

https://doi.org/10.26637/MJM0803/0047

On the quasi-central elements of Banach algebras

Ekram M. Abdullah^{1*} and Amir A. Mohammed²

Abstract

In the eighties of the last century Rennison studied and characterized the set of quasi-central elements of some unital Banach algebras. In this paper, we improve one of Rennison's result assert that for given unital Banach algebra A the set of quasi-central elements Q(A), need not be equal to centre of A and need not be closed under addition or multiplication. Further, we prove that if A is unital ultraprime Banach algebra, then Q(A) need not be equal to centre of A and need not be closed under addition or multiplication.

Keywords

quasi-central elements, ultraprime algebra.

AMS Subject Classification 46J10 16U70.

^{1,2} Department of Mathematics, College of Education for Pure Sciences, University of Mosul, Mosul, Iraq. *Corresponding author: ¹ em270056@gmail.com; ²amirabdullilah64@gmail.com

Article History: Received 24 March 2020; Accepted 09 June 2020

Contents

1	Introduction and Preliminaries 1007
2	The Main Results 1007
3	The quasi-central elements of ultraprime Banach al- gebra
	References 1010

1. Introduction and Preliminaries

In this paper, we will denote by *A* to be a unital Banach algebra over the complex field \mathbb{C} , and *Z*(*A*) to be the centre of *A*. Le page in ([5] Proposition 3) proved that,

 $Z(A) = \{a \in A : || x(\lambda - a) || \le || (\lambda - a)x || \text{ for all } x \in A \text{ and } \lambda \in \mathbb{C}\}.$

In [3] Rennison defined the set of all quasi-central elements of *A* by

 $Q(A) = \bigcup_{K>1} Q(K,A),$

where $Q(K,A) = \{a \in A : || x(\lambda - a) || \le K || (\lambda - a) x ||$ for all $x \in A$ and $\lambda \in \mathbb{C}\}$. In [8] they studied and proved some properties of Q(A) with different definition.

In general $Q(A) \neq Z(A)$, and its clear that in ([1] corollary 2), where $Q(1 + \varepsilon, A) \neq Z(A)$ for each $\varepsilon > 0$. However in [3–5] showed that for *A* is a semi-simple Banach algebra (for example *C**-algebra), or a semi-prime Banach algebra with dense socle, and for all semi-prime Banach algebra with Q(A) is closed under addition or multiplication or with all pairs of elements of Q(A) commute then Q(A) = Z(A) it is true. Now,

we describe in a general setting, the quasi-central elements as the same way as Rennison described in [1].

©2017 M.IM

Let $\Delta = \{z \in \mathbb{C} : |z| \le 1\}$ and let $A(\Delta)$ be the disc algebra of all complex valued functions continuous on Δ and analytic on its interior, with pointwise algebraic operations and uniform norm

 $\|f\|_{\Delta} = \sup_{z \in \Delta} |f(z)|.$

And, let $B = A(\Delta) \oplus h$ where *h* is indeterminate and introduce an associative commutative product and a norm on *B* by defining

 $||f + \alpha h||_B = ||f||_{\Delta} + |\alpha|$ and $h^2 = 0$, fh = f(0)h for all $f \in A(\Delta)$ and $\alpha \in \mathbb{C}$. We can easily show that B becomes a unital commutative Banach algebra with radical Rad $B = \mathbb{C}h$.

Now, assume that

$$T = \{ x = \begin{pmatrix} x_1 & x_2 & x_3 \\ 0 & x_4 & x_5 \\ 0 & 0 & x_6 \end{pmatrix} : x_i \in B \}$$

and a norm on *T* defined by $||x||_T = \sum_{i=1}^{6} ||x_i||_B$. It's clear that *T* is a unital Banach algebra and *Z*(*T*) may identified with *B*.

2. The Main Results

Now we can present our theorem.

Theorem 2.1. The quasi-central of T are precisely those of

the form
$$a = \begin{pmatrix} f + \alpha_1 h & \beta_1 h & \beta_2 h \\ 0 & f + \alpha_2 h & \beta_3 h \\ 0 & 0 & f + \alpha_3 h \end{pmatrix}$$

where $f \in A(A)$ $\alpha_1 \alpha_2 \alpha_3 \beta_4 \beta_5$ and $\beta_5 \in \mathbb{C}$ and all

where $f \in A(\Delta)$, $\alpha_1, \alpha_2, \alpha_3, \beta_1, \beta_2$, and $\beta_3 \in \mathbb{C}$ and either *f* is non-constant or *f* is constant with $\beta_1 = \beta_2 = \beta_3 = 0$ and $\alpha_1 = \alpha_2 = \alpha_3$.

Proof. If *f* is constant, $\beta_1 = \beta_2 = \beta_3 = 0$ and $\alpha_1 = \alpha_2 = \alpha_3$ then $a \in Z(T) \subseteq Q(T)$.

Now suppose that f is non-constant and let M be chosen as in (Lemma 2, [1]).

Take any
$$\lambda \in \mathbb{C}, x = \begin{pmatrix} x_1 & x_2 & x_3 \\ 0 & x_4 & x_5 \\ 0 & 0 & x_6 \end{pmatrix} \in T, x_i \in B$$
, and

write

$$a = \begin{pmatrix} f + \alpha_{1} & \beta_{1}h & \beta_{2}h \\ 0 & f + \alpha_{2}h & \beta_{3}h \\ 0 & 0 & f + \alpha_{3}h \end{pmatrix} = \\ \begin{pmatrix} a_{1} & a_{2} & a_{3} \\ 0 & a_{4} & a_{5} \\ 0 & 0 & a_{6} \end{pmatrix}.$$

Then $ax - xa =$
$$\begin{pmatrix} 0 & (a_{1} - a_{4})x_{2} - a_{2}(x_{1} - x_{4}) & (a_{1} - a_{6})x_{3} - a_{3}(x_{1} - x_{6}) + a_{2}x_{5} - a_{5}x_{2} \\ 0 & 0 & (a_{4} - a_{6})x_{5} - a_{5}(x_{4} - x_{6}) \\ 0 & 0 & 0 \end{pmatrix}$$
(2.1)

and,

$$(\lambda - a) x =$$

$$\begin{pmatrix} (\lambda - a_1)x_1 & (\lambda - a_1)x_2 - a_2x_4 & (\lambda - a_1)x_3 - a_2x_5 - a_3x_6\\ 0 & (\lambda - a_4)x_4 & (\lambda - a_4)x_5 - a_5x_6\\ 0 & 0 & (\lambda - a_6)x_6 \end{pmatrix}.$$
(2.2)

Thus

$$\| ax - xa \|_{T} = \| (a_{1} - a_{4})x_{2} - a_{2}(x_{1} - x_{4}) \|_{B} + \| (a_{1} - a_{6})x_{3} - a_{3}(x_{1} - x_{6}) + a_{2}x_{5} - a_{5}x_{2} \|_{B} + \| (a_{4} - a_{6})x_{5} - a_{5}(x_{4} - x_{6}) \|_{B} \le \| (a_{1} - a_{4})x_{2} \|_{B} + \| a_{2}x_{1} \|_{B} + \| a_{2}x_{4} \|_{B} + \| (a_{1} - a_{6})x_{3} \|_{B} + \| a_{3}x_{1} \\ \|_{B} + \| a_{3}x_{6} \|_{B} + \| a_{2}x_{5} \|_{B} + \| a_{5}x_{2} \|_{B} + \| (a_{4} - a_{6})x_{5} \|_{B} + \| a_{5}x_{4} \|_{B} + \| a_{5}x_{6} \|_{B}$$

$$(2.3)$$

and,

 $\| (\lambda - a) x \|_{T} = \| (\lambda - a_{1}) x_{1} \|_{B} + \| (\lambda - a_{1}) x_{2} - a_{2} x_{4} \|_{B} + \| (\lambda - a_{1}) x_{3} - a_{2} x_{5} - a_{3} x \|_{B} + \| (\lambda - a_{4}) x_{4} \|_{B} + \| (\lambda - a_{4}) x_{5} - a_{5} x_{6} \|_{B} + \| (\lambda - a_{6}) x_{6} \|_{B}.$

Taking into account Lemma 2 in [1] in the following steps:

$$\| a_{2}x_{1} \|_{B} = \| \beta_{1}hx_{1} \|_{B} = | \beta_{1} | \| hx_{1} \|_{B} \le M | \beta_{1} | \| (\lambda - a_{1})x_{1} \|_{B}$$

$$\le M | \beta_{1} | \| (\lambda - a)x \|_{T} = L_{1} \| (\lambda - a)x \|_{T},$$
(2.4)

where
$$L_1 = M | \beta_1 |$$
.
Similarly
 $|| a_2 x_4 ||_B \le L_1 || (\lambda - a) x ||_T$ (2.5)

$$\| a_{3}x_{1}\|_{B} = \| \beta_{2}hx_{1}\|_{B} = | \beta_{2} | \| hx_{1}\|_{B} \le M | \beta_{2} | \| (\lambda - a_{1})x_{1}\|_{B} \le M | \beta_{2} | \| (\lambda - a)x\|_{T} = L_{2} \| (\lambda - a)x\|_{T},$$
(2.6)

where $L_2 = M \mid \beta_2 \mid$.

$$\| a_3 x_6 \|_B \le L_2 \| (\lambda - a) x \|_T.$$
(2.7)

$$\| a_{5}x_{4}\|_{B} = \| \beta_{3}hx_{4}\|_{B} = | \beta_{3} | \| hx_{4}\|_{B} \le M | \beta_{3} | \| (\lambda - a_{4})x_{4}\|_{B}$$

$$\le M | \beta_{3} | \| (\lambda - a_{4})x_{4}\|_{T}$$

$$= L_{3} \| (\lambda - a_{4})x_{4}\|_{T},$$
 (2.8)

where $L_3 = M \mid \beta_3 \mid$.

$$\| a_5 x_6 \|_B \le L_3 \| (\lambda - a) x \|_T$$
(2.9)

Next, by (2.9)

$$\| a_{2}x_{5}\|_{B} = \| \beta_{1}hx_{5}\|_{B} = |\beta_{1}| \| hx_{5}\|_{B} \le M |\beta_{1}| \| (\lambda - a_{4})x_{5}\|_{B} \le M |\beta_{1}| [\| (\lambda - a_{4})x_{5} - a_{5}x_{6}\|_{B} + \| a_{5}x_{6}\|_{B}] \le M [1 + M |\beta_{3}|] |\beta_{1}| \| (\lambda - a)x\|_{T} = L_{4} \| (\lambda - a)x\|_{T},$$

$$(2.10)$$

where $L_4 = M[1 + M | \beta_3 |] | \beta_1 |$. By (2.5),

$$\begin{aligned} \|a_{5}x_{2}\|_{B} &= \|\beta_{3}hx_{2}\|_{B} = |\beta_{3}| \|hx_{2}\|_{B} \\ &\leq M |\beta_{3}| \|(\lambda - a_{1})x_{2}\|_{B} \\ &\leq M |\beta_{3}| [\|(\lambda - a_{1})x_{2} - a_{2}x_{4}\| + \|a_{2}x_{4}\|_{B}] \\ &\leq M [1 + M |\beta_{1}|] |\beta_{3}| \|(\lambda - a)x\|_{T} = L_{5} \|(\lambda - a)x\|_{T}, \end{aligned}$$

$$(2.11)$$

where $L_5 = M[1 + M | \beta_1 |] | \beta_3 |$.

$$\begin{aligned} &\| (a_1 - a_4)x_2 \|_{B} = \| ((f + \alpha_1 h) - (f + \alpha_2 h))x_2 \|_{B} = \\ &| \alpha_1 - \alpha_2 |\| hx_2 \|_{B} \\ &\leq M | \alpha_1 - \alpha_2 |\| (\lambda - a_1)x_2 \|_{B} \\ &\leq M | \alpha_1 - \alpha_2 |\| (\lambda - a_1)x_2 - a_2 x_4 \|_{B} + \| a_2 x_4 \|_{B} \\ &\leq M [1 + M | \beta_1 |] | \alpha_1 - \alpha_2 |\| (\lambda - a) x \|_{T} = L_6 \| (\lambda - a) x \|_{T}, \end{aligned}$$

$$(2.12)$$

where $L_6 = M[1 + M | \beta_1 |] | \alpha_1 - \alpha_2 |$. Now, by (2.7) and (2.10)

$$\begin{aligned} \| (a_{1} - a_{6})x\|_{B} &= |\alpha_{1} - \alpha_{3}| \\ \| hx_{3}\|_{B} \leq M | \alpha_{1} - \alpha_{3}| \| (\lambda - a_{1})x_{3}\|_{B} \\ \leq M | \alpha_{1} - \alpha_{3}| [\| (\lambda - a_{1})x_{3} - a_{2}x_{5} - a_{3}x_{6}\|_{B} + \\ \| a_{2}x_{5}\|_{B} + \| a_{3}x_{6}\|_{B} \\ \leq M [1 + M(1 + M | \beta_{1} |) | \beta_{3}| + M | \beta_{2} |] | \alpha_{1} - \alpha_{3} |, \end{aligned}$$

$$(2.13)$$

5) where $L_7 = M[1 + M(1 + M | \beta_1 |) | \beta_3 | + M | \beta_2 |] | \alpha_1 - \alpha_3 |.$

Again by (2.9), we have

$$\begin{aligned} &\| (a_4 - a_6)x_5 \|_B = | \alpha_2 - \alpha_3 |\| hx_5 \|_B \le M | \alpha_2 - \alpha_3 |\\ &\| (\lambda - a_4)x_5 \|_B \\ &\le M | \alpha_2 - \alpha_3 | [\| (\lambda - a_4)x_5 - a_5x_6 \|_B + \| a_5x_6 \|_B] \\ &\le M [1 + M | \beta_3 |] | \alpha_2 - \alpha_3 |\| (\lambda - a)x \|_T = L_8 \\ &\| (\lambda - a)x \|_T. \end{aligned}$$

$$(2.14)$$

The inequalities (2.3) – (2.14), show that for some constant *L*, where $L = \sum_{i=1}^{8} L_i$, then

$$\|ax - xa\|_T \le L \| (\lambda - a)x\|_T, \text{ for all } x \text{ in } T \text{ and } \lambda \text{ in } \mathbb{C}.$$
(2.15)

So, by the Remark in [1], $a \in Q(T)$. Now conversely, let that $a \in Q(T)$. By [1] for some constant L,

 $\| ax - xa\|_T \le L \| (\lambda - a)x\|_T, \text{ for all } x \text{ in } T \text{ and } \lambda \text{ in } \mathbb{C}.$ Taking $x_2 = x_3 = \ldots = x_6 = 0$ in (2.3), we have $\| a_2x_1\|_B + \| a_3x_1\|_B \le L \| (\lambda - a_1)x_1\|_B$, for all x_1 in B and λ in \mathbb{C} , so we have $\| a_2x_1\|_B \le L \| (\lambda - a_1)x_1\|_B$, and $\| a_3x_1\|_B \le L \| (\lambda - a_1)x_1\|_B$, for all x_1 in B and λ in \mathbb{C} , and so by Lemma 1 in [1] we get, $a_2, a_3 \in Rad B = \mathbb{C}h$

So, $a_2 = \beta_1 h$ and $a_3 = \beta_2 h$ for some $\beta_1, \beta_2 \in \mathbb{C}$.

Taking $x_1 = x_3 = ... = x_6 = 0$ and $x_2 \neq 0$. This implies that $|| (a_1 - a_4)x_2 ||_B + || a_5x_2 ||_B \le L || (\lambda - a_1)x_2 ||_B$, for all x_2 in *B* and λ in \mathbb{C} .

So, we have $|| (a_1 - a_4)x_2 ||_B \le L || (\lambda - a)x_2 ||_B$, and $|| a_5x_2 ||_B \le L || (\lambda - a_1)x_2 ||_B$ by lemma 1 again, gives that $a_1 - a_4, a_5 \in Rad \ B = \mathbb{C}h$. Hence we can express a_1 and a_4 in the form $a_1 = f + \alpha_1 h$ and $a_4 = f + \alpha_2 h$, for some $f \in A(\Delta)$ and $\alpha_1, \alpha_2 \in \mathbb{C}$

also we can express a_5 in the form $a_5 = \beta_3 h, \beta_3 \in \mathbb{C}$

Finally, taking $x_1 = x_2 = \ldots = x_6 = 0$ and $x_3 \neq 0$, this implies that

 $\| (a_1 - a_6)x_3\|_B \le L \| (\lambda - a_1)x_3\|_B, \text{ for all } x_3 \text{ in } B \text{ and } \lambda$ in \mathbb{C} .

again by Lemma 1, we have

 $a_1 - a_6 \in Rad B = \mathbb{C}h$

hence we can express a_1 and a_6 in the form

 $a_1 = f + \alpha_1 h$ and $a_6 = f + \alpha_3 h$, for some $f \in A(\Delta)$ and $\alpha_1, \alpha_3 \in \mathbb{C}$.

$$a = \begin{pmatrix} a_1 & a_2 & a_3 \\ 0 & a_4 & a_5 \\ 0 & 0 & a_6 \end{pmatrix} = \begin{pmatrix} f + \alpha_1 h & \beta_1 h & \beta_2 h \\ 0 & f + \alpha_2 h & \beta_3 h \\ 0 & 0 & f + \alpha_3 h \end{pmatrix}$$

If, f = μ is constant then $(\mu - a)^2 = 0$
 $\mu = \mu I = \begin{pmatrix} \mu & 0 & 0 \\ 0 & \mu & 0 \\ 0 & 0 & \mu \end{pmatrix}, a =$

$$\begin{pmatrix} \mu + \alpha_1 h & \beta_1 h & \beta_2 h \\ 0 & \mu + \alpha_2 h & \beta_3 h \\ 0 & 0 & \mu + \alpha_3 h \end{pmatrix}$$
$$\mu - a = \begin{pmatrix} \alpha_1 h & -\beta_1 h & -\beta_2 h \\ 0 & \alpha_2 h & -\beta_3 h \\ 0 & 0 & \alpha_3 h \end{pmatrix}, so, \ (\mu - a)^2 = 0,$$
because $h^2 = 0.$

However, by **Theorem (3.7)** of [3], any quasi-central element with finite spectrum is necessarily central and so, in this case we must have $\beta_1 = \beta_2 = \beta_3 = 0$ and $\alpha_1 = \alpha_2 = \alpha_3 = 0$.

Corollary 2.2. Q(T) is not a closed subset of T.

Proof. If
$$u(z) = z$$
 for all z in δ then

$$a_n = \begin{pmatrix} u/n & h_1 & h_2 \\ 0 & u/n & h_3 \\ 0 & 0 & u/n \end{pmatrix} \in Q(T),$$
for all n because, for any $\lambda \in \mathbb{C}$ and

$$x = \begin{pmatrix} x_1 & x_2 & x_3 \\ 0 & x_4 & x_5 \\ 0 & 0 & x_6 \end{pmatrix} \in T, x_i \in B,$$
then

$$a_{n}x - xa_{n} = \begin{pmatrix} 0 & h_{1}(x_{4} - x_{1}) & h_{1}x_{5} - h_{2}(x_{1} - x_{6}) \\ 0 & 0 & h_{3}(x_{6} - x_{4}) \\ 0 & 0 & 0 \end{pmatrix}$$
(2.16)

and,

$$\begin{pmatrix} (\lambda - a_n)x = \\ (\lambda - u/n)x_1 & (\lambda - u/n)x_2 - h_1x_2 & (\lambda - u/n)x_3 - h_1x_5 - h_2x_6 \\ 0 & (\lambda - u/n)x_4 & (\lambda - u/n)x_5 - h_3x_6 \\ 0 & 0 & (\lambda - u/n)x_6 \end{pmatrix}$$

$$(2.17)$$

Thus

$$\| a_n x - xa_n \|_T = \| h_1 (x_4 - x_1) \|_B + \| h_1 x_5 - h_2 (x_1 - x_6) \|_B + \| h_3 (x_6 - x_4) \|_B \le \| h_1 x_1 \|_B + \| h_1 x_4 \|_B + \| h_1 x_5 \|_B + \| h_2 x_1 \|_B + \| h_2 x_6 \|_B + \| h_3 x_4 \|_B + \| h_3 x_6 \|_B.$$

$$(2.18)$$

and,

 $\| (\lambda - a_n) x \|_T = \| (\lambda - u/n) x_1 \|_B$ $+ \| (\lambda - u/n) x_2 - h_1 x_4 \|_B$ $+ \| (\lambda - u/n) x_3 - h_1 x_5 - h_2 x_6 \|_B$ $+ \| (\lambda - u/n) x_4 \|_B + \| (\lambda - u/n) x_5$ $- h_3 x_6 \|_B + \| (\lambda - u/n) x_6 \|_B.$ Now, by Lemma 2 in [1] and for some constant*L*, we have $<math>\| a_n x - x a_n \|_T \le L \| (\lambda - a_n) x \|_T$ for all *x* in *T* and λ in \mathbb{C} .

Hence, by the Remark in [1], it's show that an $a_n \in Q(T)$ for all n but $a_n \rightarrow \begin{pmatrix} 0 & h_1 & h_2 \\ 0 & 0 & h_3 \\ 0 & 0 & 0 \end{pmatrix} \notin Q(T)$. **Corollary 2.3.** For each $\varepsilon > 0, Q(1 + \varepsilon, T) \neq Z(T)$.

Proof. Let
$$u(z) = z$$
 for all z in Δ , Then $a = \begin{pmatrix} u & 0 & 0 \\ 0 & u + \varepsilon h & 0 \\ 0 & 0 & u \end{pmatrix} \in Q(T)$
for any λ in \mathbb{C} and $x = \begin{pmatrix} x_1 & x_2 & x_3 \\ 0 & x_4 & x_5 \\ 0 & 0 & x_6 \end{pmatrix} \in T, x_i \in B$

$$ax - xa = \begin{pmatrix} 0 & -\varepsilon hx_2 & 0\\ 0 & 0 & \varepsilon hx_5\\ 0 & 0 & 0 \end{pmatrix}$$
(2.19)

and

 $(\lambda - a)x =$

$$\begin{pmatrix} (\lambda - u)x_1 & (\lambda - u)x_2 & (\lambda - u)x_3 \\ 0 & (\lambda - u - \varepsilon h)x_4 & (\lambda - u - \varepsilon h)x_5 \\ 0 & 0 & (\lambda - u)x_6 \end{pmatrix} (2.20)$$

$$\begin{pmatrix} x(\lambda - a) = \\ x_1(\lambda - u) & x_2(\lambda - u - \varepsilon h) & x_3(\lambda - u) \\ 0 & x_4(\lambda - u - \varepsilon h) & x_5(\lambda - u) \\ 0 & 0 & x_6(\lambda - u). \end{pmatrix}$$
(2.21)

Thus

$$\|ax - xa\|_T = \|\varepsilon hx_2\|_B + \|\varepsilon hx_5\|_B$$
(2.22)

and

$$\begin{array}{l} \| (\lambda - a) x \|_{T} = \| (\lambda - u) x_{1} \|_{B} + \| (\lambda - u) x_{2} \\ \|_{B} + \| (\lambda - u) x_{3} \|_{B} + \| (\lambda - u - h) x_{4} \|_{B} \\ + \| (\lambda - u - h) x_{5} \|_{B} + \| (\lambda - u) x_{6} \|_{B}. \end{array}$$
Now, by Lemma 2 in [1]

$$\| \varepsilon h x_2 \|_B \le \varepsilon \| (\lambda - u) x_2 \|_B \le \varepsilon \| (\lambda - a) x \|_T.$$
 (2.23)

$$\|\varepsilon hx_5\|_B \le \varepsilon \| (\lambda - u - \varepsilon h) x_5\|_B \le \varepsilon \| (\lambda - a) x\|_T.$$
 (2.24)

The inequalities
$$(2.22) - (2.24)$$
 show that
 $|| ax - xa||_T \le \varepsilon || (\lambda - a)x||_T$, so that
 $|| x(\lambda - a) ||_T = || (\lambda - a)x + (ax - xa) ||_T$
 $\le || (\lambda - a)x||_T + || ax - xa||_T$
 $\le (1 + \varepsilon) || (\lambda - a)x||_T$.
Hence, $a \in Q(1 + \varepsilon, T)$ but $a \notin Z(T)$.

Remark 2.4. *The above theorem holds also for dimension greater than* 3×3 *.*

3. The quasi-central elements of ultraprime Banach algebra

Recall from [2] that a normed algebra A is called ultraprime if there exists a positive constant L > 0, such that

$$L \| a \| \| b \| \le \| M_{a,b} \| \forall a, b \in A,$$
(3.1)

where $M_{a,b}$ is two-sided multiplication operator defined by: $M_{a,b}: A \rightarrow A$

$$x \to M_{a,b} = axb \forall x \in A$$

if a = b, then A is called ultrasemiprime (see also [6]). From now on A is ultraprime Banach algebra with identity.

Theorem 3.1. Every element in the centre of A is quasicentral.

Proof. Let (A, || . ||) be an ultraprime Banach algebra with identity, and let

 $L = \inf\{ \| M_{a,b} \| : a, b \in A \}$

be the constant of ultraprimeness of A.

Fix $a \in Z(A)$, clearly that $\lambda - a \in Z(A)$. Now, for $0 \neq x \in A$ we have

$$L \parallel x \parallel \parallel x(\lambda - a) \parallel \leq \parallel M_{x(\lambda - a), x} \parallel .$$
(3.2)

Also, for all $y \in A$

 $\begin{aligned} M_{x(\lambda-a),x}(y) &= x(\lambda-a) yx = xy(\lambda-a) x = M_{x,(\lambda-a)x}(y),\\ \text{this implies that } \| M_{x(\lambda-a),x} \| &= \| M_{x,(\lambda-a)x} \|.\\ \text{Therefore from (3.2),}\\ L \| x \| \| x(\lambda-a) \| \leq \| x \| \| (\lambda-a)x \|.\\ \text{So, } \| x(\lambda-a) \| &\leq \frac{1}{L} \| (\lambda-a)x \|. \text{ Since for } 0 < L < 1\\ \text{the inequality (3.1) is always true, it follows that if } K = \frac{1}{L},\\ \text{then we have } a \in Q(K,A) \text{ which complete the proof.} \end{aligned}$

Corollary 3.2. Q(A) is not closed under addition or multiplication.

Proof. Clear from ([7] Theorem 2.4) and above theorem. $\hfill\square$

References

- ^[1] J. F. Rennison, The quasi-centre of a Banach algebra, *Math Proc. Campridge Philos. Soc.*, 103(1988), 333–337.
- [2] M. Mathieu, The symmetric algebra of quotients of an ultraprime Banach algebra, J. Austral. Math. Soc. Ser. A., 50(1)(1991), 75–87.
- [3] J. F. Rennison, Conditions related to centrality in a Banach algebra, J. London Math. Soc., 26(2)(1982), 155– 168.
- [4] J. F. Rennison, Conditions related to centrality in a Banach algebra II, *J. London Math. Soc.*, 35(2)(1987), 499– 513.
- ^[5] C. Le Page, Sur quelques conditions entrainant la commutative dans les algebres, *Banach. C. R. Acad. Sci. Paris Ser. A-B*, 265(1967), 235–237.

- [6] A. A. Mohammed, On ultrasemiprime algebras, *Dirasat*, *Pure Sciences*, 33(1)(2006), 82–84.
- [7] J. F. Rennison. Closure properties of the quasi-centre of a Banach algebra, *Math Proc. Campridge Philos. Soc.*, 108(1990), 355–364.
- [8] A.Y. Asad, Extended centrality in a complex Banach algebra, *International Mathematical Forum*, 13(3)(2018), 117–122.

******** ISSN(P):2319 – 3786 Malaya Journal of Matematik ISSN(O):2321 – 5666 *******

