On a class of b-γ-open sets in a topological space

C. Sivashanmugaraja 1*

Abstract
In this paper, we analyze the properties of b-γ-open sets in a topological space. Further, the concept of b-γ-boundary, b-γ-exterior, b-γ-limit point, b-γ-neighborhood, locally b-γ-closed and b-γ-generalized closed sets are introduced and investigated.

Keywords
b-γ-open sets, b-γ-boundary, b-γ-exterior, b-γ-limit point, b-γ-neighborhood, b-γ-generalized closed.

AMS Subject Classification
54A05, 54A10.

1 Department of Mathematics, Periyar Government Arts College, Cuddalore-607001, Tamil Nadu, India.
*Corresponding author: csrajamaths@yahoo.co.in
Article History: Received 09 March 2020; Accepted 21 June 2020
©2020 MJM.

Contents
1 Introduction ... 977
2 Preliminaries .. 977
3 b-γ-open and b-γ-closed sets 977
4 b-γ-boundary and b-γ-exterior 978
5 b-γ-g-open and b-γ-g-closed sets 980
6 Conclusion .. 981
References ... 981

1. Introduction

Kasahara [2] introduced the notion of an operation γ in 1979. The notion of γ-open sets were introduced and investigated by Ogata [4] in 1991. Ibrahim [3] introduced the concept of b-γ-open set by using the operation γ. Further, he continued studying the weak forms of γ-open sets in his work. Andrijevic [1] introduced the notion of $b\gamma$-open sets. The aim of this paper is to analyze some properties of $b\gamma$-open sets in a topological space. Further the concepts of $b\gamma$-boundary, $b\gamma$-exterior, $b\gamma$-limit point, $b\gamma$-neighborhood, $b\gamma$-generalized closed set and locally $b\gamma$-closed spaces are introduced. Also, the relationship among these sets are discussed.

2. Preliminaries

Throughout this paper, (X, τ) or X always mean topological space.

Definition 2.1. [4] Let (X, τ) be a space and γ be an operation on τ. A $\subseteq X$ is called γ-open if $\forall x \in A, \exists$ an open set U such that $x \in U$ and $\gamma(U) \subseteq A$. Then the collection of all γ-open sets in X are denoted by τ_γ. Evidently $\tau_\gamma \subseteq \tau$. A subset A of X is called γ-closed \iff its complement is γ-open.

Definition 2.2. [4] Let (X, τ) be a space and γ be an operation on τ. Then X is said to be γ-regular, if $\forall x \in X$ and \forall open neighborhood V of x, \exists an open neighborhood U of x, such that $\gamma(U) \subseteq V$. A space X is γ-regular space \iff $\tau = \tau_\gamma$.

Definition 2.3. [3] Let (X, τ) be a space. $A \subseteq X$ is said to be $b\gamma$-open if $A \subseteq \tau_\gamma$-$\text{int}(\text{cl}(A)) \cup \text{cl}(\tau_\gamma$-$\text{int}(A))$.

Definition 2.4. [1] Let (X, τ) be a space. $A \subseteq X$ is said to be $b\gamma$-open if $A \subseteq \text{int}(\text{cl}(A)) \cup \text{cl}(\text{int}(A))$.

Definition 2.5. [3] Let (X, τ) be a space with an operation γ on the topology τ. Then the intersection of two $b\gamma$-open sets may not be $b\gamma$-open.

Definition 2.6. [3] Let (X, τ) be a space with an operation γ on the topology τ. Then if $\{A_i : i \in \Delta\}$ is a collection of $b\gamma$-open sets of a space (X, τ), then $\bigcup_{i \in \Delta} A_i$ is a $b\gamma$-open set.

3. $b\gamma$-open and $b\gamma$-closed sets

Remark 3.1. Let (X, τ) be a space and B is a subset of X. Then B is said to be $b\gamma$-closed $\iff B^c$ is $b\gamma$-open.

Further, the set of all $b\gamma$-open sets and $b\gamma$-closed sets of (X, τ) are denoted by $b\gamma O(X)$ and $b\gamma C(X)$ respectively.
Definition 3.2. Let \((X, \tau)\) be a space and \(A \subseteq X\). Then the \(b\gamma\)-closure of \(A\) (briefly, \(b\gamma\text{cl}(A)\)) is given by \(b\gamma\text{cl}(A) = \bigcap\{B : A \subseteq B\) and \(B \in b\gamma\text{C}(X)\}\).

Definition 3.3. Let \((X, \tau)\) be a space and \(A \subseteq X\). Then the \(b\gamma\)-interior of \(A\) (briefly, \(b\gamma\text{int}(A)\)) is given by \(b\gamma\text{int}(A) = \bigcup\{B : A \supseteq B\) and \(B \in b\gamma\text{O}(X)\}\).

Theorem 3.4. Let \((X, \tau)\) be a space with an operation \(\gamma\) on the topology \(\tau\). Then the below statements hold:

(i) Each \(\gamma\)-open set of \((X, \tau)\) is \(b\gamma\)-open set in \((X, \tau)\);

(ii) Each \(b\gamma\)-open set of \((X, \tau)\) is \(b\gamma\)-open set in \((X, \tau)\).

Proof. (i) Let \(B\) be a \(\gamma\)-open set. Then \(\gamma(B) = \tau\gamma\text{int}(B)\). Since \(\tau\gamma\text{int}(B) \subseteq \text{cl}(\tau\gamma\text{int}(B)) \subseteq \text{cl}(\tau\gamma\text{int}(B)) \cup \tau\gamma\text{int}(\text{cl}(B))\).

Therefore, \(B\) is \(b\gamma\)-open.

(ii) Evident. \(\square\)

Remark 3.5. The converse of the above Theorem 3.4 may not be true as shown in the below examples.

Example 3.6. Let \(X = \{a, b, c\}\) and \(\tau X = \{X, \phi, \{a, c\}\}\). Define an operation \(\gamma\) on \(\tau X\) by \(\gamma(B) = B\). Here, the set \(\{b, c\}\) is \(\gamma\)-open but it is not \(b\gamma\)-open.

Example 3.7. Let \(X = \{a, b, c\}\) and \(\sigma = \{X, \phi, \{a\}, \{b\}, \{a, b\}, \{b, c\}\}\). Define an operation \(\gamma\) on \(\sigma\) by

\[
\gamma(B) = \begin{cases}
B, & \text{if } B = \{b\} \\
X, & \text{if } B \neq \{b\}.
\end{cases}
\]

Then the set \(\{a\}\) is \(\gamma\)-open but not \(b\gamma\)-open.

Remark 3.8. The notion of \(b\)-open and \(b\gamma\)-open sets are independent. A space \(X\) is \(\gamma\)-regular space if and only if the sets \(b\)-open and \(b\gamma\)-open are equal.

Definition 3.9. In the above Example 3.7, the set of all \(\gamma\)-open sets \(\tau\gamma = \{X, \phi, \{b\}\}\). Here, \(b\gamma\)-open and \(b\)-open sets are not equal. Again, suppose we define \(\gamma\) on \(\tau\) by \(\gamma(B) = B\), then the sets \(b\gamma\)-open and \(b\)-open are equal.

Proposition 3.10. Let \(B\) and \(C\) be two subsets of a space \((X, \tau)\) with an operation \(\gamma\) on the topology \(\tau\). Then the below statements hold:

(i) \(b\gamma\text{cl}(\emptyset) = \emptyset\) and \(b\gamma\text{cl}(X) = X\);

(ii) \(B\) is a \(b\gamma\)-closed \(\iff\) \(b\gamma\text{cl}(B) = B\);

(iii) \(b\gamma\text{cl}(B)\) is a \(b\gamma\)-closed set of \((X, \tau)\) and \(B \subseteq b\gamma\text{cl}(B)\);

(iv) If \(B \subseteq C\), then \(b\gamma\text{cl}(B) \subseteq b\gamma\text{cl}(C)\);

(v) \(b\gamma\text{cl}(B) \cup b\gamma\text{cl}(C) \subseteq b\gamma\text{cl}(B \cup C)\);

(vi) \(b\gamma\text{cl}(B \cap C) \subseteq b\gamma\text{cl}(B) \cap b\gamma\text{cl}(C)\).

Proof. Evident. \(\square\)

Proposition 3.11. Let \(B\) and \(C\) be two subsets of a space \((X, \tau)\) with an operation \(\gamma\) on the topology \(\tau\). Then the below statements hold:

(i) \(b\gamma\text{int}(\emptyset) = \emptyset\) and \(b\gamma\text{int}(X) = X\);

(ii) \(B\) is a \(b\gamma\)-open \(\iff\) \(b\gamma\text{int}(B) = B\);

(iii) \(b\gamma\text{int}(B)\) is a \(b\gamma\)-open set of \((X, \tau)\) and \(b\gamma\text{int}(B) \subseteq B\);

(iv) If \(B \subseteq C\), then \(b\gamma\text{int}(B) \subseteq b\gamma\text{int}(C)\);

(v) \(b\gamma\text{int}(B) \cup b\gamma\text{int}(C) \subseteq b\gamma\text{int}(B \cup C)\);

(vi) \(b\gamma\text{int}(B \cap C) \subseteq b\gamma\text{int}(B) \cap b\gamma\text{int}(C)\).

Proof. Evident. \(\square\)

Proposition 3.12. Let \(B \subseteq X\) with an operation \(\gamma\) on the topology \(\tau\). Then the below statements hold:

(i) \(\text{int}(B) \subseteq \text{int}(B) \subseteq \text{int}(B) \subseteq \text{cl}(B) \subseteq \text{cl}(B)\);

(ii) \(\text{int}(B) \subseteq \text{int}(B) \subseteq \text{int}(B) \subseteq \text{cl}(B) \subseteq \text{cl}(B)\).

Proposition 3.13. Let \(B \subseteq X\) with an operation \(\gamma\) on the topology \(\tau\). Then the below statements are equivalent:

(i) \(B\) is a \(b\gamma\)-open set in \((X, \tau)\);

(ii) \(X \setminus B\) is a \(b\gamma\)-closed set in \((X, \tau)\);

(iii) \(b\gamma\text{cl}(X \setminus B) = X \setminus B\).

Proof. Evident. \(\square\)

Proposition 3.14. Let \(B \subseteq X\) with an operation \(\gamma\) on the topology \(\tau\). Then the below statements are equivalent:

(i) \(B\) is a \(b\gamma\)-closed set in \((X, \tau)\);

(ii) \(X \setminus B\) is a \(b\gamma\)-open set in \((X, \tau)\);

(iii) \(b\gamma\text{int}(X \setminus B) = X \setminus B\);

Proof. Evident. \(\square\)

4. \(b\gamma\)-boundary and \(b\gamma\)-exterior

Definition 4.1. Let \(C\) be a subset of a space \((X, \tau)\). Then the \(b\gamma\)-boundary of \(C\) (briefly, \(b\gamma\text{bd}(C)\)) is given by \(b\gamma\text{bd}(C) = b\gamma\text{cl}(C) \cap b\gamma\text{cl}(X \setminus C)\).

Theorem 4.2. Let \((X, \tau)\) be a space and \(B \subseteq X\). Then the below statements are hold:

\((1)\) \(b\gamma\text{bd}(B) = b\gamma\text{bd}(X \setminus B)\);

\((2)\) \(b\gamma\text{bd}(B) = b\gamma\text{cl}(B) \setminus \text{bint}(B)\);

\((3)\) \(b\gamma\text{bd}(B) \cap \text{bint}(B) = \emptyset\);

\((4)\) \(b\gamma\text{bd}(B) \cup \text{bint}(B) = \text{bcl}(A)\).
Then the below statements are hold:

(i) The set B is a b-γ-open $\iff B \cap b_\gamma(B) = \emptyset$;

(ii) The set B is a b-γ-closed $\iff b_\gamma(B) \subseteq B$;

(iii) The set B is a b-γ-clopen $\iff b_\gamma(B) = \emptyset$.

Proof. (i) Suppose that B be a b-γ-open set. Then $B = b_\gamma(B)$, Thus $B \cap b_\gamma(B) = b_\gamma(B) = \emptyset$. Conversely, let $B \cap b_\gamma(B) = \emptyset$. Then by Theorem 4.2, $B \cap [b_\gamma(B) \cap b_\gamma(B)] = B \cap b_\gamma(B) = \emptyset$. So, $B = b_\gamma(B)$ and hence B is b-γ-open.

(ii) Suppose that B be a b-γ-closed set. Then $B = b_\gamma(B)$. But $b_\gamma(B) \cap b_\gamma(B) = b_\gamma(B)$. Therefore $b_\gamma(B) \subseteq B$. Conversely, consider $b_\gamma(B) \subseteq B$. By Theorem 4.2, $b_\gamma(B) = b_\gamma(B) \cup b_\gamma(B) = b_\gamma(B)$. Therefore $b_\gamma(B) \subseteq B$ and $B \subseteq b_\gamma(B)$. Hence, $B = b_\gamma(B)$. Thus B is b-γ-closed.

(iii) Suppose that B be a b-γ-clopen set. Then $B = b_\gamma(B)$ and also $B = b_\gamma(B)$. Then by Theorem 4.2, $b_\gamma(B) = b_\gamma(B) \cap b_\gamma(B) = \emptyset$. Conversely, assume that $b_\gamma(B) = \emptyset$. Then $b_\gamma(B) = b_\gamma(B) \cap b_\gamma(B) = \emptyset$ and hence, B is b-γ-clopen.

Definition 4.4. Let (X, τ) be a space and B be a subset of a space X. Then the set $X \setminus b_\gamma(B)$ is said to be b-γ-exterior of B and is denoted by $b_\gamma(B)$. Every point x in X is said to be a b-γ-exterior point of B, if it is a b-γ-interior point of $X \setminus B$.

Definition 4.5. Let (X, τ) be a space and N be a subset of a space X. N is said to be a b-γ-neighborhood of a point $x \in X$ if there exists an open set P such that $x \in P \subseteq N$.

The class of all b-γ-nbds of $x \in X$ is called the b-γ-neighborhood system of x and it is denoted by $b_\gamma-N_x$.

Theorem 4.6. Let B and C be two subsets of a space (X, τ). Then the below statements are hold:

(i) $b_\gamma(B) = \emptyset$ and $b_\gamma(B) = \emptyset$;

(ii) $b_\gamma(B) = b_\gamma(X \setminus B)$;

(iii) $b_\gamma(B) \cap b_\gamma(B) = \emptyset$;

(iv) $b_\gamma(B) \cup b_\gamma(B) = b_\gamma(X \setminus B)$;

(v) $\{b_\gamma(B), b_\gamma(B) \text{ and } b_\gamma(B)\}$ form a partition of X;

(vi) If $B \subseteq C$, then $b_\gamma(C) \subseteq b_\gamma(B)$;

(vii) $b_\gamma(B \cup C) = b_\gamma(B) \cup b_\gamma(C)$;

(viii) $b_\gamma(B \cap C) \supseteq b_\gamma(B) \cap b_\gamma(C)$.

Proof. (i) Evident.

(ii) Evident from Definition 4.4.

(iii) From statement (ii) and Theorem 4.2, we have $b_\gamma(B \cup b_\gamma(B)) = b_\gamma(X \setminus B \cap b_\gamma(X \setminus B) = \emptyset$.

(iv) Also, From statement (ii) and Theorem 4.2, we have $b_\gamma(B \cup b_\gamma(B)) = b_\gamma(X \setminus B \cup b_\gamma(X \setminus B) = b_\gamma(X \setminus B)$.

Proof. (ii) Evident.

(vi) Evident from Definition 4.4.

(vii) By definition, $b_\gamma(B \cup C) = X \setminus b_\gamma(B \cup C) \subseteq X \setminus b_\gamma(B \cup C) \subseteq X \setminus b_\gamma(B \cup C) = [\gamma(B \cup C) \cap X \setminus b_\gamma(B \cup C)] = b_\gamma(B \cup C) \cap b_\gamma(C) = b_\gamma(B) \cup b_\gamma(C) = b_\gamma(B \cap b_\gamma(C) = \emptyset$.

(viii) Also by definition, $b_\gamma(B \cap C) = X \setminus b_\gamma(B \cap C) = X \setminus b_\gamma(B \cap C) = X \setminus b_\gamma(B \cap C) = b_\gamma(B) \cup b_\gamma(B) \cap b_\gamma(C) = b_\gamma(B) \cup b_\gamma(B) \cap b_\gamma(C)$.

Remark 4.7. In the above Theorem 4.6, the inclusion relation of the statement (vi), (vii) cannot be replaced by equality as shown in the below example.

Example 4.8. Let $X = \{a, b, c\}$ with topology $\tau_X = \{\emptyset, \{a\}, \{a, b\}, \{a, b, c\}\}$. Define an operation γ on τ_X by

$$\gamma(B) = \begin{cases} \text{int}(cl(B)), & \text{if } a \in B; \\ cl(B), & \text{if } a \notin B. \end{cases}$$

Let $C = \{a, b\}$ and $D = \{b, c\}$. Then $b_\gamma(C) = \emptyset$ and $b_\gamma(D) = \emptyset$. But $b_\gamma(C \cup D) = \emptyset$. Also, $b_\gamma(C \cap D) = \emptyset$. Therefore, $b_\gamma(C \cap D) = \emptyset$.

Definition 4.9. Let X be a space and $B \subseteq X$. Then a point $x \in X$ is said to be a b-γ-limit point of a set $B \subseteq X$ if every b-γ-open set $P \subseteq X$ containing x contains a point of B other than x.

The collection of all b-γ-limit points of B is said to be a b-γ-derived set of B and it is mentioned by $b_\gamma-DS(B)$.

Proposition 4.10. Let B be a subset of a space (X, τ). Then, the below statements are hold:

(i) The set B is b-γ-closed $\iff b_\gamma-DS(B) \subseteq B$;

(ii) The set B is b-γ-open $\iff B$ is b-γ-neighborhood, \forall point $x \in B$;

(iii) $b_\gamma(B) = B \cup b_\gamma-DS(B)$.

Proof. (i) Let B be a b-γ-closed set and $x \in B$. Then $x \in X \setminus B$, which is open. Thus \exists a b-γ-open set $(X \setminus B)$ such that $(X \setminus B) \cap B = \emptyset$. Therefore $x \notin b_\gamma-DS(B)$. Thus, $b_\gamma-DS(B) \subseteq B$.

Conversely, assume that $b_\gamma-DS(B) \subseteq B$ and $x \notin B$. Then $x \notin b_\gamma-DS(B)$. Thus \exists a b-γ-open set V containing x such that...
Then the below statements are hold:

(i) Let B be a b-γ-open set. Then B is a b-γ-neighborhood, $\forall x \in B$.

Conversely, let B be a b-γ-neighborhood, $\forall x \in G$. Then \exists a b-γ-open set V_x containing x such that $x \in V_x \subseteq B$. Therefore $B = \bigcup \{V_x\}$. Thus, B is a b-γ-open.

(iii) Since, b-γDs$(B) \subseteq bcl_{\gamma}(B)$ and $B \subseteq bcl_{\gamma}(B)$, $B \cup b$-γDs$(B) \subseteq bcl_{\gamma}(B)$.

Conversely, assume that $x \notin b$-γDs$(B) \cup B$. Then $x \notin b$-γDs(B), $x \notin B$. Then \exists a b-γ-open set V containing x such that $V \cap B = \emptyset$. Therefore $x \notin bcl_{\gamma}(B)$ which implies that $bcl_{\gamma}(B) \subset B \cup b$-$\gammaDs(B)$. Thus, $bcl_{\gamma}(B) = B \cup b$-$\gammaDs(B)$.

Theorem 4.11. Let B and C be two subsets of a space (X, τ). Then the below statements are hold:

(i) If $B \subset C$, then b-γDs$(B) \subset b$-γDs(C).

(ii) B is a b-γ-closed set \iff B contains each of its b-γ-limit points.

(iii) $bcl_{\gamma}(B) = B \cup b$-$\gammaDs(B)$.

Proof. (i) Evident.

(ii) If B be a b-γ-closed set, then $X \setminus B$ is b-γ-open. If $x \notin B$, then $x \in X \setminus B$. Then \exists a b-γ-open $(X \setminus B)$ such that $(X \setminus B) \cap B = \emptyset$. Therefore $x \notin b$-γDs(B). Hence, b-γDs$(B) \subset B$.

Conversely, assume that b-γDs$(B) \subset B$ and $x \notin B$. Then $x \notin b$-γDs(B). Then \exists a b-γ-open set M containing x such that $M \cap B = \emptyset$ and therefore

$$X \setminus B = \bigcup_{x \in B} \{M, M \text{ is } b$-$\gamma$-open \}.$$

Hence B is b-γ-closed.

(iii) Since, b-γDs$(B) \subset bcl_{\gamma}(B)$ and $B \subseteq bcl_{\gamma}(B)$, b-γDs$(B) \cup B \subset bcl_{\gamma}(B)$. Conversely, assume that $x \notin b$-γDs$(B) \cup B$. Then $x \notin b$-γDs(B), $x \notin B$. Then \exists a b-γ-open set M containing x such that $M \cap B = \emptyset$. Thus $x \notin bcl_{\gamma}(B)$. This gives that $bcl_{\gamma}(B) \subset b$-$\gammaDs(B) \cup B$. Hence, $bcl_{\gamma}(B) = b$-γDs$(B) \cup B$.

Theorem 4.12. Let X be a space and $B \subseteq X$. B is b-γ-open \iff B is b-γ-neighborhood, \forall point $x \in H$.

Proof. Let B be a b-γ-open set. Then clearly B is a b-γ-neighborhood, $\forall x \in B$. Conversely, let B be a b-γ-neighborhood, $\forall x \in B$. Then \exists a b-γ-open set U_x containing x such that $x \in U_x \subseteq B$. Therefore, $B = \bigcup_{x \in B} U_x$. Hence, B is a b-γ-open.

Theorem 4.13. Let (X, τ) be space. If b-γ-N_x be the b-γ-neighborhood systems of a point $x \in X$, then the below statements are hold:

(1) Every member of b-γ-N_x contains a point x and b-γ-N_x is not empty;

(2) Every superset of members of N_x belongs b-γ-N_x;

(3) Every member $N \in b$-γ-N_x is a superset of a member $V \in b$-γ-N_x, where V is b-γ-neighborhood of every point $x \in V$.

Proof. Evident.

Definition 4.14. Let X be a space. $B \subseteq X$ is called locally b-γ-closed if $B = V \cap K$, \forall open set V and K is b-γ-closed set in X.

Theorem 4.15. Let X be a space and $B \subseteq X$. The set B is locally b-γ-closed \iff $B = V \cap bcl_{\gamma}(B)$.

Proof. Suppose that B is a locally b-γ-closed set. Then $B = V \cap K$, \forall open set V and K is b-γ-closed set in X. Thus, $B \subseteq bcl_{\gamma}(B) \subseteq bcl_{\gamma}(K) = K$. Therefore $B \subseteq V \cap bcl_{\gamma}(B) \subseteq V \cap bcl_{\gamma}(K) = B \subseteq V \cap bcl_{\gamma}(B)$. Conversely, since the set $bcl_{\gamma}(B)$ is b-γ-closed and $B = U \cap bcl_{\gamma}(B)$. Then, clearly B is locally b-γ-closed.

Theorem 4.16. Let X be a space and B be a locally b-γ-closed subset of X. Then the below statements are hold:

(i) The set $bcl_{\gamma}(B) \setminus B$ is a b-γ-closed set;

(ii) The set $B \cup (X \setminus bcl_{\gamma}(B))$ is a b-γ-open set;

(iii) $B \subseteq bint_{\gamma}(B \cup (X \setminus bcl_{\gamma}(B)))$.

Proof. (i) If B is a locally b-γ-closed set, then \exists an open set V such that $B = V \cap bcl_{\gamma}(B)$. Therefore, $bcl_{\gamma}(B) \setminus B = bcl_{\gamma}(B) \setminus [V \cap bcl_{\gamma}(B)] = bcl_{\gamma}(B) \cap [X \setminus (V \cap bcl_{\gamma}(B))] = bcl_{\gamma}(B) \cap (X \setminus V)$, which is b-γ-closed.

(ii) By statement (i), we have $X \setminus [(bcl_{\gamma}(B) \setminus B)] = X \setminus bcl_{\gamma}(B) \cup (X \setminus B) = B \cup [X \setminus bcl_{\gamma}(B)]$. Thus $B \cup (X \setminus bcl_{\gamma}(B))$ is b-γ-open.

(iii) It is obvious that, $B \subseteq (B \cup (X \setminus bcl_{\gamma}(B))) = bint_{\gamma}(B \cup (X \setminus bcl_{\gamma}(B)))$.

5. b-γ-open and b-γ-closed sets

Definition 5.1. Let (X, τ) be a space and $B \subseteq X$ is said to be b-γ-generalized closed set (for shortly, b-γ-closed) in (X, τ), if $bcl_{\gamma}(B) \subseteq V$ whenever $B \subseteq V$ and V is a b-γ-open set of (X, τ).

The complement of b-γ-generalized closed set is called b-γ-generalized open (for shortly, b-γ-open) set.

Remark 5.2. Let (X, τ) be a space and $B \subseteq X$. Then:

(i) The set B is b-γ-generalized open \iff B^c is b-γ-generalized closed;

(ii) The set B is b-γ-generalized closed \iff B^c is b-γ-generalized open.

Theorem 5.3. Let (X, τ) be a space. $B \subseteq X$. is said to be b-γ-open $\iff C \subseteq bint_{\gamma}(B)$, whenever C is b-γ-closed set and $C \subseteq B$.

980/981
Proposition 5.6. Let B be a $b\gamma$-generalized open set in X. Then B' is $b\gamma$-generalized closed in X. Let C be a $b\gamma$-closed set in X such that $C \subseteq B$. Then $B' \subseteq C'$, $C' \in b\gamma \text{OC}(X)$. Since B' is $b\gamma$-generalized closed, $bcl_{\gamma}(B') \subseteq C'$, which gives $\text{bint}_{\gamma}(B) \subseteq C$. Hence $C \subseteq \text{bint}_{\gamma}(B)$.

Conversely, suppose that $C \subseteq \text{bint}_{\gamma}(B)$, whenever $C \subseteq B$ and C is a $b\gamma$-closed set in X. Then $(\text{bint}_{\gamma}(B))' \subseteq C' = D$, where D is a $b\gamma$-open set in X. That is $bcl_{\gamma}(B') \subseteq D$, which gives B' is $b\gamma$-generalized closed. Thus B is $b\gamma$-generalized open.

Theorem 5.4. Let X be a space with an operation γ on the topology τ. Then each $b\gamma$-closed set is $b\gamma$-g-closed.

Proof. Let B be a $b\gamma$-closed set in a space X and $B \subseteq C$, where C is a $b\gamma$-open in X. Since B is a $b\gamma$-closed, $bcl_{\gamma}(B) = B \subseteq C$. Thus $bcl_{\gamma}(B) \subseteq C$. Hence, B is $b\gamma$-g-closed.

The converse of the above Theorem 5.4 may not be true as shown in the below example.

Example 5.5. Let $X = \{a, b, c\}$ and τ_X be the discrete topology. Define an operation γ on τ_X by $\gamma(B) = X$. Here the set $\{a, b\}$ is $b\gamma$-generalized closed but not $b\gamma$-closed.

Proposition 5.6. Let X be a space. $B \subseteq X$ is a $b\gamma$-generalized closed if and only if $B \cap bcl_{\gamma}(\{y\}) = \emptyset$, $\forall y \in bcl_{\gamma}(B)$.

Proof. Suppose that V is a $b\gamma$-open set such that $B \subseteq V$. Take a point $y \in bcl_{\gamma}(B)$. By supposition $\exists x \in bcl_{\gamma}(\{y\})$ and $x \in B \subseteq V$. Then $V \cap \{y\} \neq \emptyset$. This implies $y \in V$. Therefore $bcl_{\gamma}(B) \subseteq V$. Hence, B is $b\gamma$-generalized closed.

Conversely, suppose that B is $b\gamma$-generalized closed set of X and $y \in bcl_{\gamma}(B)$. Since $bcl_{\gamma}(B)$ is $b\gamma$-closed, $bcl_{\gamma}(B) \subseteq X \setminus bcl_{\gamma}(\{y\})$. Therefore $y \in bcl_{\gamma}(B)$, which is a contradiction. Thus $B \cap bcl_{\gamma}(\{y\}) \neq \emptyset$.

Theorem 5.7. If $B \cap bcl_{\gamma}(\{y\}) \neq \emptyset$, $\forall y \in bcl_{\gamma}(B)$, then $bcl_{\gamma}(B) \setminus B$ does not contain a non-empty $b\gamma$-closed set.

Proof. Assume that $\exists a$ non-empty $b\gamma$-closed set G such that $G \subseteq bcl_{\gamma}(B) \setminus B$. Take $y \in G$, $y \in bcl_{\gamma}(B)$ holds. It follows that $B \cap G = B \cap bcl_{\gamma}(B) \supseteq B \cap bcl_{\gamma}(\{y\}) \neq \emptyset$. Therefore, $B \cap G \neq \emptyset$, which is a contradiction.

Corollary 5.8. A subset B of (X, τ) is $b\gamma$-generalized closed if and only if $B \cap G \setminus H$, where G is $b\gamma$-closed and H contains no non-empty $b\gamma$-closed subsets.

Proof. Necessity follows from Theorem 5.7 and Proposition 5.6, with $G = bcl_{\gamma}(B)$ and $H = bcl_{\gamma}(B) \setminus B$.

6. Conclusion

In this paper, the ideas of $b\gamma$-boundary, $b\gamma$-exterior and locally $b\gamma$-closed sets are presented. Also some concepts and lemmas of $b\gamma$-open and $b\gamma$-g-closed sets are also investigated. The results are illustrated with a well-analyzed examples. For future study, some other fields such as Fuzzy topology, Intuitionistic topology, Nano topology and etc., can be considered for studying these sets.

Acknowledgment

The author is thankful to the reviewers for their helpful comments and effective suggestions to improve the quality of this paper.

References

ISSN(P):2319 – 3786
Malaya Journal of Matematik
ISSN(O):2321 – 5666