Analytic odd mean labeling of Corona graphs

P. Jeyanthi and R. Gomathi

Abstract
The concept of an analytic odd mean labeling was introduced in [3] and further studied in [4-7]. In this work, we show that the graphs TL_n, TL_n \odot K_1, T_n \odot K_1, Q_n \odot K_1 and $[A(T_n)]$ \odot K_1 admit an analytic odd mean labeling.

Keywords
Analytic odd mean labeling, analytic odd mean graph.

AMS Subject Classification
05C78.

1. Introduction
The graph represented here are only finite, simple and undirected graph $G = (V, E)$ with p vertices and q edges. For mathematical notations we refer Harary [2]. Over the last six decades, the graph labeling concept gained more popularity in the field of graph theory. During this period, several methods of graph labeling are introduced and studied which are available as a ready reference in [1]. One such labeling is called an analytic mean labeling [8]. A graph G is an analytic mean graph if it admits a bijection $f : V \rightarrow \{0, 1, 2, \ldots, p - 1\}$ such that the induced edge labeling $f^* : E \rightarrow Z$ given by $f^*(uv) = \left\lfloor \frac{(f(u))^2 - (f(v))^2}{2} \right\rfloor$ with $f(u) > f(v)$ is injective. Motivated by the concept of analytic mean labeling, we extended this concept and introduced a new labeling called analytic odd mean labeling [3]. A graph G is an analytic odd mean if there exist an injective function $f : V \rightarrow \{0, 1, 3, 5, \ldots, 2q - 1\}$ with an induce edge labeling $f^* : E \rightarrow Z$ such that for each edge uv with $f(u) < f(v)$, $f^*(uv) = \left\lfloor \frac{(f(u))^2 - (f(v))^2}{2} \right\rfloor$ if $f(u) \neq 0$ is injective. We say that f is an analytic odd mean labeling of G. In [4-7], we proved that cycle C_n, path P_n, n-bistar, comb P_n \odot K_1, graph L_n \odot K_1, wheel graph W_n, flower graph Fl_n, fan F_n, double fan $D(F_n)$, double wheel $D(W_n)$, closed helm CH_n, total graph of cycle $T(C_n)$, total graph of path $T(P_n)$, armed crown C_n \odot P_m, generalized Peterson graph $GP(n, 2)$, the square graph of P_n, C_n, B_n, H-graph and H \odot mK_1, subdivision and super subdivision of cycle C_n, star $K_1, 1, n$), comb P_n \odot K_1, path on the comb and H-super subdivision of path and cycle are analytic odd mean graphs.

2. Preliminaries
In this section, we recall some definitions which will be used throughout the paper.

Definition 2.1. TL_n graph is obtained from L_n by adding the edges u_i, u_{i+1} $1 \leq i \leq n - 1$, where u_i and $v_i, 1 \leq i \leq n$ are the vertices of L_n such that u_1, u_2, \ldots, u_n and v_1, v_2, \ldots, v_n are two paths of length n in the graph L_n.

Definition 2.2. T_n graph is obtained from a path with vertices v_1, v_2, \ldots, v_n by joining v_i and v_{i+1} to a new vertex u_i for $i = 1, 2, 3, \ldots, n - 1$.

Definition 2.3. Q_n graph is obtained from a path u_1, u_2, \ldots, u_n by joining u_i and w_i to the new vertices u_i and w_i, $1 \leq i \leq n - 1$ respectively and then join v_1 and w_1.

Definition 2.4. $A(T_n)$ graph is obtained from a path...
3. Main Results

In this section, we prove that the graphs $T L_n$, $T L_n \odot K_1$, $T_n \odot K_1$, $Q_n \odot K_1$ and $[A(T_n)]A K_1$ admit analytic odd mean labeling.

Theorem 3.1. Triangular ladder $T L_n$ admits an analytic odd mean labeling.

Proof. Let u_1, u_2, \ldots, u_n and v_1, v_2, \ldots, v_n be two paths of length n. Join u_i and v_i for $1 \leq i \leq n$. Join u_i and v_i+1 for $1 \leq i < n$. The graph obtained $T L_n$ has $2n$ vertices and $4n-3$ edges.

A function f from V to $\{0, 1, 3, \ldots, 8n-7\}$ by $f(v_i) = 2i-1$ and $f(u_i) = 6n + 2i - 7$ for $i = 1, 2, \ldots, n$. The edge labeling f^* induced by the above function f is as follows:

For $i = 1, 2, \ldots, n$, $f^*(u_iv_i) = 6n(3n - 7) + 2i(6n - 7) + 25$. For $i = 1, 2, \ldots, n-1$, $f^*(u_iu_{i+1}) = 6n + 2i - 5$, $f^*(v_iv_{i+1}) = 2i + 1$ and $f^*(u_iv_{i+1}) = 3n(3n - 7) + 3i(4n - 6) + 23$. We observe that the edge labels of u_iu_{i+1} and v_iv_{i+1} are increased by 2 and the edge labels of u_iv_i are increased by $12n - 14$ as i increases from 1 to n and the edge labels of $u_{i+1}v_i$ are increased by $12n - 18$ as i increases from 1 to $n-1$. Hence all the edge labels are odd and distinct. Therefore $T L_n$ admits an analytic odd mean labeling.

Theorem 3.2. $T L_n \odot K_1$ admits an analytic odd mean labeling.

Proof. Let u_i and v_i, $1 \leq i \leq n$ be the vertices of $T L_n$. Let x_i and y_i, $1 \leq i \leq n$ be the vertices attached with v_i and u_i respectively. The graph obtained $T L_n$ has $4n$ vertices and $6n - 3$ edges.

A function f from V to $\{0, 1, 3, \ldots, 12n - 7\}$ is defined by $f(v_i) = 2i - 1$ for $i = 1, 2, \ldots, n$, $f(u_i) = 2n + 2i + 1$ for $i = 1, 2, \ldots, n$, $f(x_i) = 4n + 2i + 5$ for $i = 1, 2, \ldots, n$ and $f(y_i) = 10n + 2i - 7$ for $i = 1, 2, \ldots, n$. The edge labeling f^* induced by the above function f is as follows:

For $i = 1, 2, \ldots, n$, $f^*(u_iv_i) = 2n(n + 1) + 2i(2n + 1) + 1$, $f^*(v_ix_i) = 4n(2n + 5) + 2i(4n + 5) + 13$, $f^*(u_yi) = 2n(24n - 37) + 2i(8n - 9) + 23$. For $i = 1, 2, \ldots, n - 1$, $f^*(u_iv_{i+1}) = 2n + 2i + 3$, $f^*(v_ix_{i+1}) = 2i + 1$ and $f^*(u_yi_{i+1}) = 2n(n + 1) + 2i(2n - 1) - 1$. We observe that the edge labels of u_iv_{i+1} and v_ix_{i+1} are increased by 2 and the edge labels of v_yi_{i+1} are increased by $4n + 2$ as i increases from 1 to n and the edge labels of u_yi_{i+1} are increased by $4n - 2$ as i increases from 1 to $n - 1$. Also the edge labels of x_yi are increased by $8n + 10$ and the edge labels of u_yi are increased by $16n - 18$ as i increases from 1 to n. Hence all the edge labels are odd and distinct. Therefore $T L_n \odot K_1$ admits an analytic odd mean labeling.

Theorem 3.3. $T_n \odot K_1$ admits an analytic odd mean labeling.

Proof. Let u_1, u_2, \ldots, u_n be a path of length n. Let v_i be a new vertex joined with u_i and u_{i+1}. The graph obtained is T_n. Let x_i be the vertex joined with u_i, $1 \leq i \leq n$. Let y_i be the vertex joined with v_i, $1 \leq i \leq n - 1$. The graph obtained $T_n \odot K_1$ has $4n - 2$ vertices and $5n - 4$ edges.

A function f from V to $\{0, 1, 3, \ldots, 10n - 9\}$ is defined by $f(u_i) = 2n + 2i - 3$ for $i = 1, 2, \ldots, n$, $f(x_i) = 5n + 2i - 4$ if n is odd for $i = 1, 2, \ldots, n$, $f(x_i) = 5n + 2i - 5$ if n is even for $i = 1, 2, \ldots, n$, $f(v_i) = 2i - 1$ and $f(y_i) = 8n + 2i - 7$ for $i = 1, 2, \ldots, n - 1$. The edge labeling f^* induced by the above function f is as follows:

For $i = 1, 2, \ldots, n$, $f^*(u_iv_i) = \frac{(2n+4i-6)(3n-2)+1}{2}$ if n is odd, $f^*(u_iv_i) = \frac{(7n+4i-7)(3n-3)+1}{2}$ if n is even. For $i = 1, 2, \ldots, n - 1$, $f^*(u_iu_{i+1}) = 2n + 2i + 1$, $f^*(v_iv_{i+1}) = 2n(n - 1) + 2i(2n - 1) + 1$ and $f^*(v_yi) = 8n(4n - 7) + 2i(8n - 7) + 25$. Hence all the edge labels are odd and distinct. Therefore $T_n \odot K_1$ admits an analytic odd mean labeling.

Theorem 3.4. $Q_n \odot K_1$ admits an analytic odd mean labeling.

Proof. Let u_1, u_2, \ldots, u_n be a path of length n. Let v_i and w_i be two vertices joined with u_i and u_{i+1} and join v_i and w_i, $1 \leq i \leq n - 1$. The graph obtained is Q_n. Let x_i be the vertex joined with u_i, $1 \leq i \leq n$. Let y_i be the vertex joined with v_i, $1 \leq i < n - 1$. Let z_i be the vertex joined with w_i, $1 \leq i \leq n - 1$. The graph obtained $Q_n \odot K_1$ has $4n + 2$ vertices and $7n - 6$ edges.

A function f from V to $\{0, 1, 3, \ldots, 14n - 13\}$ is defined by $f(u_i) = 2i - 1$ for $i = 1, 2, \ldots, n$, $f(x_i) = 7n + 2i - 6$ if n is odd for $i = 1, 2, \ldots, n$, $f(x_i) = 7n + 2i - 7$ if n is even for $i = 1, 2, \ldots, n$, $f(v_i) = 2n + 2i - 1$ for $i = 1, 2, \ldots, n - 1$, $f(w_i) = 4n + 2i - 3$ for $i = 1, 2, \ldots, n - 1$, $f(y_i) = 10n + 2i - 9$ for $i = 1, 2, \ldots, n - 1$ and $f(z_i) = 12n + 2i - 11$ for $1 \leq i \leq n - 1$. The graph obtained $Q_n \odot K_1$ admits an analytic odd mean labeling.
The edge labeling f^* induced by the above function f is as follows:

For $i = 1, 2, \ldots, n$,
$$f^*(u_iv_i) = \frac{(7n+4i-6)(7n-6)+1}{2}$$
if n is odd,
$$f^*(u_iw_i) = \frac{(7n+4i-7)(7n-7)+2}{2}$$
if n is even.

For $i = 1, 2, \ldots, n-1$,
$$f^*(u_iv_i) = 2n(n-1) + 2i(2n - 1) + 1,$$
$$f^*(w_1u_{i+1}) = 2i + 1,$$
$$f^*(w_iu_{i+1}) = 4n(2n - 3) + 2i(4n - 5) + 3,$$
$$f^*(y_iv_i) = \frac{(12n+4i-9)(8n-9)}{2} + \frac{1}{2},$$
$$f^*(w_iy_{i+1}) = \frac{(16n+4i-13)(8n-9)}{2} + \frac{1}{2}$$
and
$$f^*(v_1w_i) = 6n(n-2) + 2i(2n - 3) + 5.$$

Hence all the edge labels are odd and distinct. Therefore $Q_n \circ K_1$ admits an analytic odd mean labeling.

Theorem 3.5. $[A(T_n)]AK_1$ admits an analytic odd mean labeling.

Proof. Let u_1, u_2, \ldots, u_n be a path of length n. Let v_1 be the vertex joined with u_1 and u_2 alternately. The graph obtained is $A(T_n)$. Let x_i and y_i be the vertex joined with u_i and v_i respectively. The graph obtained is $[A(T_n)]AK_1$. Let $G = [A(T_n)]AK_1$. Here we consider two cases.

Case (1): $A(T_n)$ starts from u_1. Here we have two subcases.

Subcase (1)(i): If n is odd and $n = 3+4i$ where $i = 0, 1, 2, \ldots$, the graph has $3n - 2$ vertices and $7n-7$ edges. An injective function $f: V(G) \rightarrow \{0, 1, 3, 5, \ldots, 7n-8\}$ is defined by

$$f(v_i) = 2i - 1$$
for $i = 1, 2, \ldots, \frac{n-1}{2}$,
$$f(u_2v_i) = n + 4i - 4$$
for $i = 1, 2, \ldots, \frac{n+1}{2}$,
$$f(u_1v_i) = n + 4i - 2$$
for $i = 1, 2, \ldots, \frac{n-1}{2}$,
$$f(x_2v_i) = \frac{7n+8i-11}{2}$$
for $i = 1, 2, \ldots, \frac{n-1}{2}$,
and
$$f(y_i) = 6n + 2i - 7$$
for $i = 1, 2, \ldots, \frac{n-1}{2}$.

The edge labeling f^* induced by the above function f is as follows:

For $i = 1, 2, \ldots, \frac{n-1}{2}$,
$$f^*(u_1v_i) = \frac{(n+6i)(n+2i)+1}{2},$$
$$f^*(u_2v_i) = \frac{(n+6i-2)(n+2i-2)+1}{2},$$
$$f^*(u_1x_2) = \frac{7n+8i-13}{2}(5n-9) + \frac{1}{2},$$
$$f^*(u_2x_2) = \frac{7n+8i-13}{2}(5n-9) + \frac{1}{2},$$
and
$$f^*(y_iv_i) = 6n(3n-7) + 2i(6n - 7) + 25.$$

Subcase (1)(ii): If n is odd and $n = 5+4i$ where $i = 0, 1, 2, \ldots$, the graph has $3n - 2$ vertices and $7n-7$ edges. An injective function $f: V(G) \rightarrow \{0, 1, 3, 5, \ldots, 7n-8\}$ is defined by

$$f(v_i) = 2i - 1$$
for $i = 1, 2, \ldots, \frac{n-1}{2}$,
$$f(u_1v_i) = n + 4i - 2$$
for $i = 1, 2, \ldots, \frac{n-1}{2}$,
$$f(u_2v_i) = n + 4i - 2$$
for $i = 1, 2, \ldots, \frac{n-1}{2}$,
$$f(x_2v_i) = \frac{7n+8i-11}{2}$$
for $i = 1, 2, \ldots, \frac{n-1}{2}$,
and
$$f(y_i) = 6n(3n-7) + 2i(6n - 7) + 25.$$

The edge labeling f^* induced by the above function f is as follows:

For $i = 1, 2, \ldots, \frac{n-1}{2}$,
$$f^*(u_1v_i) = \frac{(n+6i)(n+2i)+1}{2},$$
$$f^*(u_2v_i) = \frac{(n+6i-2)(n+2i-2)+1}{2},$$
$$f^*(u_1x_2) = \frac{7n+8i-13}{2}(5n-9) + \frac{1}{2},$$
$$f^*(u_2x_2) = \frac{7n+8i-13}{2}(5n-9) + \frac{1}{2},$$
and
$$f^*(y_iv_i) = 6n(3n-7) + 2i(6n - 7) + 25.$$

Subcase (2): $A(T_n)$ starts from u_1. Here also we have two subcases.

Subcase (1)(i): If n is odd and $n = 3+4i$ where $i = 0, 1, 2, \ldots$, the graph has $3n - 2$ vertices and $7n-7$ edges. An injective function $f: V(G) \rightarrow \{0, 1, 3, 5, \ldots, 7n-8\}$ is defined by

$$f(v_i) = 2i - 1$$
for $i = 1, 2, \ldots, \frac{n-1}{2}$,
$$f(u_2v_i) = n + 4i - 4$$
for $i = 1, 2, \ldots, \frac{n+1}{2}$,
$$f(u_1v_i) = n + 4i - 2$$
for $i = 1, 2, \ldots, \frac{n-1}{2}$,
$$f(x_2v_i) = \frac{7n+8i-13}{2}$$
for $i = 1, 2, \ldots, \frac{n-1}{2}$,
and
$$f(y_i) = 6n + 2i - 11$$
for $i = 1, 2, \ldots, \frac{n-1}{2}$.

The edge labeling f^* induced by the above function f is as follows:

For $i = 1, 2, \ldots, \frac{n-1}{2}$,
$$f^*(u_1v_i) = \frac{(n+6i)(n+2i)+1}{2},$$
$$f^*(u_2v_i) = \frac{(n+6i-2)(n+2i-2)+1}{2},$$
$$f^*(u_1x_2) = \frac{7n+8i-13}{2}(5n-9) + \frac{1}{2},$$
$$f^*(u_2x_2) = \frac{7n+8i-13}{2}(5n-9) + \frac{1}{2},$$
and
$$f^*(y_iv_i) = 6n(3n-7) + 2i(6n - 7) + 25.$$
An injective function $f: V(G) \rightarrow \{0, 1, 3, 5, \ldots, 7n-8\}$ is defined by $f(v_1), f(u_2), f(x_2-1), f(x_2)$ and $f(y_i)$ are as in Subcase (1)(i) in Case (1).

The edge labelings f^* induced by the above function f is as follows:

For $i = 1, 2, \ldots, \frac{n-1}{2}$,

$f^*(u_2i-1u_2i) = \left(\frac{9n+16i-15}{5n-3}\right)$.

Clearly all edge labels are odd and distinct. Therefore the graph G admits an analytic odd mean labeling.

The examples of an analytic odd mean labeling of $|A(T_f)|AK_1$ and $|A(T_f)|AK_1$ are given in Figure 9.

Subcase (2)(i): If n is even and $n = 6 + 4i$ where $i = 0, 1, 2, \ldots$, the graph has $3n - 2$ vertices and $\frac{3n^2}{2}$ edges.

For $i = 1, 2, \ldots, \frac{n-1}{2}$,

$f^*(u_2i-1u_2i) = \left(\frac{9n+16i-15}{5n-3}\right)$.

Clearly all edge labels are odd and distinct. Therefore the graph G admits an analytic odd mean labeling.

The examples of an analytic odd mean labeling of $T_6 \odot K_1$ and $T_7 \odot K_1$ are given in Figure 3 and 4 respectively.

4. Example

An example of an analytic odd mean labeling of TL_6 is given in Figure 1.

The examples of an analytic odd mean labeling of $Q_3 \odot K_1$ and $Q_4 \odot K_1$ are given in Figure 5 and 6 respectively.
The examples of an analytic odd mean labeling of $[A(T_7)]AK_1$ and $[A(T_8)]AK_1$ are given in Figure 7.

The examples of an analytic odd mean labeling of $[A(T_6)]AK_1$ and $[A(T_8)]AK_1$ are given in Figure 8.

The examples of an analytic odd mean labeling of $[A(T_7)]AK_1$ and $[A(T_5)]AK_1$ are given in Figure 9.

The examples of an analytic odd mean labeling of $[A(T_6)]AK_1$ and $[A(T_7)]AK_1$ are given in Figure 10.

5. Conclusion

In this paper, we proved that the chain of graphs such as triangular ladder TL_n, the corona product of triangular ladder with K_1, triangular snake with K_1, quadrilateral snake with K_1 and alternate triangular snake with K_1 are analytic odd mean graphs.

References

