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Effects of variable internal heat source and variable
gravity field on convection in a porous layer
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Abstract
The present article is to examine the qualitative impact of variable internal heat source and gravity variance field
on the onset of convection in a horizontal fluid saturated porous medium is investigated using linear stability
analysis. To measure the value of the critical Rayleigh number and the corresponding wave number, the single
term Galerkin technique is used. Eight separate sets of gravity variance and heat source functions are chosen,
and their effect is addressed on the onset of convection. It is observed that the variable heat source and variable
gravity at the start of convection do not affect the shape and size of the convective cell. It seen that the system is
to be more unstable for the caseses (ii), (iii), (vi) and (vii) while more stable for the caseses (i), (iv), (v) and (viii).

Keywords
Variable internal heat source, Variable gravity, Heat transfer, Stability.

AMS Subject Classification
35Q30.

1Department of Mathematics, Dr. Ambedkar Institute of Technology, Bangalore-560056, India.
2Department of Mathematics, Sir M. Visvesvaraya Institute of Technology, Bangalore-562157, India.
3Department of Mathematics, New Horizon College of Engineering, Bangalore-560103, India.
*Corresponding author: 1 gangu.honnappa@gmail.com
Article History: Received 02 March 2020; Accepted 19 May 2020 ©2020 MJM.

Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 915

2 Conceptual Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 916

3 Mathematical Formulation . . . . . . . . . . . . . . . . . . . . . . . . 916

4 Technique of Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 917

5 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 917

6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 918

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 918

1. Introduction
Natural convection (convection powered by bouyancy in

which gravitational force plays an important role) in fluid-
saturated porous medium has attracted the interest of engi-
neers and scientists for a long time due to its numerous ap-
plications in fields such as geothermal energy extraction, oil
reservoir modeling, reactor vessel insulation, nuclear waste
disposals and building thermal insulation to mention a few.
Several authors have thoroughly studied the convective insta-
bility of horizontal porous layer that is subjected to a desta-
bilizing temperature gradient. The works of Bejan[1] and

Combarnous[2] have also compiled most of the findings rele-
vant to this problem.
There are several studies that have appeared in the literature
on how the onset of Rayleigh-Bénard convection is influenced
by a periodical boundary temperature. Davis[3] has reviewed
several of the results related to those issues. At the other hand,
limited attention has been paid to the studies relating to the
influence of thermal modulation on the onset of convection in
a fluid saturated porous medium. Rudraiah and Malashetty[4]
have studied the influence of time dependent wall temperature
on the onset of convection in a porous medium. The study
of the effect of complex body forces on convection in a fluid-
and fluid-saturated porous layer has been of great interest
[5–8] The effect of internal heating on convection studied by
Joseph and Shir[9] and Joseph[10] exploited nonlinear energy
methods to find the critical Rayleigh number for an internal
heat source for a fluid saturated porous sheet.
Rionero and Straughan[11] and Straughan[12] exploited the
energy method to research the influence of variable gravity
and variable internal heat source at the onset of convection
in a fluid-saturated porous sheet. Gangadharaiah et al. [13]
and Suma et al. [14] used perturbation methods to investi-
gate the combined effect of the transit and variable gravity
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field on the system stability. Also, they considered only one
case relating to the linear height variation of gravity. Nev-
ertheless, in sedimentary basins, orogenic and epeirogenic
movements of the crustal structures and Earth’s crust, nonlin-
ear variation of gravity field with depth can occur(Cordell[15],
Shneiderov[16] and Shi and Zhang[17]). Rao et al. [18] com-
pared the exponential, binomial and parabolic functions and
found that the parabolic model fits more closely with most
crustal structures. In this paper, therefore, we analyze variable
internal heat source and gravity field on system using linear
and nonlinear variations for the eight cases:

(i) H(z) =−z, N(z) = z

(ii) H(z) =−z2, N(z) = z

(iii) H(z) =−z3, N(z) = z

(iv) H(z) =−(ez−1), N(z) = z

(v) H(z) =−z, N(z) = z5

(vi) H(z) =−z2, N(z) = z5

(vii) H(z) =−z3, N(z) = z5

(viii) H(z) =−(ez−1), N(z) = z5

The simulations were performed and evaluated for the param-
eter of the internal heat source strength and the parameter of
the gravity variance are discussed in detail.

2. Conceptual Model
Figure 1 illustrates the physical configuration of the present

study. The physical model under consideration is a horizon-
tal isotropic porous bed bounded between planes at z = 0
and z = L with changeable gravity g(z). We assume that the
gravity vector~g is

~g =−g0(1+λH(z))~k

where λ , the variable gravity coefficient, is assumed to be a
constant.

Figure 1. Physical configuration

3. Mathematical Formulation
The porous layer governing equations are

∇ ·~V = 0 (3.1)

0 =−∇p− µ

K
~V +ρ0[1−β (T −T0)]~g(z) (3.2)

A
∂T
∂ t

+(~V ·∇)T = κ∇
2T +Q(z) (3.3)

In these equations, ~V denotes the velocity vector, p is the
pressure, κ is the thermal diffusivity, A is the ratio of heat
capacities, ρ0 is the reference fluid density and T is the tem-
perature. The basic steady state solution is of the form

(u,v,w, p,T ) = (0,0,0, pb(z),Tb(z))

Then equation (3.3) can be written for basic temperature Tb
as:

d2Tb

dz2 −
1
κ

Q(z) = 0

Integrating the above equation twice, we get

Tb(z) =
−1
κ

∫ z

0

∫
ξ

0
Q(λ )dλdξ

Applying the boundary conditions

Tb = TL at z = 0 & Tb = Tu at z = d,

we obtain

Tb(z) =
−1
κ

∫ z

0

∫
ξ

0
Q(λ )dλdξ −Cz+Tl ,

where the constant C is given by

C =
1
d
(Tl−Tu)−

1
κd

∫ d

0

∫
ξ

0
Q(λ )dλdξ .

Basic state is slightly perturbed using the relation given by

~V =~V ′, p = pb(z)+ p′, T = Tb(z)+θ (3.4)

Substituting equations (3.4) into equations (3.1)-(3.3). lin-
earizing, by eliminating the term ∇p in the momentum equa-
tion and retaining the vertical component, we have:

∇
2w = R(1+λH(z))∇2

hmT (3.5)(
A

∂

∂ t
−∇

2
)

Tm = wN(z). (3.6)

We assume the solution are of the form

(w,T ) = [W (z),�(z)]ei(lx+my). (3.7)

Substituting equation (3.7) into equations (3.5)-(3.6), we ob-
tain the following ordinary differential equations

(D2−a2)w =−Ra2(1+λH(z))� (3.8)

(D2−a2)�=WL(z) (3.9)

where � is the amplitude of perturbed temperature, W is the
amplitude of perturbed vertical velocity and R = αg0(Tl −
Tu)d3/vκ is the Rayleigh number and L(z) = 1+NsN(z).
The boundary conditions take the form

W =�= 0 at z = 0,1. (3.10)
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4. Technique of Solution
Equations (3.8) and (3.9) along with the boundary con-

ditions given by equation (3.10) constitute an eigen value
problem with as the eigen value. Accordingly W and � are
written as

W =
n

∑
i=1

AiWi, �=
n

∑
i=1

Bi�i

Wi =�i = sin(iz) (4.1)

where Ai & Bi are constants to be determined. Substituting
equation (4.1) into equations (3.8)-(3.9) and using trial func-
tions, we obtain a system of linear homogeneous algebraic
equations in Ai & Bi. A nontrivial solution to the system re-
quires the characteristic determinant of the coefficient matrix
must vanish and this leads to a relation involving the physical
parameters R, Ns, λ and a in the form

f (R,Ns,λ ,a) = 0.

The critical value of Rc is determined numerically with respect
to a for different values of Ns & λ .

5. Results and Discussion
The effect on the onset of convection in a horizontal

porous layer with variable gravity and variable internal heat
source is analysed. The Galerkin single term approach is used
to measure the critical values of the Rayleigh number and the
corresponding wave number. To validate the numerical proce-
dure used in the present study, the Rc and the corresponding
ac obtained under the limiting case of Ns = 0 (absence of heat
source), findings were compared with the results reported in
Table 1 by Rionero and Straughan [11]. Table 1 shows that
the agreement is very good and thus confirms the accuracy of
the method used. Eight different cases of linear & non-linear
gravity field and internal heat source variation:

(i) H(z) =−z, N(z) = z

(ii) H(z) =−z2, N(z) = z

(iii) H(z) =−z3, N(z) = z

(iv) H(z) =−(ez−1), N(z) = z

(v) H(z) =−z, N(z) = z5

(vi) H(z) =−z2, N(z) = z5

(vii) H(z) =−z3, N(z) = z5

(viii) H(z) =−(ez−1), N(z) = z5

is investigated. The important values of the critical Rayleigh
number and the number of the wave are determined for a broad
range of values of the gravity amplitudes and the parameter of
the source heat. These values are tabulated in Table 2-Table

Table 1. Comparison of Rc and ac with gravity variation
parameter λ in the absence of heat source case(Ns = 0) for
(i) G(z) =−z, (ii) G(z) =−z2 and (iv) G(z) =−(ez−1)

H(z) λ Present study Rionero [11]
Rc a2

c Rc a2
c

Case: (i) 0 39.478 9.872 39.478 9.870
1 77.080 10.208 77.020 10.209

1.5 132.020 12.213 132.020 12.314
1.8 189.908 17.198 189.908 17.198
1.9 212.281 19.475 212.280 19.470

Case: (ii) 0 39.478 9.872 39.478 9.870
0.2 41.832 9.872 41.832 9.874
0.4 44.455 9.885 44.455 9.887
0.6 47.389 9.916 47.389 9.915
0.8 50.682 9.960 50.682 9.961

Case: (iv) 0 39.478 9.872 39.478 9.870
0.1 42.331 9.872 42.331 9.872
0.2 45.607 9.885 45.607 9.883
0.3 49.398 9.904 49.398 9.904
0.4 53.828 9.941 53.828 9.942
0.5 59.053 10.005 59.053 10.005

Table 2. Ns = 0.5, Case: (i) Table 3. Ns = 0.5, Case: (ii)
λ ac Rc

0 3.1415 31.5827
0.1 3.1415 33.245
0.2 3.1415 35.0919
0.3 3.1415 37.1562
0.4 3.1415 39.4784
0.5 3.1415 42.1103
0.6 3.1415 45.1182
0.7 3.1415 48.5888
0.8 3.1415 52.6379
0.9 3.1415 57.4232
1 3.1415 63.1655

λ ac Rc

0 3.1415 31.5827
0.1 3.1415 32.5015
0.2 3.1415 33.4752
0.3 3.1415 34.5092
0.4 3.1415 35.609
0.5 3.1415 36.7813
0.6 3.1415 38.0333
0.7 3.1415 39.3736
0.8 3.1415 40.8119
0.9 3.1415 42.3591
1 3.1415 44.0283

Table 4. Ns = 0.5, Case: (iii) Table 5. Ns = 0.5, Case: (iv)
λ ac Rc

0 3.1415 31.5827
0.1 3.1415 32.142
0.2 3.1415 32.7215
0.3 3.1415 33.3222
0.4 3.1415 33.9455
0.5 3.1415 34.5924
0.6 3.1415 35.2645
0.7 3.1415 35.9633
0.8 3.1415 36.6903
0.9 3.1415 37.4473
1 3.1415 38.2362

λ ac Rc

0 3.1415 31.5827
0.1 3.1415 33.8719
0.2 3.1415 36.5189
0.3 3.1415 39.6146
0.4 3.1415 43.2838
0.5 3.1415 47.702
0.6 3.1415 53.1248
0.7 3.1415 59.9387
0.8 3.1415 68.7577
0.9 3.1415 80.6195
1 3.1415 97.4272
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Table 6. Ns = 0.5, Case: (v) Table 7. Ns = 0.5, Case: (vi)
λ ac Rc

0 3.1415 37.9872
0.1 3.1415 39.9865
0.2 3.1415 42.208
0.3 3.1415 44.6908
0.4 3.1415 47.484
0.5 3.1415 50.6496
0.6 3.1415 54.2674
0.7 3.1415 58.4418
0.8 3.1415 63.312
0.9 3.1415 69.0676
1 3.1415 75.9744

λ ac Rc

0 3.1415 37.9872
0.1 3.1415 39.0922
0.2 3.1415 40.2635
0.3 3.1415 41.5071
0.4 3.1415 42.8299
0.5 3.1415 44.2399
0.6 3.1415 45.7458
0.7 3.1415 47.3579
0.8 3.1415 49.0878
0.9 3.1415 50.9488
1 3.1415 52.9566

Table 8. Ns = 0.5, Case:(vii) Table 9. Ns = 0.5, Case:(viii)
λ ac Rc

0 3.1415 37.9872
0.1 3.1415 38.6599
0.2 3.1415 39.3569
0.3 3.1415 40.0794
0.4 3.1415 40.829
0.5 3.1415 41.6072
0.6 3.1415 42.4156
0.7 3.1415 43.256
0.8 3.1415 44.1305
0.9 3.1415 45.041
1 3.1415 45.9898

λ ac Rc

0 3.1415 37.9872
0.1 3.1415 40.7406
0.2 3.1415 43.9243
0.3 3.1415 47.6478
0.4 3.1415 52.061
0.5 3.1415 57.3752
0.6 3.1415 63.8976
0.7 3.1415 72.0933
0.8 3.1415 82.7006
0.9 3.1415 96.9677
1 3.1415 117.184

9. The following conclusions are drawn.

For case (i) and case (v) i.e., for linear gravity variation
with linear and the polynomial functional variation of internal
heat source and for case (iv) and case (viii) i.e., for exponen-
tial gravity variation with linear and the polynomial functional
variation of internal heat source. For these four cases, he criti-
cal value of the Rayleigh number inecreases with an increase
in the value of λ , the amplitude of the gravitational distur-
bance with internal heat source value Ns = 0.5. Thus such a
variable gravity more stabilizes the system (Tables 2,5,6 and
9). Furthermore, it is noticed that the system more stable for
these four caseses. The effect of variable heat source is found
to be stabilizing in all cases. This is because variable internal
heat source produce more heat and this intern helps for the
early onset of convection.
For case (ii) case (iii) case (vi) and case (vii) i.e., for poly-
nomial gravity variation with linear and the polynomial func-
tional variation of internal heat source For these four caseses,
he critical value of the Rayleigh number increases with an
increase in the value of λ , the amplitude of the gravitational
disturbance with internal heat source value Ns = 0.5 Thus
such a variable gravity less stabilizes the system (Tables 3,4,7
and 8). Furthermore, it is noticed that the system less stable
for these four caseses and the effect of variable heat source is
found to be stabilizing in all cases.

6. Conclusion
The linear theory predicts that, the variable gravity and

the variable internal heat source will not change the shape
and size of the convection cell. It is noted that for case (i),
case (iv) case (v) and case (viii) the system is more stable,
while for caseses case (ii), case (iii) case (vi) and case (vii)
the system is less stable. The onset of convection can be
advanced or delayed by choosing proper values internal heat
source parameter Ns and gravity parameter λ . This will helps
in heat transfer applications and as well as material processing
applications.
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