **Subcase (2)(ii)**: If *n* is even and n = 6 + 4i where i = 0, 1, 2, ...,the graph has 3n vertices and $\frac{7n-2}{2}$ edges. An injective function $f: V(G) \rightarrow \{0, 1, 3, 5, \dots, 7n-3\}$ by $f(v_i), f(u_{2i-1}), f(u_{2i})$ and $f(y_i)$ are as in Subcase (2)(i) in Case (2). $f(x_{2i-1}) = \frac{7n+8i-8}{2} \text{ for } i = 1, 2, \dots, \frac{n}{2}$ and $f(x_{2i}) = \frac{7n+8i-4}{2} \text{ for } i = 1, 2, \dots, \frac{n}{2}.$ The edge labeling f^* induced by the above function f is as

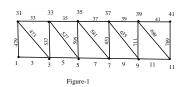
follows:

 $f^{*}(u_{2i-1}u_{2i}), f^{*}(u_{2i}u_{2i+1}), f^{*}(u_{2i+1}v_{i}), f^{*}(u_{2i}v_{i}) \text{ and } f^{*}(y_{i}v_{i})$ are as in Subcase (2)(i) in Case (2). For $i = 1, 2, ..., \frac{n}{2}$, $f^{*}(u_{2i-1}x_{2i-1}) = \frac{(9n+16i-12)(5n-4)}{8} + \frac{1}{2}$ and $f^{*}(u_{2i}x_{2i}) = \frac{(9n+16i-4)(5n-4)}{8} + \frac{1}{2}$.

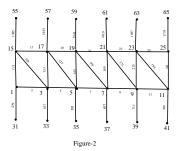
Clearly all edge labels are odd and distinct. Therefore the graph G admits an analytic odd mean labeling.

4. Example

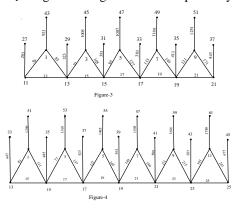
An example of an analytic odd mean labeling of TL_6 is given in Figure 1.



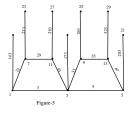
An example of an analytic odd mean labeling of $TL_6 \odot K_1$ is given in Figure 2.

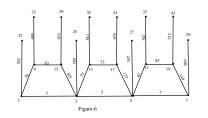


The examples of an analytic odd mean labeling of $T_6 \odot K_1$ and $T_7 \odot K_1$ are given in Figure 3 and 4 respectively.

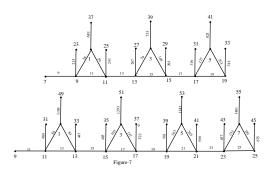


The examples of an analytic odd mean labeling of $Q_3 \odot K_1$ and $Q_4 \odot K_1$ are given in Figure 5 and 6 respectively.

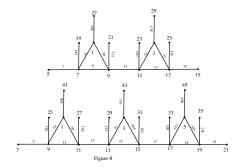




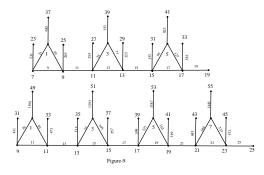
The examples of an analytic odd mean labeling of $[A(T_7)]AK_1$ and $[A(T_9)]AK_1$ are given in Figure 7.



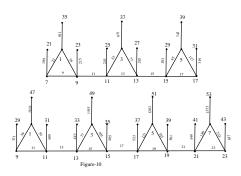
The examples of an analytic odd mean labeling of $[A(T_6)]AK_1$ and $[A(T_8)]AK_1$ are given in Figure 8.



The examples of an analytic odd mean labeling of $[A(T_7)]AK_1$ and $[A(T_9)]AK_1$ are given in Figure 9.



The examples of an analytic odd mean labeling of $[A(T_6)]AK_1$ and $[A(T_8)]AK_1$ are given in Figure 10.



5. Conclusion

In this paper, we proved that the chain of graphs such as triangular ladder TL_n , the corona product of triangular ladder with K_1 . triangular snake with K_1 , quadrilateral snake with K_1 and alternate triangular snake with K_1 are analytic odd mean graphs.

References

- J.A. Gallian, A Dynamic Survey of Graph Labeling, *The Electronic Journal of Combinatorics*, (2019), # DS6.
- [2] F. Harary, *Graph Theory*, Addison-Wesley, Reading, Massachusetts, 1972.
- [3] P. Jeyanthi, R. Gomathi and Gee-Choon Lau, Analytic odd mean labeling of some standard graphs, *Proceedings of International Conference on Algebra and Discrete Mathematics (ICADM-2018)*, Madurai, India, 62– 68.
- [4] P. Jeyanthi, R. Gomathi and Gee-Choon Lau, Analytic odd mean labeling of square and *H*-graphs, *International Journal of Mathematical Combinatorics*, (2018), 61–67.
- ^[5] P. Jeyanthi, R. Gomathi and Gee-Choon Lau, Some results on analytic odd mean labeling of graph, *Bulletin of The International Mathematical Virtual Institute*, 9(2019), 487–500.
- [6] P. Jeyanthi, R. Gomathi and Gee-Choon Lau, Analytic odd mean labeling of some graphs, *Palestine Journal of Mathematics*, 8(2)(2019), 392–399.
- [7] P. Jeyanthi, R. Gomathi and Gee-Choon Lau, Analytic odd mean labeling of super subdivision and H-super subdivision of graphs, *International Journal of Emerging Technologies and Innovative Research*, 6(6)(2019), 541– 551.
- [8] T. Tharmaraj and P.B. Sarasija, Analytic mean labelled graphs, *International Journal of Mathematical Archive*, 5(6)(2014), 136–146.

