Neighbourhood V_4–magic labeling of some subdivision graphs

K.P. Vineesh1* and V. Anil Kumar2

Abstract
Let $V_4 = \{0, a, b, c\}$ be the Klein-4-group with identity element 0. A graph $G = (V(G), E(G))$, with vertex set $V(G)$ and edge set $E(G)$, is said to be Neighbourhood V_4-magic if there exists a labeling $f : V(G) \rightarrow V_4 \setminus \{0\}$ such that the sum $N^+_f(v) = \sum_{u \in N(v)} f(u)$ is a constant map. If this constant is p, where p is any non-zero element in V_4, then we say that f is a p-neighbourhood V_4-magic labeling of G and G is said to be a p-neighbourhood V_4-magic graph. If this constant is 0, then we say that f is a 0-neighbourhood V_4-magic labeling of G and G is said to be a 0-neighbourhood V_4-magic graph.

Keywords
Klein-4-group, α-neighbourhood V_4-magic graphs and 0-neighbourhood V_4-magic graphs.

AMS Subject Classification
05C78, 05C25.

1. Introduction

In this paper we consider graphs that are connected, finite, simple and undirected. For graph theory notations and terminology not directly defined in this paper, we refer readers to [1]. The Klein 4-group, denoted by V_4, is an abelian group of order 4. It has elements $V_4 = \{0, a, b, c\}$, with $a + a = b + b = c + c = 0$ and $a + b = b + c = c + a = a + c = a = b$. A graph $G = (V(G), E(G))$, with vertex set $V(G)$ and edge set $E(G)$, is said to be Neighbourhood V_4-magic if there exists a labeling $f : V(G) \rightarrow V_4 \setminus \{0\}$ such that the sum $N^+_f(v) = \sum_{u \in N(v)} f(u)$ is a constant map. If this constant is p, where p is any non-zero element in V_4, then we say that f is a p-neighbourhood V_4-magic labeling of G and G is said to be a p-neighbourhood V_4-magic graph. If this constant is 0, then we say that f is a 0-neighbourhood V_4-magic labeling of G and G is said to be a 0-neighbourhood V_4-magic graph.

The subdivision graph of a graph G is denoted by $S(G)$ and is obtained by inserting an additional vertex to each edge of G. In this paper, we investigate Neighbourhood V_4-magic labeling of subdivision graph of some graphs and we classify them into the following three categories:

(i) $\Omega_{\alpha} := \text{the class of all } \alpha\text{-neighbourhood } V_4\text{-magic graphs}$,
(ii) $\Omega_0 := \text{the class of all } 0\text{-neighbourhood } V_4\text{-magic graphs}$, and
(iii) $\Omega_{\alpha,0} := \Omega_{\alpha} \cap \Omega_0$.

2. Main Results

Theorem 2.1. [2] $C_n \in \Omega_{\alpha}$ if and only if $n \equiv 0\pmod{4}$.

Theorem 2.2. For $n \geq 3$, $S(C_n) \in \Omega_{\alpha}$ if and only if $n \equiv 0\pmod{2}$.

Proof. We have $S(C_n) \simeq C_{2n}$. Then by Theorem 2.1, $S(C_n) \in \Omega_{\alpha}$ if and only if $2n \equiv 0\pmod{4}$, i.e., if and only if $n \equiv 0\pmod{2}$. This completes the proof.

Theorem 2.3. $S(C_n) \in \Omega_0$ for all $n \geq 3$.

Proof. By labeling all the vertices of $S(C_n)$ by a, we get $S(C_n) \in \Omega_0$.

Corollary 2.4. For $n \geq 3$, $S(C_n) \in \Omega_{\alpha,0}$ if and only if $n \equiv 0\pmod{2}$.

©2020 MJM.
Proof. Proof directly follows from Theorem 2.2 and Theorem 2.3.

Theorem 2.7.

Definition 2.10. [6] The flower graph F_m is the graph obtained from a helm H_n by joining each pendant vertex to the central vertex of the helm.

Theorem 2.11. $S(F_m) \notin \Omega_n$ for any $n \geq 3$.

Diagram:

Figure 1. An a-neighbourhood V_4-magic labeling of $S(C_4)$.

Definition 2.14. [7] The Sunflower SF_n is obtained from a wheel W_n with the central vertex v_0 and cycle $C_n = v_1v_2v_3 \cdots v_n$ and additional vertices $v_1, v_2, v_3, \ldots, v_n$ where v_i is joined by edges to v_i and v_{i+1}, where $i+1$ is taken over modulo n.

Theorem 2.15. $S(SF_n) \notin \Omega_n$ for any $n \geq 3$.

Proof. Consider the sunflower SF_n with vertex set $V = \{v_0, v_1, v_2, v_3, \ldots, v_n\}$ where v_0 is the central vertex, $v_1, v_2, v_3, \ldots, v_n$ are vertices of the cycle and v_i is the vertex joined by edges to v_i and v_{i+1} where $i+1$ is taken over modulo n. For $1 \leq i \leq n$, let w_i, v_i, v_i, u_i be the vertices in $S(SF_n)$ corresponding to the edges $w_i, v_i, v_i, v_i, v_{i+1}, w_{i+1}, v_{i+1}$ of SF_n, where $i+1$ is taken over modulo n. Suppose that $S(SF_n) \in \Omega_n$ for some n with a labeling f. Then $N_f^+(v_i) = a = N_f^+(v_{i+1})$, implies that $f(w_i) = f(v_i)$ and consequently $N_f^+(v_i) = 0$, which is a contradiction. Hence $S(SF_n) \notin \Omega_n$ for any n.

Theorem 2.16. For $n \geq 3$, $S(SF_n) \in \Omega_n$ if $n \equiv 0 \pmod 2$.

Proof. Consider the sunflower SF_n with vertex set $V = \{v_0, v_1, v_2, v_3, \ldots, v_n\}$ where v_0 is the central vertex, $v_1, v_2, v_3, \ldots, v_n$ are vertices of the cycle and v_i is the vertex joined by edges to v_i and v_{i+1} where $i+1$ is taken over modulo n. For $1 \leq i \leq n$, let w_i, v_i, v_i, u_i be the vertices in $S(SF_n)$ corresponding to the edges $w_i, v_i, v_i, v_i, v_{i+1}, w_{i+1}, v_{i+1}$ of SF_n, where $i+1$ is taken over modulo n. Suppose that $n \equiv 0 \pmod 2$. We define $f : V[S(SF_n)] \to V_4 \setminus \{0\}$ as :

\[
 f(w_i) = f(v_i) = f(v_i) = f(v_i) = f(v_i)^n = a \quad \text{for} \quad 1 \leq i \leq n,
\]

\[
 f(u_i) = \begin{cases}
 b & \text{if } i \equiv 1 \pmod 2 \\
 c & \text{if } i \equiv 0 \pmod 2
 \end{cases}
\]

Clearly f is an a-neighbourhood V_4-magic labeling of $S(SF_n)$. This completes the proof of the theorem.

Corollary 2.17. $S(SF_n) \notin \Omega_n$ for any $n \geq 3$.

1808
Theorem 2.21. S(B_{m,n}) \in \Omega_a if and only if both m and n are even.

Proof. Consider the bistar B_{m,n} with vertex set \{u,v,u_i,v_j : 1 \leq i \leq m \text{ and } 1 \leq j \leq n\} where u_i(1 \leq i \leq m) and v_j(1 \leq j \leq n) are pendant vertices adjacent to u and v respectively. Let w,u_i and v_j be vertices in S(B_{m,n}) corresponding to the edges uw,u_iw and v_jw respectively. Suppose that both m and n are even. Define f : V[S(B_{m,n})] \rightarrow V_4 \setminus \{0\} as:

f(u) = f(v) = c \text{ for } 1 \leq j \leq n
f(v) = f(u_i) = b \text{ for } 1 \leq i \leq m
f(w) = f(u'_i) = f(v'_j) = a \text{ for } 1 \leq i \leq m \text{ and } 1 \leq j \leq n.

Then f is an a-neighbourhood V_4-magic labeling of S(B_{m,n}). Hence S(B_{m,n}) \in \Omega_a. Conversely, suppose that not both m and n are even. Then either m or n is odd. Without loss of generality take m is odd. If possible, let S(B_{m,n}) \in \Omega_a with a labeling f. Then N_i^+(u) = a implies that f(u_i) = a for 1 \leq i \leq m. Then N_j^+(u) = a implies that ma + f(u) = a, consequently f(a) = 0. This is a contradiction. Hence S(B_{m,n}) \notin \Omega_a. Which completes the proof of the theorem.

Theorem 2.22. S(B_{m,n}) \notin \Omega_a for any m and n.

Proof. Proof is obvious, due to the presence of pendant vertices in S(B_{m,n}).

Theorem 2.23. S(B_{m,n}) \notin \Omega_{a,0} for any m and n.

Proof. Proof directly follows from Theorem 2.21.

Definition 2.24. Theorem 2.25. S(J(m,n)) \notin \Omega_a for any m and n.

Proof. Proof is obvious, since S(J(m,n)) has pendant vertex in it.

Corollary 2.26. S(J(m,n)) \notin \Omega_{a,0} for any m and n.

Proof. Proof directly follows from Theorem 2.24.

Definition 2.27. The graph P_2 \times P_n is called a Ladder. It is denoted by L_n.

Theorem 2.28. S(L_n) \in \Omega_a for all n \geq 1.

Proof. Consider the ladder L_n with vertex set V = \{u_i,v_i : 1 \leq i \leq n\} and edge set E = \{u_0u_1,v_0v_1 : 1 \leq i \leq n-1\} \cup \{u_nv_i : 1 \leq i \leq n\}. Let u_i,v_i be the new vertices corresponding to the edges uu_{i+1}, vv_{i+1} for 1 \leq i \leq n-1 and w_i be the vertices corresponding to the edges uu_i for 1 \leq i \leq n in S(L_n). Now define f : V[S(L_n)] \rightarrow V_4 \setminus \{0\} as:

f(u_i) = \begin{cases} b & \text{if } i \equiv 1 \text{ (mod 2)} \\ c & \text{if } i \equiv 0 \text{ (mod 2)} \end{cases}

f(v_i) = \begin{cases} c & \text{if } i \equiv 1 \text{ (mod 2)} \\ b & \text{if } i \equiv 0 \text{ (mod 2)} \end{cases}

f(w_i') = f(v'_i) = c \text{ for } 1 \leq i \leq n-1
f(w_i) = f(w_n) = b.

Then N_i^+(a) \equiv a. Hence S(L_n) \in \Omega_a.

Definition 2.29. The open ladder O(L_n) is the graph obtained from two paths of lengths n - 1 with V(G) = \{u_i,v_i : 1 \leq i \leq n\} and E(G) = \{u_iu_{i+1},v_iv_{i+1} : 1 \leq i < n\} \cup \{u_nv_i : 1 < i < n\}.

Theorem 2.30. S(O(L_n)) \in \Omega_a for all n \geq 2.

Proof. Consider the open ladder O(L_n) with vertex set V(G) = \{u_i,v_i : 1 \leq i \leq n\} and E(G) = \{uu_{i+1},vv_{i+1} : 1 \leq i < n\} \cup \{uu_i : 1 < i < n\}. Let u'_i, v'_i be the new vertices corresponding to the edges uu_{i+1}, vv_{i+1} for 1 \leq i < n and w_i be the vertices corresponding to uu_i for 1 < i < n in S(O(L_n)). Now define f : V[S(O(L_n))] \rightarrow V_4 \setminus \{0\} as:

f(u_i) = \begin{cases} b & \text{if } i \equiv 1 \text{ (mod 2)} \\ c & \text{if } i \equiv 0 \text{ (mod 2)} \end{cases}

f(v_i) = \begin{cases} c & \text{if } i \equiv 1 \text{ (mod 2)} \\ b & \text{if } i \equiv 0 \text{ (mod 2)} \end{cases}

f(w_i') = f(v'_i) = c \text{ for } 1 \leq i \leq n-1
f(w_i) = f(w_n) = b.

Then N_i^+(a) \equiv a. Hence S(O(L_n)) \in \Omega_a.
Theorem 2.31. \(S(O(L_n)) \not\in \Omega_o \) for any \(n > 2 \).

Proof. Proof is obvious, since \(S(O(L_n)) \) has pendant vertices in it. \(\square \)

Corollary 2.32. \(S(O(L_n)) \not\in \Omega_{a,0} \) for any \(n > 2 \).

Proof. Proof directly follows from Theorem 2.31. \(\square \)

Definition 2.33. The Corona \(G_1 \odot G_2 \) of two graphs \(G_1 \) and \(G_2 \) is the graph obtained by taking one copy of \(G_1 \), which has \(p_1 \) vertices, and \(p_1 \) copies of \(G_2 \) and then joining the \(i \)th vertex of \(G_1 \) by an edge to every vertex in the \(i \)th copy of \(G_2 \).

Definition 2.34. The Corona \(P_n \odot K_1 \) is called the comb graph \(CB_n \).

Theorem 2.35. \(S(CB_n) \notin \Omega_o \) for any \(n \geq 2 \).

Proof. Consider \(CB_n \) with vertex set \(\{u_i, v_i : 1 \leq i \leq n\} \) and edge set \(\{u_i, v_i : 1 \leq i \leq n\} \cup \{u_i, u_{i+1} : 1 \leq i \leq n-1\} \). Let \(v_i \) and \(u_i \) be vertices in \(S(CB_n) \) corresponding to the edges \(u_i, u_{i+1} \) for \(1 \leq i \leq n \) and \(1 \leq i \leq n-1 \) of \(CB_n \). Suppose that \(S(CB_n) \in \Omega_o \) for some \(n \) with a labeling \(f \). Then \(N_{iw}^j(v_i) = a \) implies that \(f(v^i_j) = a \) for \(1 \leq i \leq n \). Also, \(N_{iw}^j(u_i) = a \) implies that \(f(v^i_j) + f(u^i_j) = a \) implies that \(f(u^i_j) = 0 \). This is a contradiction. Hence \(S(CB_n) \notin \Omega_o \) for any \(n \). \(\square \)

Theorem 2.36. \(S(CB_n) \notin \Omega_o \) for any \(n \).

Proof. Proof is obvious, since \(S(CB_n) \) has pendant vertices in it. \(\square \)

Corollary 2.37. \(S(CB_n) \notin \Omega_{a,0} \) for any \(n \).

Proof. Proof directly follows from Theorem 2.36. \(\square \)

Definition 2.38. [11] A Crown graph \(C_n \) is obtained from \(C_n \) by attaching a pendant edge at each vertex of the cycle \(C_n \).

Theorem 2.39. For \(n \geq 3 \), \(S(C_n) \in \Omega_o \) if and only if \(n \equiv 0 \pmod{2} \).

Proof. Consider the crown \(C_n \) with vertex set \(\{u_i, v_i : 1 \leq i \leq n\} \), where \(u_1, u_2, u_3, \ldots, u_n \) are vertices on the cycle \(C_n \) and \(v_1, v_2, v_3, \ldots, v_n \) are pendant vertices adjacent to the vertices \(u_1, u_2, u_3, \ldots, u_n \) respectively. Let \(v_i (1 \leq i \leq n) \) be the vertices in \(S(C_n) \) corresponding to the edges \(u_i, v_i (1 \leq i \leq n) \) and \(u_i \) be the vertices corresponding to the edges \(u_i, u_{i+1} (1 \leq i \leq n) \), where \(i + 1 \) is taken over modulo \(n \). Suppose \(S(C_n) \in \Omega_o \) with a labeling \(f \). Then \(N^j_{iw}(v_i) = a \) gives either \(f(u_i) = b \) or \(f(u_i) = c \). Without loss of generality, take \(f(u_i) = b \). Then \(N^j_{iw}(u_i) = a \) implies that \(f(u_i) = c \). Also \(N^j_{iw}(u_i) = a \) implies that \(f(u_i) = b \). Proceeding like this, we should have

\[
f(u_i) = \begin{cases} b & \text{if } i \equiv 1 \pmod{2} \\ c & \text{if } i \equiv 0 \pmod{2} \end{cases}
\]

Now, \(N^j_{iw}(u_i) = a \) implies that \(f(u_i) = c \). Therefore, \(n \equiv 0 \pmod{2} \). Conversely suppose that \(n \equiv 0 \pmod{2} \). Define \(f : V[S(C_n)] \rightarrow V_4 \setminus \{0\} \) as:

\[
f(u_i) = \begin{cases} b & \text{if } i \equiv 1 \pmod{2} \\ c & \text{if } i \equiv 0 \pmod{2} \end{cases}, f(v_i) = \begin{cases} c & \text{if } i \equiv 1 \pmod{2} \\ b & \text{if } i \equiv 0 \pmod{2} \end{cases}
\]

\[
f(u_i) = f(v_i) + a \text{ for } 1 \leq i \leq n.
\]

Then \(f \) is an \(a \)-neighbourhood \(V_4 \)-magic labeling of \(S(C_n) \). This completes the proof of the theorem. \(\square \)

Theorem 2.40. \(S(C_n) \notin \Omega_o \) for any \(n \geq 3 \).

Proof. Proof is obvious, since \(S(C_n) \) has pendant vertices in it. \(\square \)

Corollary 2.41. \(S(C_n) \notin \Omega_{a,0} \) for any \(n \geq 3 \).

Proof. Proof directly follows from Theorem 2.40. \(\square \)

References

