A novel method of similarity measures of Trapezoidal intuitionistic fuzzy numbers

D. Stephen Dinagar¹* and E. Fany Helena²

Abstract
In this paper, we made an extensive analysis of the similarity relation between two trapezoidal intuitionistic fuzzy numbers. We proposed two similarity measures for trapezoidal intuitionistic fuzzy number using the geometric distance and graded mean. Some numerical examples are listed for justification of the work.

Keywords
Trapezoidal Fuzzy Number, Intuitionistic Fuzzy Number, Geometric Distance, Graded mean, Similarity Measures.

AMS Subject Classification:
03E72, 03F55, 08A72.

1,2 PG and Research Department of Mathematics T.B.M.L. College, (Affiliated to Bharathidasan University, Trichy), Porayar, Tamil Nadu, India.

*Corresponding author: ¹ dsdina@rediffmail.com; ² fanyhelena3@gmail.com

Article History: Received 17 September 2020; Accepted 12 November 2020

1. Introduction
Many real-world applications make use of similarity measure to see how two objects are related together. The similarity measures have been introduced based on the concepts such graded mean integration[3]. A new method to measure the similarity between fuzzy numbers has been introduced by Chen and Chen [2]. Finding the degree of similarity between the patterns is very essential in order to reduce computation. Fuzzy similarity measures are predominantly employed to classify the resemblance between patterns. Chen and Chen [2] have proposed a similarity measure of generalized fuzzy number. Based on the concept of geometric distance the similarity measure has been proposed Liu [4]. The similarity measures between two TRIFNs using value and ambiguity has been proposed by Stephen Dinagar and Fany Helena [5].

The main objective of this paper is to brief out the conceptual theory behind then trapezoidal intuitionistic fuzzy numbers. In this paper we proposed two similarity measures of TRIFNs based on the geometric distance and graded mean integration. We adopt ˜A notation for intuitionistic fuzzy numbers. Some numerical examples are given for the proposed similarity measure.

The paper is organized as follows: Section 2 presents the basic definitions. In section 3 we proposed a similarity measures for trapezoidal intuitionistic fuzzy numbers based on geometric distance. In section 4, we proposed similarity measures using graded mean integration. Section 5 is followed by conclusion.

2. Preliminaries

Definition 2.1. A fuzzy set is characterized by a membership function mapping the elements of a domain to the unit interval [0,1]. A fuzzy set ˜A of x is defined by the following pair such as

\[ ˜A = \{(x, \mu_{˜A}(x) / x \in X)\} \]

Definition 2.2. A trapezoidal intuitionistic fuzzy number ˜A⁰ = [(a₁,a₂,a₃,a₄) (b₁,b₂,b₃,b₄)] is an intuitionistic fuzzy set on a
set of real numbers $R$, with parameter $b_1 \leq a_1 \leq b_2 \leq a_2 \leq a_3 \leq b_3 \leq a_4 \leq b_4$ whose membership function and non-membership function are defined as follows.

![Figure 1. Trapezoidal Intuitionistic Fuzzy Number.](image)

3. Proposed Similarity Measure between two Trapezoidal Intuitionistic Fuzzy Number based on Geometric Distance

Let $\tilde{A}_P = [(a_1, a_2, a_3, a_4) (b_1, b_2, b_3, b_4)]$ and $\tilde{B}_P = [(c_1, c_2, c_3, c_4) (d_1, d_2, d_3, d_4)]$ be two trapezoidal intuitionistic fuzzy numbers with a parameter $b_1 \leq a_1 \leq b_2 \leq a_2 \leq a_3 \leq b_3 \leq a_4 \leq b_4$ and $d_1 \leq c_1 \leq d_2 \leq c_2 \leq c_3 \leq d_3 \leq c_4 \leq d_4$. Using the similarity measure of trapezoidal fuzzy number we proposed for trapezoidal intuitionistic fuzzy number (i.e) the similarity measure $S_1 (\tilde{A}_P, \tilde{B}_P)$ between two TRIFNs based on geometric distance is given by the formulæ

$$S_1 (\tilde{A}_P, \tilde{B}_P) = 1 - \frac{\sum_{i=1}^{4} [\mu_{\tilde{A}_P} (x) + \nu_{\tilde{A}_P} (x)] - \sum_{i=1}^{4} [\mu_{\tilde{B}_P} (x) + \nu_{\tilde{B}_P} (x)]}{4}$$

(3.1)

Where $\mu_{\tilde{A}_P} (x) = a_1 + a_2 + a_3 + a_4; \nu_{\tilde{A}_P} (x) = b_1 + b_2 + b_3 + b_4$

$\mu_{\tilde{B}_P} (x) = c_1 + c_2 + c_3 + c_4; \nu_{\tilde{B}_P} (x) = d_1 + d_2 + d_3 + d_4$

3.1 Numerical Examples

Example 3.1. Let $\tilde{A}_P = [(0.5, 0.6, 0.65, 0.7)(0.35, 0.55, 0.7, 0.8)]$ and $\tilde{B}_P = [(0.45, 0.75, 0.8, 0.85)(0.4, 0.7, 0.85, 0.9)]$ be two trapezoidal intuitionistic fuzzy numbers. Find the similarity measure based on geometric mean.

$$S_1 (\tilde{A}_P, \tilde{B}_P) = 1 - \frac{\sum_{i=1}^{4} [\mu_{\tilde{A}_P} (x) + \nu_{\tilde{A}_P} (x)] - \sum_{i=1}^{4} [\mu_{\tilde{B}_P} (x) + \nu_{\tilde{B}_P} (x)]}{4}$$

$$= 0.89375$$

Example 3.2. Let $\tilde{A}_P = [(-0.7, -0.5, -0.4, -0.3)(-0.8, -0.53, -0.3, -0.2)]$ and $\tilde{B}_P = [(-0.57, -0.43, -0.38, -0.35)(-0.62, -0.54, -0.3, -0.2)]$ be two trapezoidal intuitionistic fuzzy numbers. Find the similarity measure based on geometric mean.

$$S_1 (\tilde{A}_P, \tilde{B}_P) = 1 - \frac{\sum_{i=1}^{4} [\mu_{\tilde{A}_P} (x) + \nu_{\tilde{A}_P} (x)] - \sum_{i=1}^{4} [\mu_{\tilde{B}_P} (x) + \nu_{\tilde{B}_P} (x)]}{4}$$

$$= 0.9575$$

4. New Approach

Let $\mu_{\tilde{A}_P} (\alpha)$ and $\nu_{\tilde{A}_P} (\alpha)$ are the alpha- cuts set of a trapezoidal intuitionistic fuzzy number $\tilde{A} = [(a_1, a_2, a_3, a_4) (b_1, b_2, b_3, b_4)]$ then the graded mean integration representation for the membership function $\mu_{\tilde{A}} (x)$ and non-membership function $\nu_{\tilde{A}} (x)$ of the TRFN $\tilde{A}$ is defined as:

$$\mu_{\tilde{A}} (\alpha) = \int_{0}^{1} \{ [a_1 + \alpha (a_2 - a_1)] + [a_4 - \alpha (a_4 - a_3)] \} f (\alpha) d\alpha$$

$$\nu_{\tilde{A}} (\beta) = \int_{0}^{1} \{ [b_2 - \alpha (b_2 - b_1)] + [b_3 + \alpha (b_4 - b_3)] \} g (\beta) d\beta$$

Respectively we shall choose $f (\alpha) = \alpha$ for both the $\mu_{\tilde{A}} (\alpha)$ and $\nu_{\tilde{A}} (\alpha)$.

The graded mean integration representation for the membership and non-membership functions can be calculated as follows.

$$\mu_{\tilde{A}} (\alpha) = \int_{0}^{1} \{ [a_1 + \alpha (a_2 - a_1)] + [a_4 - \alpha (a_4 - a_3)] \} \alpha d\alpha$$

$$= \frac{a_1 + 2a_2 + 2a_3 + a_4}{6}$$

(4.1)

$$\nu_{\tilde{A}} (\beta) = \int_{0}^{1} \{ [b_2 - \alpha (b_2 - b_1)] + [b_3 + \alpha (b_4 - b_3)] \} (1 - \beta) d\beta$$

$$= \frac{b_1 + 2b_2 + 2b_3 + b_4}{6}$$

(4.2)

4.1 Proposed Similarity Measure for Trapezoidal Intuitionistic Fuzzy Number using Graded Mean Integration Representation

Let $\tilde{A}_P = [(a_1, a_2, a_3, a_4) (b_1, b_2, b_3, b_4)]$ be the TRIFN, the graded mean integration representation is defined as

$$P (\tilde{A}) = \frac{a_1 + 2a_2 + 2a_3 + a_4 + b_1 + 2b_2 + 2b_3 + b_4}{6}$$

Then the similarity measure $S_1 (\tilde{A}_P, \tilde{B}_P)$ between two trapezoidal intuitionistic fuzzy number $\tilde{A}_P = [(a_1, a_2, a_3, a_4) (b_1, b_2, b_3, b_4)]$ is given by:

$$S_1 (\tilde{A}_P, \tilde{B}_P) = 1 - \frac{\sum_{i=1}^{4} [\mu_{\tilde{A}_P} (x) + \nu_{\tilde{A}_P} (x)] - \sum_{i=1}^{4} [\mu_{\tilde{B}_P} (x) + \nu_{\tilde{B}_P} (x)]}{4}$$

$$= 0.89375$$

Where $\mu_{\tilde{A}_P} (x) = a_1 + a_2 + a_3 + a_4; \nu_{\tilde{A}_P} (x) = b_1 + b_2 + b_3 + b_4$
Where, $d(\tilde{A}^i, \tilde{B}^i) = |P(\tilde{A}^i) - P(\tilde{B}^i)|$ with

$$P(\tilde{A}^i) = \left[\frac{a_1 + 2a_2 + 2a_3 + a_4}{6} + \frac{b_1 + 2b_2 + 2b_3 + b_4}{6}\right]$$

and

$$P(\tilde{B}^i) = \left[\frac{c_1 + 2c_2 + 2c_3 + c_4}{6} + \frac{d_1 + 2d_2 + 2d_3 + d_4}{6}\right]$$

### 4.2 Numerical Examples

**Example 4.1.** The two TRIFNs are $\tilde{A}^i_p = [(0.3, 0.6, 0.75, 0.85) (0.25, 0.5, 0.8, 0.9)]$ and $\tilde{B}^i_p = [(0.4, 0.5, 0.7, 0.8) (0.3, 0.45, 0.8, 0.9)]$ then the similarity measure based on graded mean representation is

$$S_2 (\tilde{A}^i_p, \tilde{B}^i_p) = \frac{1}{1 + d(\tilde{A}^i, \tilde{B}^i)} = 0.9756$$

**Example 4.2.** The two TRIFNs are $\tilde{A}^i_p = [(-0.7, -0.5, -0.4, -0.3) (-0.8, -0.53, -0.3, -0.2)]$ and $\tilde{B}^i_p = [(-0.57, -0.43, -0.38, -0.35)(-0.62, -0.54, -0.3, -0.2)]$ then the similarity measure based on graded mean representation is

$$S_2 (\tilde{A}^i_p, \tilde{B}^i_p) = \frac{1}{1 + d(\tilde{A}^i, \tilde{B}^i)} = 0.9662$$

### 5. Conclusion

We have discussed about the similarity measures between two trapezoidal fuzzy numbers based on geometric distance and graded mean integration representations. Also we extend this similarity measure to trapezoidal intuitionistic fuzzy number and we have provided the numerical illustration for the similarity measure.

### References


