On some contra \mathcal{H}-continuous functions in topological spaces

M. Raja Kalaivanan1* and A. Jose Little Flower2

Abstract
In this article, we first introduce contra \mathcal{H}-continuous functions, contra \mathcal{H}_g-continuous functions and study their relations with various contra continuous functions. A notions of contra \mathcal{H}_g-continuous function have been introduced and study the relation between contra \mathcal{H}_g-continuous function and contra \mathcal{H}-continuous functions.

Keywords
\mathcal{H}-closed, contra \mathcal{H}-continuous, contra \mathcal{H}-continuous and contra \mathcal{H}_g-continuous.

AMS Subject Classification
54C05, 54C08, 54C10.

1 Department of Mathematics, Pasumpon Muthuramalinga Thevar College, Utsilampatti-625532, Tamil Nadu, India.
2 Research Scholar, Department of Mathematics, Madurai Kamaraj University, Madurai-625021, Tamil Nadu, India
*Corresponding author: 1 rajakalaivanan@yahoo.com; 2 joselittlef@gmail.com

Article History: Received 11 September 2020; Accepted 09 November 2020

©2020 MJM.

1. Introduction

J. Jeyanthi et al. [13–15] introduced Λ_r-closed, Λ_r-continuous and Caldas et al. introduced λ-closed and λ-continuous. Levin introduced generalized closed sets developed by more generalized sets.

In the article, we first introduce contra \mathcal{H}-continuous functions, contra \mathcal{H}-continuous functions and study their relations with various contra continuous functions. A notions of contra \mathcal{H}_g-continuous function have been introduced and investigate the relation between contra \mathcal{H}_g-continuous function and contra \mathcal{H}-continuous functions.

2. Preliminaries

Through out paper obtained in the Topological space (X, τ) (resp. (X, σ) and (X, η)) is denoted by TS (X, τ) (resp. TS (X, σ) and TS (X, η)).

For a subset C of a TS X, int(C), cl(C) denoted the interior, closure of C respectively. And λ symbol use this thesis \mathcal{A}.

For so many author introduced various definitions pre-open set [19], semi-open set [17], λ-closed set [1], \mathcal{S}-set and \mathcal{H}-closed [22], λ-kernal [5], Λ_r-closed [14], λ-Urysohn [10], Ultra Hausdroff [23] and some various continuous g-continuous [16], λ-continuous [1], λ-irresolute [8], λ-closed [6], Λ_r-continuous [15], Λ_r-open [15], Λ_r-closed [15]. Contra-continuous [9], contra-precontinuous [12], contra λ-continuous [4], contra Λ_r-continuous [13].

Definition 2.1. [22] Consent to S be a subset of a TS X, then we define a $SS = \cap \{Q/Q \supset S, Q \in \mathcal{A} O(X, \tau)\}$.

Lemma 2.2. [21] Every Λ_r-set is Λ-set.

1. $x \in \text{Ker}(C) \iff C \cap F \neq \emptyset$ for any $F \in C(X, x)$;
2. $C \subseteq \text{Ker}(C)$ and $C = \text{Ker}(C)$ if C is open;
3. If $C \subseteq B \implies \text{Ker}(C) \subseteq \text{Ker}(B)$.

Theorem 2.4. [6] If C is \mathcal{A}-open & Λ_r-closed in TS $X \implies C$ is closed.

Theorem 2.5. [9] For a set $C \subseteq (X, \tau)$ the next conditions are equivalent:

1. C is clopen
2. \(C \) is \(\alpha \)-open and closed.
3. \(C \) is nearly open & closed.

Proposition 2.6. [22] Consent to \(C \) be a subset of a TS \(X \). For each \(x \in X \), \(x \in \text{Hcl}(C) \) if \(fU \cap C \neq \emptyset \) for any \(\text{H-open} \) \(U \) containing \(x \).

3. On contra \(\text{H} \)-continuous functions

Definition 3.1. A function \(f : X \to Y \) is called a

1. \(\text{contra} \text{H}-\text{continuous} \) if \(f^{-1}(L) \) is \(\text{H}-\text{closed} \) in \(TS \) \(X \) for each open \(L \) of \(TS \) \(Y \).
2. \(\text{contra} \text{H}_{\text{a}} \)-continuous if \(f^{-1}(L) \) is \(\text{H}_{\text{a}} \)-closed in \(TS \) \(X \) for each \(\text{a} \)-open \(L \) of \(TS \) \(Y \).

Example 3.2. Consent to \(X = \{1, 2, 3, 4\} = Y \), \(\tau = \{\emptyset, \{1\}, \{1, 2\}, \{1, 2, 3\}, \{1, 2, 3, 4\}\} \) and \(\sigma = \{\emptyset, Y, \{1\}, \{2\}, \{1, 3\}, \{2, 3, 4\}, \{1, 2, 3\}\} \). Define a \(f : X \to Y \) by \(f(1) = 1, f(2) = 4, f(3) = 3, f(4) = 2 \). In that case \(f \) is contra \(\text{H} \)-continuous.

Example 3.3. Consent to \(X = \{1, 2, 3, 4\} = Y \), \(\tau = \{\emptyset, X, \{1\}, \{1, 2\}, \{1, 2, 3\}\} \) and \(\sigma = \{\emptyset, Y, \{1\}, \{2\}, \{1, 3\}, \{2, 3, 4\}\} \). Define a \(f : X \to Y \) by \(f(1) = 1, f(2) = 4, f(3) = 3, f(4) = 2 \). In that case \(f \) is contra \(\text{H}_{\text{a}} \)-continuous.

Lemma 3.4. Condition \(f : X \to Y \) is a contra \(\text{a} \)-continuous \(\iff \) contra \(\text{H} \)-continuous.

Proof. Consent to \(L \) be a open in \(TS \) \(Y \). In the case \(f^{-1}(L) \) is \(\text{a} \)-closed in \(TS \) \(X \) and hence \(f^{-1}(L) \) is \(\text{H} \)-closed in \(TS \) \(X \). For that reason \(f \) is contra \(\text{H} \)-continuous.

Remark 3.5. The reverse of above Lemma 3.4 is need not be a true.

Example 3.6. Consent to \(X = \{1, 2, 3, 4\} = Y \), \(\tau = \{\emptyset, \{2\}, \{1, 2\}, \{2, 3\}, \{1, 2, 3\}\} \) and \(\sigma = \{\emptyset, Y, \{4\}, \{1, 4\}, \{3, 4\}, \{1, 3, 4\}\} \). Define a \(f : X \to Y \) by \(f(1) = 1, f(2) = 1, f(3) = 2, f(4) = 3 \). In the case \(f \) is contra \(\text{H} \)-continuous but not contra \(\text{a} \)-continuous, since \(f^{-1}(\{1, 3, 4\}) = \{1, 2, 4\} \) is not \(\text{a} \)-closed.

Lemma 3.7. Condition \(f : X \to Y \) is a contra \(\Lambda_{\alpha} \)-continuous \(\iff \) contra \(\text{H} \)-continuous.

Proof. Consent to \(L \) be an open in \(TS \) \(Y \). In the case \(f^{-1}(L) \) is \(\Lambda_{\alpha} \)-closed in \(TS \) \(X \) and hence \(f^{-1}(L) \) is \(\text{H} \)-closed in \(TS \) \(X \). Therefore \(f \) is contra \(\text{H} \)-continuous.

Remark 3.8. The reverse of Lemma 3.7 is but not a true.

Example 3.9. Consent to \(X = \{1, 2, 3, 4\} = Y \), \(\tau = \{\emptyset, X, \{3\}, \{3, 4\}, \{1, 2\}, \{1, 2, 3\}\} \) and \(\sigma = \{\emptyset, Y, \{2, 4\}, \{1, 2, 4\}\} \). Define a function \(f : X \to Y \) by \(f(1) = 1, f(2) = 1, f(3) = 4 \) and \(f(4) = 2 \). Here \(f \) is contra \(\text{a} \)-continuous and thus contra \(\text{H} \)-continuous but not \(\Lambda_{\alpha} \)-continuous, since of \(f^{-1}(\{1, 2, 4\}) = \{1, 2, 3\} \) is not \(\Lambda_{\alpha} \)-closed in \(X \).

![Tree](tree.png)
Theorem 3.13. Consent to L be closed in TS Y. Because

1. f is contra continuous

Consent to L be closed in Z. Since

2. L be closed in TS Z. Since

3. f is contra continuous & f is H-irresolute.

4. $g \circ f$ is contra H-continuous & f is H-irresolute.

5. $g \circ f$ is H-continuous $\implies g$ is contra α-continuous & f is α-continuous.

Proof.

1. Consent to L a closed set in TS Z. Because g is contra continuous, $g^{-1}(L)$ is open in TS Y. Since f is H-continuous, $f^{-1}(g^{-1}(L))$ is H-open in TS X. That is $(g \circ f)^{-1}(L)$ is H-open in TS X. Hence $g \circ f$ is contra H-continuous.

2. Consent to L be an open set. Because g is H-continuous, $g^{-1}(L)$ is H-open in TS Y. Because Y is locally H-indiscrete, $g^{-1}(L)$ is α-closed. Since f is α-continuous, $f^{-1}(g^{-1}(L))$ is H-closed in TS X. That is $(g \circ f)^{-1}(L)$ is H-closed in TS X. Thus $g \circ f$ is contra H-continuous.

3. Consent to L be a closed set in TS Z. Since g is contra H-continuous, $g^{-1}(L)$ is H-open in TS Y. Because f is H-irresolute, $f^{-1}(g^{-1}(L))$ is H-open in TS X. That is $(g \circ f)^{-1}(L)$ is H-open in TS X. Thus $g \circ f$ is contra H-continuous.

4. Consent to L be closed in TS Z. Since g is contra α-continuous, $g^{-1}(L)$ is α-open in TS Y. Because f is α-continuous, $f^{-1}(g^{-1}(L))$ is H-open in TS X. That is $(g \circ f)^{-1}(L)$ is H-open in TS X. Thus $g \circ f$ is contra H-continuous.

5. Consent to L be closed in Z. Since g is contra α-continuous, $g^{-1}(L)$ is α-open in TS Y. Since f is contra H-continuous, $f^{-1}(g^{-1}(L))$ is H-closed in TS X. That is $(g \circ f)^{-1}(L)$ is H-closed in TS X. Hence $g \circ f$ is H-continuous.

3. Consent to L be closed in TS Y. Because f is contra H-continuous, $f^{-1}(L)$ is H-open in TS X. Since X is a locally H-indiscrete, $f^{-1}(L)$ is closed in TS X. Hence f is continuous.

4. Consent to L be closed in TS Y. Because f is contra H-continuous, $f^{-1}(L)$ is H-open in TS X. Because X is a locally H-indiscrete, $f^{-1}(L)$ is α-closed in TS X. Thus f is α-continuous.

Theorem 3.14. If a function $f : X \to Y$ is contra α-continuous & $g : Y \to Z$ is continuous In the case $g \circ f : X \to Z$ is contra-semi continuous, where X is a α-S_δ-space.

Proof. Consent to L be a closed set in Z. Because g is continuous, $g^{-1}(L)$ is closed in Y. Because f is contra α-continuous, $f^{-1}(g^{-1}(L))$ is H-open in X. But X is a α-S_δ-space, so we get $f^{-1}(g^{-1}(L))$ is semi-open in X. That is $(g \circ f)^{-1}(L)$ is semi-open in TS X. Hence $g \circ f$ is contra-semi continuous.

Theorem 3.15. If X is a TS and for each pair of disjoint points p_1 and p_2 in X, there exists a function f of X in to a α-$Urysohn$ TS $Y : f(p_1) \neq f(p_2)$ and f is contra H-continuous at p_1 and $p_2 \implies X$ is H-T_2.

Proof. Consent to p_1 and p_2 be any disjoint points in X. In the case by hypothesis, there is a α-$Urysohn$ space and a function $f : X \to Y$, Consent to $y_1 = f(p_1)$ for $i = 1$ to 2. In the case $y_1 \neq y_2$. Since Y is α-$Urysohn$, there exists α-open neighborhoods T_{y_1} and T_{y_2} of y_1 and y_2, respectively, in Y such that $\alpha cl(T_{y_1}) \cap \alpha cl(U_{y_2}) = \emptyset$. Since f is contra H-continuous at p_i, there exist a H-open neighborhood K_{p_i} of p_i in X such that $f(K_{p_i}) \subset \alpha cl(U_{y_2})$, for $i = 1$ to 2. Hence, we get $K_{p_1} \cap K_{p_2} = \emptyset$. Since $\alpha cl(U_{y_1}) \cap \alpha cl(U_{y_2}) = \emptyset$. Thus X is H-T_2.

Corollary 3.16. If f is contra H-continuous injection of a TS X in to a α-$Urysohn$ $\implies X$ is H-T_2.

Proof. For each pair of disjoint points p_1 and p_2, f is contra H-continuous of X in to a α-$Urysohn$ Y such that $f(p_1) \neq f(p_2)$, because f is injection. Thus by Theorem 3.15, X is H-T_2.

Corollary 3.17. If f is contra H-continuous injection of a space X in to ultra Hausdorff space $Y \implies X$ is H-T_2.

Proof. Consent to p_1 and p_2 be any disjoint points in X. Since f is injective and Y is ultra Hausdorff $f(p_1) \neq f(p_2)$ and there exists $L_1, L_2 \in CO(Y)$ such that $f(p_1) \in L_1, f(p_2) \in L_2$ and $L_1 \cap L_2 = \emptyset$. In the case $p_i \in f^{-1}(L_i) \in \bar{H}(X)$ for $i = 1, 2$ and $f^{-1}(L_1) \cap f^{-1}(L_2) = \emptyset$. Hence X is H-T_2.

Theorem 3.18. If $f : X \to Y$ is contra pre continuous and continuous $\implies f$ is H-continuous.
Proof. Consent to L be any closed set in Y. Because f is contra pre continuous and continuous, \(f^{-1}(L) \) is pre open set in X and closed in X. By Theorem 2.5, \(f^{-1}(L) \) is clopen and hence \(f^{-1}(L) \) is \(\mathcal{H} \)-open. Thus f is contra \(\mathcal{H} \)-continuous. Hence f is contra \(\mathcal{H} \)-continuous.

Lemma 3.19. If a subset C of a TS X is regular closed and open then C is \(\mathcal{H} \)-closed.

Proof. Since regular closed is closed and open is \(\Lambda \)-set, C is \(\mathcal{H} \)-closed.

Theorem 3.20. If \(f : X \to Y \) is contra-continuous and super continuous and \(g : Y \to Z \) is contra-continuous \(\implies \) their composition \(g \circ f : X \to Z \) is contra \(\mathcal{H} \)-continuous.

Proof. Consent to T be any open in TS Z. Because g is contra continuous, in the case \(g^{-1}(T) \) is closed in TS Y and f is contra-continuous and super continuous, then \(f^{-1}(g^{-1}(T)) \) is twice open and regular closed in TS X. By Lemma 3.19, \((g \circ f)^{-1}(T) \) is \(\mathcal{H} \)-closed in TS X and hence it is a \(\mathcal{H} \)-closed set. \(\therefore, g \circ f \) is contra \(\mathcal{H} \)-continuous.

Theorem 3.21. If \(f : X \to Y \) is \(\mathcal{H} \)-continuous and \(g : Y \to Z \) is contra-precontinuous \(\implies \) their composition \(g \circ f : X \to (Z, \eta) \) is contra \(\mathcal{H} \)-continuous where TS Y is submaximal.

Proof. Consent to T be any closed set in Z. Because g is contra pre continuous, \(g^{-1}(T) \) is pre open in TS Y. Since TS Y is submaximal, \(g^{-1}(T) \) is open in TS Y. Because f is \(\mathcal{H} \)-continuous, \(f^{-1}(g^{-1}(T)) \) is \(\mathcal{H} \)-open in TS X. Therefore \((g \circ f)^{-1}(T) \) is \(\mathcal{H} \)-open in TS X and \(g \circ f \) is contra \(\mathcal{H} \)-continuous.

Theorem 3.22. If \(f : X \to Y \) is \(\mathcal{H} \)-continuous and \(g : Y \to Z \) is contra \(\mathcal{H} \)-continuous \(\implies \) their composition \(g \circ f : X \to Z \) is contra \(\mathcal{H} \)-continuous.

Proof. Consent to T be each open set in TS Z. Because g is contra \(\mathcal{H} \)-continuous. In the case \(g^{-1}(T) \) is a \(\mathcal{H} \)-closed set in TS Y and since f is \(\mathcal{H} \)-continuous, then \(f^{-1}(g^{-1}(T)) = (g \circ f)^{-1}(T) \) is \(\mathcal{H} \)-closed in TS X. Therefore \(g \circ f \) is contra \(\mathcal{H} \)-continuous.

Theorem 3.23. If \(f : X \to Y \) and \(g : X \to Y \) be contra \(\mathcal{H} \)-continuous functions and Y is Urysohn \(\implies \) S = \{ p \in X | f(p) = g(p) \} \(\subseteq \mathcal{H} \)-closed in TS X.

Proof. Consent to p \(\in X \setminus S \). Then \(f(p) \neq g(p) \). Because Y is Urysohn, \(\exists \) a open sets L and Q : \(f(p) \in L \) and \(g(p) \in Q \) and \(cl(L) \cap cl(Q) = \emptyset \). Because f and g are contra \(\mathcal{H} \)-continuous, In the case \(f^{-1}(cl(L)) \) and \(g^{-1}(cl(Q)) \) are \(\mathcal{H} \)-open sets in TS X. Consent to T = \(f^{-1}(cl(L)) \) and \(G = g^{-1}(cl(Q)) \). In the case T and G are \(\mathcal{H} \)-open sets containing p. Set A = \(T \cap G \). In the case A is \(\mathcal{H} \)-open in TS X. Thus \(f(C) \cap g(C) = f(T \cap G) \cap g(T \cap G) = f(T) \cap g(T) \cap cl(G) = cl(L) \cap cl(Q) = \emptyset \), \(\therefore, C \cap S = \emptyset \) and so \(x \notin \mathcal{H} cl(S) \) by Proposition 2.6. Hence S is \(\mathcal{H} \)-closed in TS X.

Definition 3.24. A subset C of a TS X is called a \(\mathcal{H} \)-dense in TS X if \(\mathcal{H} cl(C) = X \).

Theorem 3.25. Consent to F : X \(\to Y \) and g : X \(\to Y \). If TS Y is Urysohn, f & g are contra \(\mathcal{H} \)-continuous & f = g on \(\mathcal{H} \)-dense set C \(\subseteq X \implies f = g \) on TS X.

Proof. Because f & g are contra \(\mathcal{H} \)-continuous and Y is Urysohn, by Theorem 3.23, \(S = \{ p \in X | f(p) = g(p) \} \) is \(\mathcal{H} \)-closed in TS X. By suppose, we've f = g on \(\mathcal{H} \)-dense set C \(\subseteq X \). Since C \(\subseteq S \) and C is \(\mathcal{H} \)-dense. \(X = \mathcal{H} cl(C) \subseteq \mathcal{H} cl(S) = S \). Thus f = g on TS X.

Acknowledgement

The work of the first author is supported by the “Ministry of Human Resource and Development, India under grant number:MHR-02-23-200-44”.

References

