On K-eccentric and K-hyper eccentric indices of Benzenoid H_{k} system

M. Bhanumathi ${ }^{1}$, R. Rohini ${ }^{2}$ and G. Srividhya $3^{3^{*}}$

Abstract

Let G be a connected graph with vertex set $V(G)$ and edge set $E(G)$. Bhanumathi and Easu Julia Rani introduced the first K-Eccentric index $B_{1} E(G)$ and the second K - Eccentric index $B_{2} E(G)$ of a graph G as $B_{1} E(G)=$ $\Sigma_{u e}\left[e_{G}(u)+e_{L(G)}(e)\right], B_{2} E(G)=\sum_{u e}\left[e_{G}(u) e_{L(G)}(e)\right]$ They also defined the first K-Hyper eccentric index $H B_{1} E(G)$ and the second K-Hyper eccentric index $H B_{2} E(G)$ of a graph G as $H B_{1} E(G)=\sum_{u e}\left[e_{G}(u)+e_{L(G)}(e)\right]^{2}, H B_{2} E(G)=$ $\sum_{u e}\left[e_{G}(u) e_{L(G)}(e)\right]^{2}$ where in all the cases $u e$ means that the vertex u and edge e are incident in G and $e_{L(G)}(e)$ is the eccentricity of e in the line graph $L(G)$ of G. They have defined the multiplicative version of these indices also. In this paper, we calculate the first and second K eccentric, the first and second K-hyper eccentric indices and their multiplicative versions of benzenoid H_{k} system.

Keywords

K-eccentric index, K-hyper eccentric index, Multiplicative K-eccentric index, Multiplicative K-hyper eccentric index, Circo.
${ }^{1}$ Department of Mathematics, Government Arts College for Women, Sivagangai-630562, Tamil Nadu, India.
${ }^{2}$ Department of Mathematics, Government Arts College for Women (Autonomous), Pudukkottai-622001, Tamil Nadu, India.
${ }^{3}$ Department of Mathematics, Government Arts College, Tiruchirappalli-620022, Tamil Nadu, India.
*Corresponding author: ${ }^{1}$ bhanu_ksp@yahoo.com; ${ }^{2}$ rohinianbazhagan7@gmail.com; ${ }^{3}$ vkm292011@hotmail.com Article History: Received 19 September 2020; Accepted 19 November 2020

Contents

1 Introduction

 20972 First and second K-Eccentric indices, First and Second K-Hyper Eccentric indices of Benzenoid H_{k} system: 2098
3 Multiplicative First and Second K-Eccentric indices, Multiplicative First and Second K Hyper Eccentric indices of Benzenoid H_{k} system: 2100
4 Conclusion .2102
References... 2102

1. Introduction

A topological index is a real number associated with chemical constitution. It correlates the chemical structure with various physical and chemical properties and biological activity.

All graphs in this paper are simple, finite and undirected. A graph G is a finite nonempty set $V(G)$ together with a prescribed set $E(G)$ of unordered pair of distinct elements of V. The cardinality of $V(G)$ and $E(G)$ are represented by $|V(G)|$ and $|E(G)|$, respectively. Let, $d_{G}(v)$ be the degree of a vertex v of G and $N_{G}(v)$ be the neighborhood of a vertex v of
G. The distance between the vertices u and v of a connected graph G is represented by $d_{G}(u, v)$. It is defined as the number of edges in a shortest path connects the vertices u and v. The eccentricity e ${ }_{G}(v)$ of a vertex v in G is the largest distance between v and any other vertices u of G.

To take an account on contributions of pairs of incident elements, Kulli [5] introduced the first and second K Banhatti indices. In [4], Bhanumathi and Easu Julia Rani introduced the first K-Eccentric index $B_{1} E(G)$ and the second K - Eccentric index $B_{2} E(G)$ of a graph G as

$$
B_{1} E(G)=\sum_{u e}\left[e_{G}(u)+e_{L(G)}(e)\right], B_{2} E(G)=\sum_{u e}\left[e_{G}(u) e_{L(G)}(e)\right]
$$

and also defined the first K-Hyper eccentric index $H B_{1} E(G)$ and the second K-Hyper eccentric index $H B_{2} E(G)$ of a graph G as $H B_{1} E(G)=\sum_{u e}\left[e_{G}(u)+e_{L(G)}(e)\right]^{2}, H B_{2} E(G)=\sum_{u e}$ $\left[e_{G}(u) e_{L(G)}(e)\right]^{2}$ where in all the cases ue means that the vertex u and edge e are incident in G and $e_{L(G)}(e)$ is the eccentricity of e in the line graph $L(G)$ of G [4].

Table 1

Edge set	No. of edges $e=u v$	Eccentricity of end vertices $(e(u), e(v))$	Eccentricity of e in $L(G) e_{L(G)}(e)$
E_{1}	6	$(2 k+1,2 k+1)$	$2 k+1$
E_{2}	6	$(2 k+1,2 k+2)$	$2 k+1$
E_{3}	12	$(2 k+2,2 k+3)$	$2 k+2$
E_{4}	6	$(2 k+3,2 k+3)$	$2 k+3$
E_{5}	12	$(2 k+3,2 k+4)$	$2 k+3$
E_{6}	24	$(2 k+4,2 k+5)$	$2 k+4$
E_{7}	6	$(2 k+5,2 k+5)$	$2 k+5$
E_{8}	18	$(2 k+5,2 k+6)$	$2 k+5$
E_{9}	36	$(2 k+6,2 k+7)$	$2 k+6$
\vdots	\vdots	\vdots	\vdots
$E_{3(k-2)-2}$	6	$(2 k+2(k-2)-1,2 k+2(k-2)-1)$	$2 k+2(k-2)-1$
$E_{3(k-2)-1}$	$6(k-2)$	$(2 k+2(k-2)-1,2 k+2(k-2))$	$2 k+2(k-2)-1$
$E_{3(k-2)}$	$12(k-2)$	$(2 k+2(k-2), 2 k+2(k-1)-1)$	$2 k+2(k-2)$
$E_{3(k-1)-2}$	6	$(2 k+2(k-1)-1,2 k+2(k-1)-1)$	$2 k+2(k-1)-1$
$E_{3(k-1)-1}$	$6(k-1)$	$(2 k+2(k-1)-1,2 k+2(k-1))$	$2 k+2(k-1)-1$
$E_{3(k-1)}$	$12(k-1)$	$(2 k+2(k-1), 2 k+2(k-1)+1)$	$2 k+2(k-1)$
$E_{3(k-1)+1}$	6	$(2 k+2(k-1)+1,2 k+2(k-1)+1)$	$2 k+2(k-1)+1$

2. First and second K-Eccentric indices, First and Second K-Hyper Eccentric indices of Benzenoid H_{k} system:

The circumcoronene homologous series of benzenoid also belongs to the family of molecular graphs that has several copy of benzene C_{6} on its circumference. The terms of this series are represented as, H_{1}-benzene, H_{2}-coronene, H_{3} circumcoronene and H_{4} circumcircumcoronene etc. A benzeniod system is a connected geometric figure. It is obtained by arranging congruent regular hexagons in a plane. Consequently two hexagons are either disjoint or have a common edge.

Let G be a graph with vertex set $V(G)$ and edge set $E(G)$. The eccentricities of $u, v \in V(G)$ are denoted by $e(u), e(v)$ respectively and for $e=u v \in E(G)$, denote the eccentricities of the end vertices of the edge e by $(e(u), e(v))$.

Let V be the vertex set of H_{k} and E be the edge set in H_{k}, then $|V|=6 k^{2}$ and $|E|=9 k^{2}-3 k$ for the structure of H_{k}. First, we shall determine the number of edges $e=u v$ with the eccentricity of the end vertices $e(u), e(v)$ and eccentricity of the edge e in $L(G)$. We give these values in the following Table 1.

Theorem 2.1. For any positive integer number k, let H_{k} be the general form of circumcoronene series of benzenoid system, then
(i) $\quad B_{1} E\left(H_{k}\right)=6 \sum_{i=1}^{k}[8 k+4(2 i-1)]+6 \sum_{i=1}^{k-1}[8 k+4(2 i-1)$

$$
+1]+12 \sum_{i=1}^{k-1} i[8 k+4(2 i)+1]
$$

Figure 1. The Circumcoronene homologous Series of Benzenoid $H_{k}(k \geq 1)$ with edges
(ii)

$$
\begin{aligned}
& B_{2} E\left(H_{k}\right)=6 \sum_{i=1}^{k}\left[(2(2 k+2 i-1))^{2}\right] \\
& \quad+6 \sum_{i=1}^{k-1} i\left[(2 k+2 i-1)^{2}+(2 k+2 i)(2 k+2 i-1)\right] \\
& \quad+12 \sum_{i=1}^{k-1} i\left[(2 k+2 i)^{2}+(2 k+2 i)(2 k+2 i-1)\right]
\end{aligned}
$$

(iii) $H B_{1} E\left(H_{k}\right)=6 \sum_{i=1}^{k}\left[(2(2 k+2 i-1))^{2}+(2(2 k+2 i-1))^{2}\right]$

$$
\begin{aligned}
& +6 \sum_{i=1}^{k-1} i\left[(2(2 k+2 i-1))^{2}+((2 k+2 i)+(2 k+2 i-1))^{2}\right] \\
& +12 \sum_{i=1}^{k-1} i\left[(2(2 k+2 i))^{2}+((2 k+2 i+1)+(2 k+2 i))^{2}\right]
\end{aligned}
$$

(iv) $H B_{2} E\left(H_{k}\right)=6 \sum_{i=1}^{k}\left[\left((2 k+2 i-1)^{2}\right)^{2}+\left((2 k+2 i-1)^{2}\right)^{2}\right]$

$$
\begin{aligned}
& +6 \sum_{i=1}^{k-1} i\left[\left((2 k+2 i-1)^{2}\right)^{2}+((2 k+2 i)(2 k+2 i-1))^{2}\right] \\
& +12 \sum_{i=1}^{k-1} i\left[\left((2 k+2 i)^{2}\right)^{2}+((2 k+2 i+1)(2 k+2 i))^{2}\right]
\end{aligned}
$$

Proof. Consider the General form of H_{k}-Circumcoronene graph.

$$
\begin{aligned}
& \text { (i) } \quad B_{1} E\left(H_{k}\right)=\sum_{u e}\left[e_{H_{k}}(u)+e_{L\left(H_{k}\right)}(e)\right] \\
& =\sum_{e=u v \in E(G)}\left[e_{H_{k}}(u)+e_{L\left(H_{k}\right)}(e)+e_{H_{k}}(v)+e_{L\left(H_{k}\right)}(e)\right] \\
& =\sum_{u v \in E_{1}(G)}\left[e_{G}(u)+e_{L(G)}(e)+e_{G}(v)+e_{L(G)}(e)\right]+\ldots \\
& +\sum_{u v \in E_{3(k-1)+1}(G)}\left[e_{G}(u)+e_{L(G)}(e)+e_{G}(v)+e_{L(G)}(e)\right] \\
& =6 \sum_{i=1}^{k}[8 k+4(2 i-1)]+6 \sum_{i=1}^{k-1}[8 k+4(2 i-1)+1] \\
& +12 \sum_{i=1}^{k-1} i[8 k+4(2 i)+1] \\
& \text { (ii) } \quad B_{2} E\left(H_{k}\right)=\sum_{u e}\left[e_{H_{k}}(u) \times e_{L\left(H_{k}\right)}(e)\right] \\
& =\sum_{u v \in E_{1}(G)}\left[e_{G}(u) e_{L(G)}(e)+e_{G}(v) e_{L(G)}(e)\right]+\ldots \\
& +\sum_{u v \in E_{3(k-1)+1}}\left[e_{G}(u) e_{L(G)}(e)+e_{G}(v) e_{L(G)}(e)\right] \\
& =6 \sum_{i=1}^{k}\left[(2(2 k+2 i-1))^{2}\right] \\
& +6 \sum_{i=1}^{k-1} i\left[(2 k+2 i-1)^{2}+(2 k+2 i)(2 k+2 i-1)\right] \\
& +12 \sum_{i=1}^{k-1} i\left[(2 k+2 i)^{2}+(2 k+2 i)(2 k+2 i-1)\right] \\
& \text { (iii) } \quad H B_{1} E\left(H_{k}\right)=\sum_{u e}\left[e_{H_{k}}(u)+e_{L\left(H_{k}\right)}(e)\right]^{2} \\
& =\sum_{u v \in E_{1}(G)}\left[\left[e_{G}(u)+e_{L(G)}(e)\right]^{2}+\left[e_{G}(v)+(e)\right]\right]^{2}+\ldots \\
& +\sum_{u v \in E_{3(k-1)+1}(G)}\left[\left[e_{G}(u)+e_{L(G)}(e)\right]^{2}+\left[e_{G}(v)+e_{L(G)}(e)\right]\right]^{2} \\
& =6 \sum_{i=1}^{k}\left[\left(2(2 k+2 i-1)^{2}\right)+(2(2 k+2 i-1))^{2}\right] \\
& +6 \sum_{i=1}^{k-1} i\left[(2(2 k+2 i-1))^{2}+((2 k+2 i)+(2 k+2 i-1))^{2}\right] \\
& +12 \sum_{i=1}^{k-1} i\left[(2(2 k+2 i))^{2}+((2 k+2 i+1)+(2 k+2 i))^{2}\right]
\end{aligned}
$$

(iv) $\quad H B_{2} E\left(H_{k}\right)=\sum_{u e}\left[e_{H_{k}}(u) \times e_{L\left(H_{k}\right)}(e)\right]^{2}$

$$
\begin{aligned}
= & \sum_{e=u v \in E_{1}(G)}\left[\left[e_{G}(u) \times e_{L(G)}(e)\right]^{2}+\left[e_{G}(v) \times e_{L(G)}(e)\right]\right]^{2}+\ldots \\
+ & \sum_{e=u v \in E_{3(k-1)+1}(G)}\left[\left[e_{G}(u) \times e_{L(G)}(e)\right]^{2}+\left[e_{G}(v) \times e_{L(G)}(e)\right]\right]^{2} \\
= & 6 \sum_{i=1}^{k}\left[\left((2 k+2 i-1)^{2}\right)^{2}+\left((2 k+2 i-1)^{2}\right)^{2}\right] \\
& +6 \sum_{i=1}^{k-1} i\left[\left((2 k+2 i-1)^{2}\right)^{2}+((2 k+2 i)(2 k+2 i-1))^{2}\right] \\
& +12 \sum_{i=1}^{k-1} i\left[\left((2 k+2 i)^{2}\right)^{2}+((2 k+2 i+1)(2 k+2 i))^{2}\right]
\end{aligned}
$$

For example, let us evaluate the indices for H_{4}. Consider the H_{4}-Circumcircumcoronene graph.

Figure 2

Let V be the vertex set and E be the edge set in $H_{4}=$ Circumcircumcoronene, then $|V|=96$ and $|E|=132$. Also, the number of edges with eccentricities of end vertices $e=$ $u v \in E(G)$ and $e \in L(G)$ are given as follows:

Table 2

Edge set	No. of edges	Eccentricity of end vertices $(e(u), e(v))$	Eccentricity of e in $L(G) e_{L(G)}(e)$
E_{1}	6	$(9,9)$	9
E_{2}	6	$(9,10)$	9
E_{3}	12	$(10,11)$	10
E_{4}	6	$(11,11)$	11
E_{5}	12	$(11,12)$	11
E_{6}	24	$(12,13)$	12
E_{7}	6	$(13,13)$	13
E_{8}	18	$(13,14)$	13
E_{9}	36	$(14,15)$	14
E_{10}	6	$(15,15)$	15

(i) $\quad B_{1} E\left(H_{4}\right)=\sum_{u e}\left[e_{H_{4}}(u)+e_{L\left(H_{4}\right)}(e)\right]$

$$
\begin{aligned}
= & \sum_{u v \in E_{1}(G)}\left[e_{G}(u)+e_{L(G)}(e)+e_{G}(v)+e_{L(G)}(e)\right]+\ldots \\
& +\sum_{u v \in E_{10}(G)}\left[e_{G}(u)+e_{L(G)}(e)+e_{G}(v)+e_{L(G)}(e)\right] \\
= & 6588
\end{aligned}
$$

(ii) $\quad B_{2} E\left(H_{4}\right)=\sum_{u e}\left[e_{H_{4}}(u) \times e_{L\left(H_{4}\right)}(e)\right]$

$$
\begin{aligned}
&= \sum_{e=u v \in E_{1}(G)}\left[e_{G}(u) e_{L(G)}(e)+e_{G}(v) e_{L(G)}(e)\right]+\ldots \\
&+\sum_{e=u v \in E_{10}(G)}\left[e_{G}(u) e_{L(G)}(e)+e_{G}(v) e_{L(G)}(e)\right] \\
&=41868
\end{aligned}
$$

(iii) $H B_{1} E\left(H_{4}\right)=\Sigma_{u e}\left[e_{H_{4}}(u)+e_{L\left(H_{4}\right)}(e)\right]^{2}$

$$
\begin{aligned}
& =\sum_{e=u v \in E_{1}(G)}\left[\left[e_{G}(u)+e_{L(G)}(e)\right]^{2}+\left[e_{G}(v)+e_{L(G)}(e)\right]\right]^{2}+\ldots \\
& \quad+\sum_{e=u v \in E_{10}(G)}\left[\left[e_{G}(u)+e_{L(G)}(e)\right]^{2}+\left[e_{G}(v)+e_{L(G)}(e)\right]\right]^{2} \\
& =167580
\end{aligned}
$$

(iv) $H B_{2} E\left(H_{4}\right)=\sum_{u e}\left[e_{H_{4}}(u) \times e_{L\left(H_{4}\right)}(e)\right]^{2}$

$$
\begin{aligned}
& =\sum_{e=u v \in E_{1}(G)}\left[\left[e_{G}(u) \times e_{L(G)}(e)\right]^{2}+\left[e_{G}(v) \times e_{L(G)}(e)\right]\right]^{2}+\ldots \\
& \quad+\sum_{e=u v \in E_{10}(G)}\left[\left[e_{G}(u) \times e_{L(G)}(e)\right]^{2}+\left[e_{G}(v) \times e_{L(G)}(e)\right]\right]^{2} \\
& =7105236
\end{aligned}
$$

Thus we have $B_{1} E\left(H_{4}\right)=6588, B_{2} E\left(H_{4}\right)=41868, H B_{1} E\left(H_{4}\right)$ $=167580$ and $H B_{2} E\left(H_{4}\right)=7105236$.

Corollary 2.2. H_{1} be the first terms of this Circumcoronene series of Benzene H_{k}. Then
(i) $B_{1} E\left(H_{1}\right)=72$
(ii) $B_{2} E\left(H_{1}\right)=108$
(iii) $H B_{1} E\left(H_{1}\right)=432$
(iv) $H B_{2} E\left(H_{1}\right)=972$.

Corollary 2.3. H_{2} be the second terms of this Circumcoronene series of Benzene H_{k}. Then
(i) $B_{1} E\left(H_{2}\right)=714$
(ii) $B_{2} E\left(H_{2}\right)=2154$
(iii) $H B_{1} E\left(H_{2}\right)=8634$
(iv) $H B_{2} E\left(H_{2}\right)=82182$

Corollary 2.4. H_{3} be the third terms of this Circumcoronene series of Benzene H_{k}. Then
(i) $B_{1} E\left(H_{3}\right)=2646$
(ii) $B_{2} E\left(H_{3}\right)=12366$
(iii) $H B_{1} E\left(H_{3}\right)=49770$
(iv) $H B_{2} E\left(H_{3}\right)=1134150$

3. Multiplicative First and Second K-Eccentric indices, Multiplicative First and Second K Hyper Eccentric indices of Benzenoid H_{k} system:

Theorem 3.1. For any positive integer number k, let H_{k} be the general form of circumcoronene series of benzenoid system, then
(i) $B \Pi_{1} E\left(H_{k}\right)=6 \prod_{i=1}^{k}\left[4(2 k+2 i-1)^{2}\right]$

$$
\begin{aligned}
& \times 6 \prod_{i=1}^{k-1} i[2(2 k+2 i-1)(4 k+4 i-1)] \\
& \times 12 \prod_{i=1}^{k-1} i[2(2 k+2 i)(4 k+4 i+1)]
\end{aligned}
$$

(ii) $B \Pi_{2} E\left(H_{k}\right)=6 \prod_{i=1}^{k}\left[(2 k+2 i-1)^{4}\right]$

$$
\begin{aligned}
& \times 6 \prod_{i=1}^{k-1} i\left[(2 k+2 i-1)^{3}(2 k+2 i)\right] \\
& \times 12 \prod_{i=1}^{k-1} i\left[(2 k+2 i)^{3}(2 k+2 i+1)\right]
\end{aligned}
$$

(iii) $\quad H B \Pi_{1}\left(H_{k}\right)=6 \prod_{i=1}^{k}\left[16(2 k+2 i-1)^{4}\right]$

$$
\begin{aligned}
& \times 6 \prod_{i=1}^{k-1} i\left[(4(2 k+2 i-1))^{2}\right] \\
& \times\left[((2 k+2 i)+(2 k+2 i-1))^{2}\right] \\
& \times 12 \prod_{i=1}^{k-1} i\left[4(2 k+2 i)^{2}\right]+\left[((2 k+2 i+1)+(2 k+2 i))^{2}\right]
\end{aligned}
$$

(iv) $\quad H B \Pi_{2}\left(H_{k}\right)=6 \prod_{i=1}^{k}\left[(2 k+2 i-1)^{8}\right]$

$$
\begin{aligned}
& \times 6 \prod_{i=1}^{k-1} i\left[(2 k+2 i-1)^{6}\right] \times[(2 k+2 i)] \\
& \times 12 \prod_{i=1}^{k-1} i\left[(2 k+2 i)^{6}\right][(2 k+2 i+1)]
\end{aligned}
$$

Proof. Consider the General form of Hk - Circumcoronene
graph, Using Table 1, we obtain the following:

$$
\begin{aligned}
& \text { (i) } B \Pi_{1} E\left(H_{k}\right)=\prod_{u e}\left[e_{H_{k}}(u)+e_{L\left(H_{k}\right)}(e)\right] \\
& =\prod_{u v \in E_{1} G}\left[\left[e_{G}(u)+e_{L(G)}(e)\right]\left[e_{G}(v)+e_{L(G)}(e)\right]\right] \times \ldots \\
& \times \prod_{u v \in E_{3(k-1)+1}(G)}\left[\left[e_{G}(u)+e_{L(G)}(e)\right]\left[e_{G}(v)+e_{L(G)}(e)\right]\right] \\
& =6 \prod_{i=1}^{k}\left[4(2 k+2 i-1)^{2}\right] \\
& \times 6 \prod_{i=1}^{k-1} i[2(2 k+2 i-1)(4 k+4 i-1)] \\
& \times 12 \prod_{i=1}^{k-1} i[2(2 k+2 i)(4 k+4 i+1)] \\
& \text { (ii) } B \prod_{2}\left(H_{k}\right)=\prod_{\text {ue }}\left[e_{H_{k}}(u) \times e_{L\left(H_{k}\right)}(e)\right] \\
& =\prod_{e=u v \in E_{1}(G)}\left[\left[e_{G}(u) \times e_{L(G)}(e)\right]\left[e_{G}(v) \times e_{L(G)}(e)\right]\right] \times \ldots \\
& \times \prod_{e=u v \in E_{3(k-1)+1}(G)}\left[\left[e_{G}(u)+e_{L(G)}(e)\right]\left[e_{G}(v)+e_{L(G)}(e)\right]\right] \\
& =6 \prod_{i=1}^{k}(2 k+2 i-1)^{4} \times 6 \prod_{i=1}^{k-1} i\left[(2 k+2 i-1)^{3}(2 k+2 i)\right] \\
& \times 12 \prod_{i=1}^{k-1} i\left[(2 k+2 i)^{3}(2 k+2 i+1)\right] \\
& \text { (iii) } \quad H B \Pi_{1}\left(H_{k}\right)=\Pi_{u e}\left[e_{H_{k}}(u)+e_{L\left(H_{k}\right)}(e)\right]^{2} \\
& =\prod_{e=u v \in E_{1}(G)}\left[\left[e_{G}(u)+e_{L(G)}(e)\right]^{2}\left[e_{G}(v)+e_{L(G)}(e)\right]^{2}\right] \times \ldots \\
& \times \prod_{e=u v \in E_{3(k-1)+1}(G)}\left[\left[e_{G}(u)+e_{L(G)}(e)\right]^{2}\left[e_{G}(v)+e_{L(G)}(e)\right]^{2}\right] \\
& =6 \prod_{i=1}^{k}\left[16(2 k+2 i-1)^{4}\right] \times 6 \prod_{i=1}^{k-1} i\left[(4(2 k+2 i-1))^{2}\right] \\
& +\left[((2 k+2 i)+(2 k+2 i-1))^{2}\right] \times 12 \prod_{i=1}^{k-1} i\left[4(2 k+2 i)^{2}\right] \\
& +\left[((2 k+2 i+1)+(2 k+2 i))^{2}\right] \\
& \text { (iv) } H B \Pi_{1}\left(H_{k}\right)=\prod_{u e}\left[e_{H_{k}}(u) \times e_{L\left(H_{k}\right)}(e)\right]^{2} \\
& =\prod_{e=u v \in E_{1}(G)}\left[\left[e_{G}(u) \times e_{L(G)}(e)\right]^{2}\left[e_{G}(v) x+e_{L(G)}(e)\right]^{2}\right] \times \ldots \\
& \times \prod_{e=u v \in E_{3(k-1)+1}(G)}\left[\left[e_{G}(u) \times e_{L(G)}(e)\right]^{2}\left[e_{G}(v) \times e_{L(G)}(e)\right]^{2}\right] \\
& =6 \prod_{i=1}^{k}\left[(2 k+2 i-1)^{8}\right] \times 6 \prod_{i=1}^{k-1} i\left[(2 k+2 i-1)^{6}\right] \\
& \times[(2 k+2 i)] \times 12 \prod_{i=1}^{k-1} i\left[(2 k+2 i)^{6}\right][((2 k+2 i+1)]
\end{aligned}
$$

Using MATLAB programme, we have calculated these indices for H_{1}, H_{2} and H_{3}. Those values are given below corollaries.

Corollary 3.2. H_{1} be the first terms of this Circumcoronene series of Benzene H_{k}. Then
(i) $B \Pi_{1} E\left(H_{1}\right)=2176782336$
(ii) $B \Pi_{2} E\left(H_{1}\right)=2.824295365 \times 10^{11}$
(iii) $H B \Pi_{1} E\left(H_{1}\right)=4.738381338 \times 10^{18}$
(iv) $H B \Pi_{2} E\left(H_{1}\right)=7.976644308 \times 10^{22}$

Corollary 3.3. H_{2} be the second terms of this Circumcoronene series of Benzene H_{k}. Then
(i) $B \Pi_{1} E\left(H_{2}\right)=2.086352657 \times 10^{64}$
(ii) $B \Pi_{2} E\left(H_{2}\right)=2.901497086 \times 10^{92}$
(iii) $H B \Pi_{1} E\left(H_{2}\right)=3.1023 e+040$
(iv) $H B \Pi_{2} E\left(H_{2}\right)=8.4187 e+184$

Corollary 3.4. H_{3} be the third terms of this Circumcoronene series of Benzene H_{k}. Then
(i) $B \Pi_{1} E\left(H_{3}\right)=1.3789 e^{+093}$
(ii) $B \Pi_{2} E\left(H_{3}\right)=7.3558 e^{+128} \times 1.0328 e^{+234}$
(iii) $H B \Pi_{1} E\left(H_{3}\right)=1.9013 e^{+186}$
(iv) $H B \prod_{2} E\left(H_{3}\right)=5.4107 e^{+257} \times 5.7517 e^{+151}$ $\times 6.7910 e^{+251} \times 2.7308 e^{+064}$

4. Conclusion

In chemical graph theory a topological index of a molecular graph characterizes its topology. Here, we have computed the first, second K-eccentric indices, K-hyper eccentric indices and multiplicative first, second K-eccentric and K-hyper eccentric indices of benzenoid H_{k} system.

References

${ }^{[1]}$ M. Bhanumathi, K. Easu Julia Rani, S. Balachandran, The edge version of inverse sum index of Connected graph, International Journal of Mathematical Archive, 7(1)(2016), 8-12.
${ }^{[2]}$ M. Bhanumathi, K. Easu Julia Rani, On K-eccentric indices and K hyper-eccentric indices of graphs, Aryabhatta Journal of Mathematics and Informatics, 9(1)(2017), 509520.
[3] M. Bhanumathi, K. Easu Julia Rani, On Some Multiplicative Topological Indices, International Journal on Recent Trends in Life Science and Mathematics, 4(2017), 09-18.
${ }^{[4]}$ M. Bhanumathi. K. Easu Julia Rani, Harmonic Eccentric Index of Hexagonal Chain, International Journal of Elixir Appl. Math. Appl. Math, 104C(2017), 45871-45880.
${ }^{[5]}$ V. R. Kulli, On K Banhatti Indices of Graphs, Journal of Computer and Mathematical Sciences, 7(4)(2016), 213218.
${ }^{[6]}$ V. R. Kulli, Second Multiplicativee K Banhatti Index and Coindex of Graphs, Journal of Computer and Mathematical Sciences, 7(5)(2016), 254-258.
${ }^{[7]}$ V. R. Kulli , Multiplicative K hyper-Banhatti indices and coindices of graphs, International Journal of Mathematical Archive, (2016), 1-6.
${ }^{[8]}$ V. R. Kulli, On K hyper-Banhatti indices and coindices of graphs Research gate, (2016), 1-6.
${ }^{[9]}$ V. R. Kulli, First Multiplicative K Banhatti Index and Coindex of Graphs, Annals of Pure and Applied Mathematics, 11(2)(2016), 79-82
${ }^{[10]}$ M. Bhanumathi, R. Rohini, G. Srividhya, On K-Eccentric and K-Hyper Eccentric indices of Benzenoid Hk system, National Conference on Recent Trends in Pure and Applied Mathematics, Government Arts College for Women, Sivagangai, Tamilnadu on 13th Feb. 2019.
${ }^{[11]}$ V. R. Kulli, Multiplicative hyper-zagreb indices and coindices of graphs: computing these indices of some nanostructures, International Research Journal of Pure Algebra, 6(7)(2016), 342-347.

ISSN(P):2319-3786
Malaya Journal of Matematik
ISSN(O):2321-5666

