Properties of neutrosophic nano semi open sets

R. Vijayalakshmi\(^1\)\(^*\) and A. P. Mookambika \(^2\)

Abstract
Smarandache \([2]\) introduced and developed the new concept of Neutrosophic set from the Intuitionistic fuzzy sets. A.A. Salama \([1]\) introduced Neutrosophic topological spaces by using the Neutrosophic crisp sets. M.L. Thivagar et al. \([3,4]\) developed Nano topological spaces and Neutrosophic nano topological spaces. Aim of this paper is we introduce and study the properties of Neutrosophic nano semi closed sets in Neutrosophic nano topological spaces. The neutrosophic nano semi open set, neutrosophic nano semi closed set, neutrosophic nano semi closure, Neutrosophic Nano semi interior, Neutrosophic nano topology.

Keywords

AMS Subject Classification
32C18.

\(^1\) Department of Mathematics, Arignar Anna Government Arts College, Namakkal-637002, Tamil Nadu, India.
\(^2\) Department of Mathematics, Mahatma Gandhi Government Arts College, New Mahe(PO), Mahe-673311, Puducherry, India.
\(^*\) Corresponding author: viji.lakshmi80@rediffmail.com; mookiratna@gmail.com

Article History
Received 24 September 2020; Accepted 29 October 2020

©2020 MJM.

Contents
1 Introduction .. 1851
2 Preliminaries 1851
3 Neutrosophic Nano Semi-Open Sets in Neutrosophic Topological Spaces 1852
4 Neutrosophic Nano Semi-Closed Sets in Neutrosophic Topological Spaces 1854
5 Neutrosophic Nano Semi-Interior in Neutrosophic Topological Spaces 1855
6 Neutrosophic Nano Semi-Closure in Neutrosophic Topological Spaces 1856
References ... 1858

1. Introduction

Nano topology investigated by M.L. Thivagar et.al \([3]\) can be expressed as a collection of nano approximations, Neutrosophic sets established by F. Smarandache \([2]\). Neutrosophic set is illustrate by three functions: a membership, indeterminacy and a nonmembership functions that are independently related neutrosophic set have wide range of applications in real life. M.L. Thivagar et al. \([4]\) developed Neutrosophic nano topological spaces. Neutrosophic nano semi closed, Neutrosophic nano \(\alpha\) closed, Neutrosophic nano pre closed, Neutrosophic nano semi pre closed and Neutrosophic nano regular closed are introduced by M. Parimala et al. \([5]\). Aim of the present paper is we studied about properties of Nano semi closure, Neutrosophic Nano semi interior in Neutrosophic nano topological spaces.

2. Preliminaries

Definition 2.1. Let \(U\) be a non-empty set and \(R\) be an equivalence relation on \(U\). Let \(M\) be a neutrosophic set in \(U\) with the membership function \(\mu_M\), the indeterminancy function \(\sigma_M\) and the non-membership function \(\nu_M\). The neutrosophic nano lower, neutrosophic nano upper approximation and neutrosophic nano boundary of \(M\) in the approximation \((U,R)\) denoted by \(N(M)\), \(\overline{N(M)}\) and \(B_N(M)\) are respectively defined as follows:

1. \(N(M) = \{u \in U \mid \mu_R(M_R)(u) > y \in [u]\}

2. \(\overline{N(M)} = \{u \in U \mid \mu_R(M_R)(u) > y \in [u]\}

3. \(B_N(M) = \overline{N(M)} - N(M)\)

Definition 2.2. Let \(U\) be an universe, \(R\) be an equivalence relation on \(U\) and \(M\) be a neutrosophic set in \(U\) and if the
collection $N_N(\tau) = \{0_{N_N}, 1_{N_N}, N(M), N(\overline{M}), B_N(M)\}$ forms a topology then it is said to be a neutrosophic nano topology. We call $(U, N_N(\tau))$ as the neutrosophic nano topological space. The elements of $N_N(\tau)$ are called neutrosophic nano open sets.

Definition 2.3. Let U be a nonempty set and the neutrosophic sets M_{P_1} and M_{P_2} in the form

\[M_{P_1} = \{ < u : \mu_{M_{P_1}}(u), \sigma_{M_{P_1}}(u), \nu_{M_{P_1}}(u) > : u \in U \}, \]
\[M_{P_2} = \{ < u : \mu_{M_{P_2}}(u), \sigma_{M_{P_2}}(u), \nu_{M_{P_2}}(u) > : u \in U \} \]

Then the following statements hold:

1. $0_{N_N} = \{ < u, 0, 0, 1 > : u \in U \}$ and $1_{N_N} = \{ < u, 1, 1, 0 > : u \in U \}$.
2. $M_{P_1} \subseteq M_{P_2}$ iff $\{ \mu_{M_{P_1}}(u) \leq \mu_{M_{P_2}}(u), \sigma_{M_{P_1}}(u) \leq \sigma_{M_{P_2}}(u), \nu_{M_{P_1}}(u) \geq \nu_{M_{P_2}}(u) \}$ for all $u \in U$.
3. $M_{P_1} = M_{P_2}$ iff $M_{P_1} \subseteq M_{P_2}$ and $M_{P_2} \subseteq M_{P_1}$.
4. $M_{P_1} = \{ u : \mu_{M_{P_1}}(u), 1 - \sigma_{M_{P_1}}(u), \mu_{M_{P_1}}(u) > : u \in U \}$.
5. $M_{P_1} \cap M_{P_2} = \{ u : \mu_{M_{P_1}}(u) \land \mu_{M_{P_2}}(u), \sigma_{M_{P_1}}(u) \land \sigma_{M_{P_2}}(u), \nu_{M_{P_1}}(u) \lor \nu_{M_{P_2}}(u) \}$ for all $u \in U$.
6. $M_{P_1} \cup M_{P_2} = \{ u : \mu_{M_{P_1}}(u) \lor \mu_{M_{P_2}}(u), \sigma_{M_{P_1}}(u) \lor \sigma_{M_{P_2}}(u), \nu_{M_{P_1}}(u) \land \nu_{M_{P_2}}(u) \}$ for all $u \in U$.
7. $\cup_{M_{P_1}} = \{ < u, \land, \land, \lor > \}$.
8. $\cap_{M_{P_1}} = \{ < u, \land, \lor, \lor > \}$.

Proposition 2.4. For any neutrosophic Nano set M_{P_1} in $(U, N_N(\tau))$ we have

1. $N_N(\overline{M_{P_1}})^c = (N_N(\overline{M_{P_1}}))^c$.
2. $N_N(\overline{M_{P_1}})^c = (N_N(\overline{M_{P_1}}))^c$.
3. $M_{P_1} \subseteq M_{P_2} \Rightarrow N_N(\overline{M_{P_1}}) \subseteq N_N(\overline{M_{P_2}})$.
4. $N_N(\overline{M_{P_1}}) \subseteq N_N(\overline{M_{P_2}}) \Rightarrow N_N(\overline{M_{P_1}}) \subseteq N_N(\overline{M_{P_2}})$.
5. $N_N(\overline{M_{P_1}}) = N_N(\overline{M_{P_2}})$.
6. $N_N(\overline{M_{P_1}}) = N_N(\overline{M_{P_2}})$.
7. $N_N(\overline{M_{P_1}} \cap M_{P_2}) = N_N(\overline{M_{P_1}}) \cap N_N(\overline{M_{P_2}})$.
8. $N_N(\overline{M_{P_1}} \cup M_{P_2}) = N_N(\overline{M_{P_1}}) \cup N_N(\overline{M_{P_2}})$.
9. $N_N(\overline{0_{N_N}}) = 0_{N_N}$.
10. $N_N(1_{N_N}) = 1_{N_N}$.
11. $N_N(0_{N_N}) = 0_{N_N}$.
12. $N_N(\overline{1_{N_N}}) = 1_{N_N}$.
13. $M_{P_1} \subseteq M_{P_2} \Rightarrow (M_{P_1})^c \subseteq (M_{P_2})^c$.
14. $N_N(\overline{M_{P_1}}) \subseteq N_N(\overline{M_{P_2}}) \subseteq N_N(\overline{M_{P_1}}) \cap N_N(\overline{M_{P_2}})$.
15. $N_N(\overline{M_{P_1}}) \cup N_N(\overline{M_{P_2}}) \subseteq N_N(\overline{M_{P_1}}) \cup N_N(\overline{M_{P_2}})$.

3. Neutrosophic Nano Semi-Open Sets in Neutrosophic Topological Spaces

In this section, the concepts of the Neutrosophic Nano semi-open set is introduced and also discussed their characterizations.

Definition 3.1. Let M_{P_1} be N_N of a N_NTSU. Then M_{P_1} is said to be Neutrosophic Nano semi-open [written $N_N(SO)$] set of U if there exists a Neutrosophic Nano open set N_NO such that $N_NO \subseteq M_{P_1} \subseteq N_N(\overline{N_NO})$.

Theorem 3.2. A subset M_{P_1} in a N_NTSU is $N_N(SO)$ set if and only if $M_{P_1} \subseteq N_N(\overline{N_N(\overline{M_{P_1}})})$.

Proof. Sufficiency: Let $M_{P_1} \subseteq N_N(\overline{N_N(\overline{M_{P_1}})})$. Then for $N_NO = N_N(\overline{N_N(\overline{M_{P_1}})})$, we have $N_NO \subseteq M_{P_1} \subseteq N_N(\overline{N_NO})$. Necessity: Let M_{P_1} be $N_N(SO)$ set in U. Then $N_NO \subseteq M_{P_1} \subseteq N_N(\overline{N_NO})$ for some Neutrosophic Nano open set N_NO at $N_NO \subseteq N_N(\overline{N_NO})$ and thus $N_N(\overline{N_NO}) \subseteq N_N(\overline{N_N(\overline{M_{P_1}})})$. Hence $M_{P_1} \subseteq N_N(\overline{N_NO}) \subseteq N_N(\overline{N_N(\overline{M_{P_1}})})$.

Theorem 3.3. Let M_{P_1} be $N_N(SO)$ set in the N_NTSU and suppose $M_{P_2} \subseteq M_{P_1} \subseteq N_N(\overline{M_{P_1}})$. Then M_{P_2} is $N_N(SO)$ set in U.

Proof. There exists a Neutrosophic Nano open set N_NO such that $N_NO \subseteq M_{P_1} \subseteq N_N(\overline{N_NO})$. Then $N_NO \subseteq M_{P_2}$. But $N_N(\overline{M_{P_1}}) \subseteq N_N(\overline{N_NO})$ and thus $M_{P_2} \subseteq N_N(\overline{N_NO})$. Hence $N_NO \subseteq M_{P_2} \subseteq N_N(\overline{N_NO})$ and M_{P_2} is $N_N(SO)$ set in U.

Theorem 3.4. Every Neutrosophic Nano open set in the N_NTSU is $N_N(SO)$ set in U.

Proof. Let M_{P_1} be Neutrosophic Nano open set in N_NTSU. Then $M_{P_1} = N_N(\overline{N_N(\overline{M_{P_1}})})$. Also $N_N(\overline{N_N(\overline{M_{P_1}})}) \subseteq N_N(\overline{N_N(\overline{M_{P_1}})})$. This implies that $M_{P_1} \subseteq N_N(\overline{N_N(\overline{M_{P_1}})})$. Hence by Theorem 3.2, M_{P_1} is $N_N(SO)$ set in U.

Remark 3.5. The converse of the above theorem need not be true as shown by the following example.

Example 3.6. Let U and M_{P_1} be two non-empty finite sets, where U is the universe and M_{P_1} the set of attributes $U = \{F_1, F_2, F_3, F\}$ are Fruits. Let $U/R = \{\{F_1, F_2, F_3\}, \{F\}\}$ be an equivalence relation.
\[M_{P_1} = \{\text{Proteins, Minerals, Vitamins}\} \text{ are three attributes, its Neutrosophic values are given below} \]

\[
F_1 = \left\{ \begin{array}{c} \frac{4}{10}, \frac{5}{10}, \frac{3}{10} \\ \frac{3}{10}, \frac{2}{10}, \frac{2}{10} \\ \frac{9}{10}, \frac{5}{10}, \frac{8}{10} \end{array} \right\}
\]

\[
F_2 = \left\{ \begin{array}{c} \frac{2}{10}, \frac{4}{10}, \frac{5}{10} \\ \frac{1}{10}, \frac{1}{10}, \frac{2}{10} \\ \frac{6}{10}, \frac{5}{10}, \frac{8}{10} \end{array} \right\}
\]

\[
F_3 = \left\{ \begin{array}{c} \frac{5}{10}, \frac{5}{10}, \frac{3}{10} \\ \frac{4}{10}, \frac{2}{10}, \frac{2}{10} \\ \frac{9}{10}, \frac{5}{10}, \frac{8}{10} \end{array} \right\}
\]

\[
F_4 = \left\{ \begin{array}{c} \frac{4}{10}, \frac{4}{10}, \frac{5}{10} \\ \frac{3}{10}, \frac{2}{10}, \frac{2}{10} \\ \frac{5}{10}, \frac{5}{10}, \frac{8}{10} \end{array} \right\}
\]

\[M_{F_{2,N}}(F) = \left\{ \begin{array}{c} \frac{5}{10}, \frac{5}{10}, \frac{3}{10} \\ \frac{2}{10}, \frac{2}{10}, \frac{2}{10} \\ \frac{8}{10}, \frac{5}{10}, \frac{8}{10} \end{array} \right\}
\]

\[N_N(\tau) = \left\{ 0_{N_N}, 1_{N_N}, N(M), N(M), M_{F_{2,N}}(M) \right\} \]

\[N(F) = \left\{ \begin{array}{c} \frac{2}{10}, \frac{4}{10}, \frac{5}{10} \\ \frac{1}{10}, \frac{1}{10}, \frac{2}{10} \\ \frac{6}{10}, \frac{5}{10}, \frac{8}{10} \end{array} \right\}
\]

\[N(F) = \left\{ \begin{array}{c} \frac{5}{10}, \frac{5}{10}, \frac{3}{10} \\ \frac{4}{10}, \frac{4}{10}, \frac{2}{10} \\ \frac{9}{10}, \frac{5}{10}, \frac{8}{10} \end{array} \right\}
\]

\[M_{F_{2,N}}(F) = \left\{ \begin{array}{c} \frac{5}{10}, \frac{5}{10}, \frac{3}{10} \\ \frac{2}{10}, \frac{2}{10}, \frac{2}{10} \\ \frac{8}{10}, \frac{5}{10}, \frac{8}{10} \end{array} \right\}
\]

\[N_N(\tau) = \left\{ 0_{N_N}, 1_{N_N}, \right\} \]

\[N_N(\tau) = \left\{ 0_{N_N}, 1_{N_N}, \right\} \]

\[F_3 = \left\{ \begin{array}{c} \frac{3}{10}, \frac{4}{10}, \frac{5}{10} \\ \frac{2}{10}, \frac{2}{10}, \frac{2}{10} \\ \frac{6}{10}, \frac{5}{10}, \frac{8}{10} \end{array} \right\}
\]

Here \(F_3 \) is \(N^N(SO) \) sets but are not Neutrosophic Nano open sets.

Theorem 3.7. Let \((U, N_N) \) be a \(N^N(TS) \). Then union of two \(N^N(SO) \) sets is a \(N^N(SO) \) set in the \(N^N(TS) \).

Proof. Let \(M_{P_1} \) and \(M_{P_2} \) are \(N^N(SO) \) sets in \(U \). Then \(M_{P_1} \subseteq N^NCl(\text{Int}(M_{P_1})) \) and \(M_{P_2} \subseteq N^NCl(\text{Int}(M_{P_2})) \).

Therefore \(M_{P_1} \cup M_{P_2} \subseteq N^NCl(\text{Int}(M_{P_1})) \cup N^NCl(\text{Int}(M_{P_2})) \) \(= N^NCl(\text{Int}(M_{P_1}) \cup N^N\text{Int}(M_{P_2})) \subseteq N^NCl(\text{Int}(M_{P_1} \cup M_{P_2})) \)

[By Proposition 2.4]. Hence \(M_{P_1} \cup M_{P_2} \) is \(N^N(SO) \) set in \(U \).

Example 3.8. Let \(U \) and \(M_{P_3} \) be two non-empty finite sets, where \(U \) is the universe and \(M_{P_3} \) the set of attributes. The members of \(U = \{P_1, P_2, P_3, P\} \) are pressure patient.

Let \(U/R = \{\{P_1, P_2, P_3\}, \{P\}\} \) be an equivalence relation.

\[M_{P_1} = \{\text{Salt food, cholesterol food}\} \text{ are two attributes.} \]

\[P_1 = \left\{ \begin{array}{c} \frac{3}{10}, \frac{5}{10}, \frac{4}{10} \\ \frac{6}{10}, \frac{2}{10}, \frac{5}{10} \end{array} \right\}
\]
There exists a Neutrosophic Nano openset in U.

Properties of neutrosophic nano semi-open sets — 1854/1858

4. Neutrosophic Nano Semi-Closed Sets in Neutrosophic Topological Spaces

In this section, the Neutrosophic Nano semi-closed set is introduced and studied their properties.

Definition 4.1. Let M_{P_1} be N^NS of a N^NTSU. Then M_{P_1} is said to be Neutrosophic Nano semi-closed [written as $N^N(SC)$] set of U if there exists a neutrosophic nano closed set N^Nc such that $N^NInt(N^Nc) \subseteq M_{P_1} \subseteq N^NC$.

Theorem 4.2. A subset M_{P_1} in a N^NTSU is N^NCS set if and only if $N^NInt(N^NCl(M_{P_1})) \subseteq M_{P_1}$.

Proof. Sufficiency:
Let $N^NInt(N^NCl(M_{P_1})) \subseteq M_{P_1}$. Then for $N^Nc = N^NCl(M_{P_1})$, we have $N^NInt(N^Nc) \subseteq M_{P_1} \subseteq N^NC$.

Necessity:
Let M_{P_1} be $N^N(SC)$ set in U. Then $N^NInt(N^NC) \subseteq M_{P_1} \subseteq N^NC$ for some Neutrosophic nano closed set N^NC. But $N^NCl(M_{P_1}) \subseteq N^NC$ and thus $N^NInt(N^NCl(M_{P_1})) \subseteq N^NInt(N^NC)$. Hence $N^NInt(Cl(M_{P_1})) \subseteq N^NInt(N^NC) \subseteq M_{P_1}$.

Theorem 4.3. Every Neutrosophic nano closed set in the N^NTSU is $N^N(SC)$ set in U.

Proof. Let M_{P_1} be Neutrosophic nano closed set in N^NTSU. Then $M_{P_1} = N^NCl(M_{P_1})$. Also $N^NInt(N^NCl(M_{P_1})) \subseteq N^NCl(M_{P_1})$. This implies that $N^NInt(N^NCl(M_{P_1})) \subseteq M_{P_1}$.

Hence, M_{P_1} is $N^N(SC)$ set in U.

Remark 4.4. The converse of the above theorem need not be true as shown by the following example.

Example 4.5. Let U and M_{P_1} be two non-empty finite sets, where U is the universe and M_{P_1} the set of attributes $U = \{P_2, P_3, P_4\}$ are Patients. Let $U/R = \{\{P_1, P_2, P_3\}, \{P_4\}\}$ be an equivalence relation. $M_{P_1} = \{\text{Head ache, Temperature, Cold}\}$ are three attributes, its Neutrosophic values are given below.

\[
P_1 = \left\{ \begin{pmatrix} 3 \\ 10 \\ 10 \end{pmatrix}, \begin{pmatrix} 5 \\ 10 \\ 10 \end{pmatrix}, \begin{pmatrix} 8 \\ 10 \\ 10 \end{pmatrix} \right\}
\]

\[
P_2 = \left\{ \begin{pmatrix} 5 \\ 10 \\ 10 \end{pmatrix}, \begin{pmatrix} 2 \\ 10 \\ 10 \end{pmatrix}, \begin{pmatrix} 8 \\ 10 \\ 10 \end{pmatrix} \right\}
\]

\[
P_3 = \left\{ \begin{pmatrix} 3 \\ 10 \\ 10 \end{pmatrix}, \begin{pmatrix} 2 \\ 10 \\ 10 \end{pmatrix}, \begin{pmatrix} 8 \\ 10 \\ 10 \end{pmatrix} \right\}
\]

\[
P_4 = \left\{ \begin{pmatrix} 5 \\ 10 \\ 10 \end{pmatrix}, \begin{pmatrix} 2 \\ 10 \\ 10 \end{pmatrix}, \begin{pmatrix} 8 \\ 10 \\ 10 \end{pmatrix} \right\}
\]
Proof. Let M_{P_1} and M_{P_2} be two non-empty finite sets, where U is the universe and M_{P_1} the set of attributes.

$N_N(\tau) = \{0_N, 1_N, N(M), N(N(M)), \overline{N(M)}, M_{P_{2},N}(M)\}
$ $N(F) = \left\{\left(\frac{3}{10}, \frac{5}{10}, \frac{5}{10}\right), \left(\frac{2}{10}, \frac{8}{10}, \frac{4}{10}\right), \left(\frac{8}{10}, \frac{5}{10}, \frac{9}{10}\right)\right\})
$ $N(F) = \left\{\left(\frac{5}{10}, \frac{6}{10}, \frac{2}{10}\right), \left(\frac{2}{10}, \frac{8}{10}, \frac{1}{10}\right), \left(\frac{8}{10}, \frac{5}{10}, \frac{5}{10}\right)\right\})
$ $M_{P_{2},N}(F) = \left\{\left(\frac{5}{10}, \frac{6}{10}, \frac{2}{10}\right), \left(\frac{2}{10}, \frac{8}{10}, \frac{2}{10}\right), \left(\frac{8}{10}, \frac{5}{10}, \frac{8}{10}\right)\right\})
$ $N_N(\tau) = \{0_N, 1_N, \}
$ $N_N(\tau) = \left\{\left(\frac{0}{10}, \frac{5}{10}, \frac{7}{10}\right), \left(\frac{9}{10}, \frac{2}{10}\right), \left(\frac{7}{10}, \frac{5}{10}, \frac{2}{10}\right), \left(\frac{10}{10}, \frac{5}{10}, \frac{7}{10}\right)\right\})
$ $N_N(\tau) = \left\{\left(\frac{0}{10}, \frac{5}{10}, \frac{7}{10}\right), \left(\frac{9}{10}, \frac{2}{10}\right), \left(\frac{7}{10}, \frac{5}{10}, \frac{2}{10}\right), \left(\frac{10}{10}, \frac{5}{10}, \frac{7}{10}\right)\right\})
$ $P_3 = \left\{\left(\frac{7}{10}, \frac{5}{10}, \frac{2}{10}\right)\right\})
$ $P_6 = \left\{\left(\frac{2}{10}, \frac{0}{10}, \frac{8}{10}\right)\right\})
$ $P_5 = \left\{\left(\frac{7}{10}, \frac{5}{10}, \frac{2}{10}\right)\right\})
$ $P_5 \cap P_6 = \left\{\left(\frac{2}{10}, \frac{0}{10}, \frac{8}{10}\right)\right\})$ is $N^N(NM)$ on U. Now, we define the two $N^N(SM)$ sets as follows:

Here P_3 is $N^N(SM)$ sets but are not Neutrosophic Nano open sets.

Also E is $N^N(SM)$ set but is not Neutrosophic nano closed set.

Theorem 4.6. Let (U, N_N) be a $N^N(TS)$. Then intersection of two $N^N(SC)$ sets is a $N^N(SC)$ set in the $N^N(TSU)$.

Proof. Let M_{P_1} and M_{P_2} are $N^N(SC)$ sets in U. Then $N^N(Int(N^N(Cl(M_{P_1})))) \subseteq M_{P_1}$ and $N^N(Int(N^N(Cl(M_{P_2})))) \subseteq M_{P_2}$. Therefore $M_{P_1} \cap M_{P_2} \supseteq N^N(Int(N^N(Cl(M_{P_1})))) \cap N^N(Int(N^N(Cl(M_{P_2})))) = N^N(Int(N^N(Cl(M_{P_1}))) \cap N^N(Cl(M_{P_2})))) \supseteq N^N(Int(N^N(Cl(M_{P_1}))) \cap N^N(Cl(M_{P_2}))))$. Hence $M_{P_1} \cap M_{P_2}$ is $N^N(SC)$ set in U.

Example 4.7. Let U and M_{P_1} be two non-empty finite sets, where U is the universe and M_{P_1} the set of attributes.

$U = \{P_1, P_2, P_3, P_4\}$ are patients.

Let $U/R = \{(P_1, P_2, P_3), (P_2)\}$ be an equivalence relation.

$M_{P_1} = \{\text{Temperature}\}$ are one attributes

$U/R = \{(P_1)\} \{P_2, P_3, P_4\}
$ $P_1 = \left\{\left(\frac{10}{10}, \frac{5}{10}, \frac{7}{10}\right)\right\})
$ $P_2 = \left\{\left(\frac{0}{10}, \frac{9}{10}, \frac{2}{10}\right)\right\})
$ $P_3 = \left\{\left(\frac{10}{10}, \frac{9}{10}, \frac{2}{10}\right)\right\})
$ $P_4 = \left\{\left(\frac{10}{10}, \frac{6}{10}, \frac{7}{10}\right)\right\})
$ $\therefore N_N(\tau) = \{0_N, 1_N, N(M), N(N(M)), \overline{N(M)}, M_{P_2,N}(M)\}
$ $N(F) = \left\{\left(\frac{0}{10}, \frac{5}{10}, \frac{7}{10}\right)\right\})
$ $N(F) = \left\{\left(\frac{10}{10}, \frac{9}{10}, \frac{2}{10}\right)\right\})
$ $M_{P_2,N}(F) = \left\{\left(\frac{7}{10}, \frac{5}{10}, \frac{2}{10}\right)\right\})
$ $N_N(\tau) = \{0_N, 1_N, N(M), \overline{N(M)}, M_{P_2,N}(M)\}
$ $N_N(\tau) = \{0_N, 1_N, N(M), \overline{N(M)}, M_{P_2,N}(M)\}$

5. Neutrosophic Nano Semi-Interior in Neutrosophic Topological Spaces

In this section, we introduce the Neutrosophic Nano semi-interior operator and their properties in neutrosophic topological space.

Definition 5.1. Let $(U, N_N(\tau))$ be a $N^N(TS)$. Then for a neutrosophic subset M_{P_1} of U, the Neutrosophic Nano semi-interior of $M_{P_1}[N^N(SInt(M_{P_1}))$ for short] is the union of all Neutrosophic Nano semi-open sets of U contained in M_{P_1}.

That is, $N^N(SInt(M_{P_1})) = \cup \{G : G \text{ is a } N^N(SO) \text{ set in } U \text{ and } G \subseteq M_{P_1}\}$.

Proposition 5.2. Let $(U, N_N(\tau))$ be a $N^N(TS)$. Then for any neutrosophic subsets M_{P_1} and M_{P_2} of a $N^N(TSU)$ we have

1. $N^N(SInt(M_{P_1})) \subseteq M_{P_1}$.
2. M_{P_1} is $N^N(SO)$ set in $U \iff N^N(SInt(M_{P_1})) = M_{P_1}$.
3. $N^N(SInt(N^N(SInt(M_{P_1})))) = N^N(SInt(M_{P_1}))$.

1855
4. If $M_{P_1} \subseteq M_{P_2}$ then $N^N \text{Int}(M_{P_1}) \subseteq N^N \text{Int}(M_{P_2})$.

Proof. Let M_{P_1} be $N^N(SO)$ set in U. Then $M_{P_1} \subseteq N^N \text{Int}(M_{P_1})$. (1) \Rightarrow $M_{P_2} = N^N \text{Int}(M_{P_2})$.

Conversely, assume $M_{P_2} = N^N \text{Int}(M_{P_2})$. Hence, M_{P_2} is $N^N(SO)$ set in U. Thus (2) is proved.

(2) \Rightarrow $N^N \text{Int}(N^N \text{Int}(M_{P_2})) = N^N \text{Int}(M_{P_2})$. Thus (3) is proved.

Since $M_{P_1} \subseteq M_{P_2}$, by using (1), $N^N \text{Int}(M_{P_1}) \subseteq M_{P_2}$. That is $N^N \text{Int}(M_{P_1}) \subseteq M_{P_2}$. By (3), $N^N \text{Int}(N^N \text{Int}(M_{P_2})) \subseteq N^N \text{Int}(M_{P_2})$. Thus $N^N \text{Int}(M_{P_1}) \subseteq N^N \text{Int}(M_{P_2})$. Thus (4) is proved. □

Theorem 5.3. Let $(U, N_{N}(\tau))$ be a N^NTS. Then for any neutrosophic subset M_{P_1} and M_{P_2} of a N^NTS, we have

1. $N^N \text{Int}(M_{P_1} \cap M_{P_2}) = N^N \text{Int}(M_{P_1}) \cap N^N \text{Int}(M_{P_2})$.

2. $N^N \text{Int}(M_{P_1} \cup M_{P_2}) \supseteq N^N \text{Int}(M_{P_1}) \cup N^N \text{Int}(M_{P_2})$.

Proof. Since $M_{P_1} \cap M_{P_2} \subseteq M_{P_1}$ and $M_{P_2} \subseteq M_{P_2}$, then

\Rightarrow $N^N \text{Int}(M_{P_1} \cap M_{P_2}) \subseteq N^N \text{Int}(M_{P_1}) \cap N^N \text{Int}(M_{P_2})$.

Now, $N^N \text{Int}(M_{P_1}) \cap M_{P_2}$ and $N^N \text{Int}(M_{P_2}) \subseteq M_{P_2}$, we get

$N^N \text{Int}(M_{P_1} \cap M_{P_2}) \subseteq N^N \text{Int}(M_{P_1}) \cap N^N \text{Int}(M_{P_2})$.

Thus $N^N \text{Int}(M_{P_1} \cap M_{P_2}) = N^N \text{Int}(M_{P_1}) \cap N^N \text{Int}(M_{P_2})$.

Hence,

This implies (1).

Since $M_{P_1} \subseteq M_{P_1} \cup M_{P_2}$ and $M_{P_2} \subseteq M_{P_1} \cup M_{P_2}$, we get

$N^N \text{Int}(M_{P_1}) \cup N^N \text{Int}(M_{P_2}) \subseteq N^N \text{Int}(M_{P_1} \cup M_{P_2})$.

Thus $N^N \text{Int}(M_{P_1} \cup M_{P_2}) \supseteq N^N \text{Int}(M_{P_1}) \cup N^N \text{Int}(M_{P_2})$. □

The following example shows that the equality need not be hold.

Example 5.4. Let U and M_{P_1} be two non-empty finite sets, where U is the universe and M_{P_1} the set of attributes. $U = \{S_1, S_2, S_3, S_4\}$ are Higher secondary student for wait for NEET entrance exam

$\begin{array}{l}
M_{P_1} = \{ \text{Physics, Chemistry, Biology} \},
\end{array}$

are three attributes are Exam subjects it Neutrosophic values are given below. The members of $U = \{S_1, S_2, S_3, S_4\}$.

Let $U/R = \{\{S_1\}, \{S_2, S_3, S_4\}\}$ be an equivalence relation

\begin{align*}
S_1 &= \left\{ \left(\begin{array}{cccc} 4 & 7 & 1 & 1 \\ 10 & 10 & 10 & 10 \\ 5 & 6 & 2 & 10 \\ 10 & 10 & 10 & 10 \end{array} \right), \left(\begin{array}{cccc} 9 & 7 & 3 & 10 \\ 10 & 10 & 10 & 10 \end{array} \right) \right\}, \\
S_2 &= \left\{ \left(\begin{array}{cccc} 4 & 6 & 1 & 1 \\ 10 & 10 & 10 & 10 \\ 7 & 7 & 2 & 10 \\ 10 & 10 & 10 & 10 \end{array} \right), \left(\begin{array}{cccc} 9 & 5 & 1 & 10 \\ 10 & 10 & 10 & 10 \end{array} \right) \right\}, \\
S_3 &= \left\{ \left(\begin{array}{cccc} 4 & 7 & 1 & 1 \\ 10 & 10 & 10 & 10 \\ 7 & 7 & 2 & 10 \\ 10 & 10 & 10 & 10 \end{array} \right), \left(\begin{array}{cccc} 9 & 7 & 1 & 10 \\ 10 & 10 & 10 & 10 \end{array} \right) \right\}, \\
S_4 &= \left\{ \left(\begin{array}{cccc} 4 & 6 & 1 & 1 \\ 10 & 10 & 10 & 10 \\ 5 & 6 & 2 & 10 \\ 10 & 10 & 10 & 10 \end{array} \right), \left(\begin{array}{cccc} 9 & 5 & 3 & 10 \\ 10 & 10 & 10 & 10 \end{array} \right) \right\}
\end{align*}

$N_0 = \{0_{N_0}, 1_{N_0}, N(M), N(M), M_{P_2}(M)\}$

$\begin{align*}
N(F) &= \left\{ \left(\begin{array}{cccc} 4 & 7 & 1 & 1 \\ 10 & 10 & 10 & 10 \\ 7 & 7 & 2 & 10 \\ 10 & 10 & 10 & 10 \end{array} \right), \left(\begin{array}{cccc} 9 & 7 & 1 & 10 \\ 10 & 10 & 10 & 10 \end{array} \right) \right\}, \\
N(F) &= \left\{ \left(\begin{array}{cccc} 4 & 6 & 1 & 1 \\ 10 & 10 & 10 & 10 \\ 5 & 6 & 2 & 10 \\ 10 & 10 & 10 & 10 \end{array} \right), \left(\begin{array}{cccc} 9 & 5 & 3 & 10 \\ 10 & 10 & 10 & 10 \end{array} \right) \right\}
\end{align*}$

$\begin{align*}
M_{P_2}(N) &= \left\{ \left(\begin{array}{cccc} 1 & 4 & 4 & 1 \\ 10 & 10 & 10 & 10 \\ 2 & 4 & 5 & 10 \\ 10 & 10 & 10 & 10 \end{array} \right), \left(\begin{array}{cccc} 3 & 5 & 9 & 10 \\ 10 & 10 & 10 & 10 \end{array} \right) \right\}
\end{align*}$

Then $(U, N_{N}(\tau))$ is a N^NTS. It follows that $N^N \text{Int}(S_8 \cup S_6) \subseteq N^N \text{Int}(S_8) \cup N^N \text{Int}(S_6)$.

6. Neutrosophic Nano Semi-Closure in Neutrosophic Topological Spaces

In this section, we introduce the concept of Neutrosophic Nano semi-closure operators in a N^NTS.

Definition 6.1. Let $(U, N_{N}(\tau))$ be a N^NTS. Neutrosophic Nano semi-closure of $M_{P_1}[N^N(S)\text{Cl}(M_{P_1})$ for short] is,

$N^N(S)\text{Cl}(M_{P_1}) = \cap\{K : K$ is a $N^N(\text{SC})$ set in $U \text{ and } K \supseteq M_{P_1}\}$.

Proposition 6.2. Let (U, N_{N}) be a N^NTS. Then for any neutrosophic nano subsets M_{P_1} of U,

1. $(N^N \text{Int}(M_{P_1})^c) = N^N \text{SInt}(M_{P_1})^c$.

2. $(N^N(\text{Cl}(M_{P_1}))^c = N^N \text{Int}(M_{P_1})^c$.

1856
Proof. By Definition, $N^N S \text{Int}(M_{P_1}) = \{G : G \text{ is } N^N(S) \text{ set in } U \text{ and } G \subseteq M_{P_1}\}$.

Taking complement on both sides, $(N^N S \text{Int}(M_{P_1}))^c = (\{G : G \text{ is } N^N(S) \text{ set in } U \text{ and } G \subseteq M_{P_1}\})^c = \cap \{G : (G)^c \text{ is } N^N(S) \text{ set in } U \text{ and } (M_{P_1})^c \subseteq (G)^c\}$.

Replacing $(G)^c$ by K, we get $(N^N S \text{Int}(M_{P_1}))^c = \cap \{K : K \text{ is } N^N(S) \text{ set in } U \text{ and } K \supseteq (M_{P_1})^c\}$. By Definition, $(N^N S \text{Int}(M_{P_1}))^c = N^N(S) \text{Cl}(M_{P_1})^c$. This proves (1).

$(1) \Rightarrow \quad (N^N S \text{Int}(M_{P_1}))^c = N^N(S) \text{Cl}(M_{P_1})^c = N^N(S) \text{Cl}(M_{P_1})$.

Taking complement on both sides, we get $N^N S \text{Int}(M_{P_1})^c = (N^N(S) \text{Cl}(M_{P_1}))^c$. This proves (2).

Proposition 6.3. Let (U, N_τ) be a N^NTS. Then for any neutrosophic subsets M_{P_1} and M_{P_2} of a N^NTSU we have

1. $M_{P_1} \subseteq N^N(S) \text{Cl}(M_{P_1})$.
2. M_{P_1} is $N^N(S) \text{ set in } U \iff N^N(S) \text{Cl}(M_{P_1}) = M_{P_1}$.
3. $N^N(S) \text{Cl}(N^N(S) \text{Cl}(M_{P_1})) = N^N(S) \text{Cl}(M_{P_1})$.
4. If $M_{P_1} \subseteq M_{P_2}$ then $N^N(S) \text{Cl}(M_{P_1}) \subseteq N^N(S) \text{Cl}(M_{P_2})$.

Proof. (1) Proof is obvious.

Let M_{P_1} be $N^N(S) \text{ set in } U$. By Definition, $(M_{P_1})^c$ is $N^N(SO) \text{ set in } U$. Now, $N^N S \text{Int}((M_{P_1})^c) = (M_{P_1})^c \iff (N^N(S) \text{Cl}(M_{P_1}))^c = (M_{P_1})^c \iff N^N(S) \text{Cl}(M_{P_1}) = M_{P_1}$. Thus proved (2).

$(2) \Rightarrow N^N(S) \text{Cl}(N^N(S) \text{Cl}(M_{P_1})) = N^N(S) \text{Cl}(M_{P_1})$. Thus proved (3).

Since $M_{P_1} \subseteq M_{P_2}$, $(M_{P_2})^c \subseteq (M_{P_1})^c$ we get, $N^N S \text{Int}((M_{P_2})^c) \subseteq N^N S \text{Int}((M_{P_1})^c)$. Taking complement on both sides, $(N^N S \text{Int}((M_{P_2})^c))^c \subseteq (N^N S \text{Int}((M_{P_1})^c))^c$. $\Rightarrow N^N(S) \text{Cl}(M_{P_2}) \subseteq N^N(S) \text{Cl}(M_{P_1})$. This proves (4).

Proposition 6.4. Let M_{P_1} be a neutrosophic nano set in a N^NTSU. Then $N^N S \text{Int}(M_{P_1}) \subseteq N^N S \text{Int}(M_{P_1}) \subseteq M_{P_1} \subseteq N^N(S) \text{Cl}(M_{P_1}) \subseteq N^N(S) \text{Cl}(M_{P_2})$.

Proof. It follows from the definitions of corresponding operators.

Proposition 6.5. Let (U, N_τ) be a N^NTS. Then for a neutrosophic subset M_{P_1} and M_{P_2} of a N^NTSU, we have

1. $N^N(S) \text{Cl}(M_{P_1} \cup M_{P_2}) = N^N(S) \text{Cl}(M_{P_1}) \cup N^N(S) \text{Cl}(M_{P_2})$ and
2. $N^N(S) \text{Cl}(M_{P_1} \cap M_{P_2}) \subseteq N^N(S) \text{Cl}(M_{P_1}) \cap N^N(S) \text{Cl}(M_{P_2})$.

Proof. Since

$N^N(S) \text{Cl}(M_{P_1} \cup M_{P_2}) = N^N(S) \text{Cl}(C(C(M_{P_1} \cup M_{P_2})) = N^N(S) \text{Cl}(M_{P_1} \cup M_{P_2})$.

Since $M_{P_1} \cap M_{P_2} \subseteq M_{P_1}$ and $M_{P_1} \cap M_{P_2} \subseteq M_{P_2}$ we have,$N^N(S) \text{Cl}(M_{P_1} \cap M_{P_2}) \subseteq N^N(S) \text{Cl}(M_{P_1}) \cap N^N(S) \text{Cl}(M_{P_2})$. Thus proved (1).

The following example shows that the equality need not be hold.

Example 6.6. Let U and M_{P_1} be two non-empty finite sets, where U is the universe and M_{P_1} be the set of attributes $U = \{P_1, P_2, P_3, P_4\}$ is sugar patient.

Let $U/R = \\langle\{P_1, P_2, P_3\}, \{P_4\}\rangle$ be an equivalence relation $M_{P_1} = \text{Mr. Thysser, Urinal, wait lose}$ are three attributes its neutrosophic values are given below

$P_1 = \langle\frac{5}{10}, \frac{6}{10}, \frac{1}{10}, \frac{6}{10}, \frac{7}{10}, \frac{1}{10}, \frac{9}{10}, \frac{5}{10}, \frac{2}{10}\rangle$

$P_2 = \langle\frac{4}{10}, \frac{5}{10}, \frac{2}{10}, \frac{8}{10}, \frac{6}{10}, \frac{3}{10}, \frac{9}{10}, \frac{7}{10}, \frac{3}{10}\rangle$

$P_3 = \langle\frac{4}{10}, \frac{5}{10}, \frac{2}{10}, \frac{8}{10}, \frac{3}{10}, \frac{7}{10}, \frac{2}{10}, \frac{5}{10}, \frac{4}{10}\rangle$

$P_4 = \langle\frac{5}{10}, \frac{6}{10}, \frac{1}{10}, \frac{8}{10}, \frac{7}{10}, \frac{1}{10}, \frac{9}{10}, \frac{7}{10}, \frac{2}{10}\rangle$

$N_\tau = \{0_{N_\tau}, 1_{N_\tau}, N(M), N(M), M_{P_1}, N(M), M_{P_2}, N(M)\}$

$N(F) = \langle\frac{4}{10}, \frac{5}{10}, \frac{2}{10}, \frac{6}{10}, \frac{3}{10}, \frac{9}{10}, \frac{5}{10}, \frac{3}{10}\rangle$

$N(F) = \langle\frac{5}{10}, \frac{5}{10}, \frac{1}{10}, \frac{8}{10}, \frac{7}{10}, \frac{1}{10}, \frac{9}{10}, \frac{7}{2}\rangle$

$M_{P_1} = \langle\frac{2}{10}, \frac{4}{10}, \frac{4}{10}, \frac{3}{10}, \frac{4}{10}, \frac{6}{10}, \frac{3}{10}, \frac{5}{10}, \frac{9}{10}\rangle$

$N_\tau = \{0_{N_\tau}, 1_{N_\tau}, \}

$\langle\frac{4}{10}, \frac{5}{10}, \frac{2}{10}, \frac{6}{10}, \frac{3}{10}, \frac{9}{10}, \frac{5}{10}, \frac{3}{10}\rangle$

$\langle\frac{5}{10}, \frac{5}{10}, \frac{1}{10}, \frac{8}{10}, \frac{7}{10}, \frac{1}{10}, \frac{9}{10}, \frac{7}{2}\rangle$

$\langle\frac{2}{10}, \frac{4}{10}, \frac{4}{10}, \frac{3}{10}, \frac{4}{10}, \frac{6}{10}, \frac{3}{10}, \frac{5}{10}, \frac{9}{10}\rangle$

$\langle\frac{5}{10}, \frac{6}{10}, \frac{1}{10}, \frac{8}{10}, \frac{7}{10}, \frac{1}{10}, \frac{9}{10}, \frac{7}{2}\rangle$
Then \((U, N_N(\tau))\) is a \(N^N\) \(T.S.\) Consider the \(N^N\) \(S.S.\) are

\[
P_3 = \left\{ \left(\frac{1}{10}, \frac{2}{10}, 5, \frac{10}{10} \right), \left(\frac{2}{10}, \frac{3}{10}, 7, \frac{10}{10} \right), \left(\frac{3}{10}, \frac{3}{10}, 10, \frac{10}{10} \right) \right\}
\]
and

\[
P_6 = \left\{ \left(\frac{2}{10}, 4, \frac{4}{10}, \frac{10}{10} \right), \left(\frac{1}{10}, \frac{2}{10}, 8, \frac{10}{10} \right), \left(\frac{2}{10}, 5, 9, \frac{10}{10} \right) \right\}
\]

Then \(N^N(S)Cl(P_3) \cap N^N(S)Cl(P_6) \not\subseteq N^N(S)Cl(P_3 \cap P_6).

Theorem 6.7. If \(M_{P_1}^1\) and \(M_{P_2}^2\) are \(N^N\) \(S.S.\) of \(N^N\) \(T.S.S\) \(U\) and \(V\) respectively, then

1. \(N^N(S)Cl(M_{P_1}^1) \times N^N(S)Cl(M_{P_2}^2) \supseteq N^N(S)Cl(M_{P_1}^1 \times M_{P_2}^2).
2. \(N^NInt(M_{P_1}^1) \times N^NInt(M_{P_2}^2) \subseteq N^NInt(M_{P_1}^1 \times M_{P_2}^2).

Proof. (1) Since \(M_{P_1}^1 \subseteq N^N(S)Cl(M_{P_1}^1)\) and \(M_{P_2}^2 \subseteq N^N(S)Cl(M_{P_2}^2)\) hence \(M_{P_1}^1 \times M_{P_2}^2 \subseteq N^N(S)Cl(M_{P_1}^1) \times N^N(S)Cl(M_{P_2}^2)\) and \(N^N(S)Cl(M_{P_1}^1 \times M_{P_2}^2) \subseteq N^N(S)Cl(M_{P_1}^1) \times N^N(S)Cl(M_{P_2}^2)\).

(2) follows from (1) and the fact that \(N^NInt(M_{P_1}^1)^C = (N^N(S)Cl(M_{P_1}^1))^C\).

Lemma 6.8. For \(N^N\) \(S.S.\) \(M_{P_1}^1, j\) ’s and \(M_{P_2}^2, j\) ’s of \(N^N\) \(T.S.S\) \(U\) and \(V\) respectively, we have

1. \(\cap\{M_{P_1}^1, j \cap M_{P_2}^2, j\} = \min(\cap M_{P_1}^1, j \cap M_{P_2}^2, j)\); \(\cup\{M_{P_1}^1, j \cup M_{P_2}^2, j\} = \max(\cup M_{P_1}^1, j \cup M_{P_2}^2, j)\).
2. \(\cap\{M_{P_1}^1, j \cap 1_{N_N}\} = (\cap M_{P_1}^1, j) \times 1_{N_N}; \cup\{M_{P_1}^1, j \cup 1_{N_N}\} = (\cup M_{P_1}^1, j) \times 1_{N_N}.
3. \(\cap\{1_{N_N} \cap M_{P_2}^2, j\} = 1_{N_N} \cap (\cap M_{P_2}^2, j); \cup\{1_{N_N} \cup M_{P_2}^2, j\} = 1_{N_N} \cup (\cup M_{P_2}^2, j).

Proof. Obvious.

Theorem 6.9. Let \(N_N(\tau)\) be a \(N^N\) \(T.S.\) Then for a neutrosophic subset \(M_{P_1}^1\) and \(M_{P_2}^2\) of \(U\) we have

1. \(N^N(S)Cl(M_{P_1}^1) \supseteq M_{P_1}^1 \cap N^N(S)Cl(N^NInt(M_{P_1}^1))\).
2. \(N^NInt(M_{P_1}^1) \subseteq M_{P_1}^1 \cap N^NIntN^N(S)Cl(M_{P_1}^1)\).
3. \(N^NInt(N^N(S)Cl(M_{P_1}^1)) \subseteq N^NInt(N^NCl(M_{P_1}^1))\).
4. \(N^NInt(N^N(S)Cl(M_{P_1}^1)) \subseteq N^NInt(N^N(S)Cl(N^NInt M_{P_1}^1))\).

Proof. \(M_{P_1}^1 \subseteq N^N(S)Cl(M_{P_1}^1) \Rightarrow N^NInt(M_{P_1}^1) \subseteq M_{P_1}^1\). Then \(N^N(S)Cl(N^NInt(M_{P_1}^1)) \subseteq N^N(S)Cl(M_{P_1}^1)\) From the above,

\[
M_{P_1}^1 \cup N^N(S)Cl(N^NInt(M_{P_1}^1)) \subseteq N^N(S)Cl(M_{P_1}^1).
\]

Thus proved (1).

Now, \(N^NInt(M_{P_1}^1) \subseteq M_{P_1}^1 \Rightarrow M_{P_1}^1 \subseteq N^N(S)Cl(M_{P_1}^1)\). Then \(N^NInt(M_{P_1}^1) \subseteq N^NInt(N^N(S)Cl(M_{P_1}^1))\) From the above, we have \(N^NInt(M_{P_1}^1) \subseteq M_{P_1}^1 \cap N^NInt(N^N(S)Cl(M_{P_1}^1))\). Thus proved (2).

Since \(N^N(S)Cl(M_{P_1}^1) \subseteq N^NInt(Cl(M_{P_1}^1))\) We get,

\[
N^NInt(N^N(S)Cl(M_{P_1}^1)) \subseteq N^NInt(N^N(S)Cl(M_{P_1}^1)).
\]

Thus proved (3).

(1) \(\Rightarrow N^N(S)Cl(M_{P_1}^1) \supseteq M_{P_1}^1 \cup N^N(S)Cl(N^NInt(M_{P_1}^1))\). We have \(N^NInt(N^N(S)Cl(M_{P_1}^1)) \supseteq N^NInt(M_{P_1}^1 \cup N^N(S)Cl(N^NInt(M_{P_1}^1)))\).

Since, \(N^NInt(M_{P_1}^1 \cup M_{P_2}^2) \supseteq N^NInt(M_{P_1}^1) \cup N^NInt(M_{P_2}^2)\),

\[
N^NInt(N^N(S)Cl(M_{P_1}^1)) \supseteq N^NInt(M_{P_1}^1 \cup N^N(S)Cl(N^NInt(M_{P_1}^1))) \supseteq N^NInt(N^N(S)Cl(N^NInt(M_{P_1}^1))).
\]

Thus proved (4).

References

