Group action on contra semi open map and almost contra β-open mapping

S. Sivakumar1 and T. Ramanathan2

Abstract
The purpose of this paper is to introduce and research the concept of contra semi open map and almost contra β-open mapping group action.

Keywords
Group acting on open set, open map, contra semi open map and almost contra β open mapping with topological spaces.

AMS Subject Classification
54H11, 55-06, 55R35.

1,2 PG and Research Department of Mathematics, Government Arts College, C. Mutlur, Chidambaram, Tamil Nadu, India.

*Corresponding author: 1ssk.2012@yahoo.in; 2trmaths2018@gmail.com

Article History: Received 18 September 2020; Accepted 21 November 2020

Contents
1 Introduction .. 2113
2 Preliminaries .. 2113
3 Group action on contra semi open 2113
4 Group action on $AC\beta O$ mapping 2114
5 Conclusion .. 2115
References .. 2115

1. Introduction
In 1963 N. Levine and in 1969 N. Biswas have respectively defined and studied the notions called semi open sets and semi closed sets in topology. In the years 1969 and 1970, N. Biswas had defined and studied the notions of semiopen and semi-closed functions respectively. Contra-continuous functions were introduced by Julian Dontchev as functions having the property that inverse images of open sets are closed. In 1997 C.W. Baker has defined and studied the notions of contra open and contra closed functions as dual generations of contra-continuous functions. In the study of modern mathematics, mapping plays an important role, especially in topology and functional analysis.

2. Preliminaries

Definition 2.1. If $A_G \subseteq X_\tau$. It is said that it is

(i) pre open if $A_G \subseteq \text{int}(\text{cl}(A_G))$

(ii) semi-open if $A_G \subseteq \text{cl}(\text{int}(A_G))$

(iii) regular open if $A_G = \text{int}(\text{cl}(A_G))$

(iv) α-open if $A_G \subseteq \text{int}($cl(int($A_G)))$

(v) β-open if $A_G \subseteq \text{cl}(\text{int}(\text{cl}(A_G)))$.

The complement of a pre open, semi open, α-open, semi-pre open (β-open) set is said to be pre closed, semi closed, α-closed, semi-pre closed (β-closed).

The collection of all closed, pre open, semi open, α-open, semi-pre open (β-open) subset of X will be denote by $C(X_\tau), PO(X_\tau), SO(X_\tau), \alpha(X_\tau), SPO(X_\tau), \beta(X_\tau)$.

Definition 2.2. The Intersection of every one of semi closed sets of X_τ contain $A_G \subseteq X_\tau$ is called the semi closer of A_G is denote by $\text{Scl}(A_G)$.

Definition 2.3. A function $g_\tau : X_\tau \rightarrow Y_\tau$ is called the pre open, semi open, α-open but $g_\tau(U)$ is pre open, semi open, α-open in Y_τ for each open set U in X_τ.

Definition 2.4. A function $g_\tau : X_\tau \rightarrow Y_\tau$ is called the pre closed, semi closed, α-closed if $g(R)$ is pre closed, semi closed, α-closed in Y_τ for each closed set R in X_τ.

3. Group action on contra semi open

Definition 3.1. A function $g_\tau : X_\tau \rightarrow Y_\tau$ is called the group action on contra semi open if the image of open subset of X_τ is group acting on semi closed set in Y_τ. Clearly each contra
semi open function is contra semi pre open. Since each semi closed set is semi pre closed.

In this paper short form of contra semi open, contra semi pre open Almost contra semi pre open, Contra alpha open, semi closed, alpha closed set are CSO, $C^\beta O$, $AC^\beta O$, CaO, SC, αC.

Theorem 3.2. For a function $g: X \to Y$, the following statements are equivalent:

(i) g_t is group acted on CSO.

(ii) For every subset R of Y and for every closed set G of X_t with $g_t^{-1}(R) \subseteq G$ there exists a SO set T of Y_t with $R \subseteq T$ and $g_t^{-1}(T) \subseteq G$.

(iii) For every $y \in Y_t$ and for every closed subset G of X_t with $g_t^{-1}(y) \subseteq G$ there exists a SO subset T of Y with $y \in T$ and $g_t^{-1}(T) \subseteq G$.

Proof. (i) \implies (ii) Let $R \subseteq Y_t$ and G be a closed subset of X_t with $g_t^{-1}(R) \subseteq G$.

Since g is group acted on X_t, $g_t^{-1}(y) \subseteq G$ is semi closed. If we set $T = Y_t - g_t(X_t - G)$ is easily seen that $R \subseteq T$ and $g_t^{-1}(T) \subseteq G$.

(ii) \implies (iii) Let $y \in Y_t$ and G be a closed subset of X_t with $g_t^{-1}(y) \subseteq G$ since group acted on g_t is $C^\beta O$. It is easily seen that $Y_t - g_t(X_t - G)$ is semi closed.

Then by (iii) there exists a semi subset T of Y with $y \in T$ such that $T = Y_t - g_t(X_t - G)$ and hence $g_t^{-1}(T)$ is semi closed and consequently $g_t^{-1}(T)$ group acted on contra semi open function.

Definition 3.3. A function $g_t: X_t \to Y_t$ is called the group acted on $C^\beta O$ (group acted on $C^\beta O$, CaO) if the image of each open subset of X_t is semi open.

Theorem 3.4. If a function $g_t: X_t \to Y_t$ is group acted on CSO, X_t is regular then g_t is group acted on semi open function.

Proof. Let Y_t be a random point of Y_t and T be a open set of X_t contain $g_t^{-1}(y)$. Since X_t is regular in this exists an open set S in X_t containing $g_t^{-1}(y)$ such that $cl(S) \subseteq T$. Since g_t is group acted on $C^\beta O$, there exists $E \subseteq SO(X_t, X_t)$ such that $g_t(E) \subseteq cl(S)$. Then $g_t(E) \subseteq T$ This is show that g_t is group acted on SO function.

Theorem 3.5. Let a function $g_t: X_t \to Y_t$ is group acted on contra semi open and $h_t: Y_t \to Z_t$ is the semi closed function then $h_t \circ g_t: X_t \to Z_t$ is group acted on contra semi open.

Proof. Let $T \subseteq X_t$ be an open acted on open set. Since g_t is group acted on contra semi open function, $g_t(T)$ is SC set in Y_t again h_t is pre SC semi closed function. So $h_t(g_t(T)) = h_t \circ g_t(T)$ is semi closed set in Z_t. Therefore $h_t \circ g_t$ is group acted on CSO function.

4. Group action on $AC^\beta O$ mapping

Definition 4.1. A function $g_t: X_t \to Y_t$ is called the group acting on $AC^\beta O$ if the image of each group acted on T regular open set in X_t is β-closed in Y_t.

Example 4.2. Let

$X_t = Y_t = \{1, 2, 3\}$,

$\tau_3 = \{\emptyset, \{1\}, \{2\}, \{1, 2\}, X\}$

$\tau_2 = \{\emptyset, \{1\}, \{2\}, Y\}$

Let $g_t: X_t \to Y_t$ be defined $g_t(1) = 2, g_t(2) = 3, g_t(3) = 1$. Then g_t is group acted on $AC^\beta O, C^\beta O$.

Example 4.3. Let

$X_t = Y_t = \{1, 2, 3\}$,

$\tau_3 = \{\emptyset, \{1\}, \{2\}, \{1, 2\}, X\}$

$\tau_2 = \{\emptyset, \{1\}, \{2\}, Y\}$

Let $g_t: X_t \to Y_t$ be defined $g_t(1) = 1, g_t(2) = 3, g_t(3) = 2$. Then g_t is group acted on not $AC^\beta O, C^\beta O$.

Theorem 4.4. Let G is a topological group then group acted on all $C^\beta O$ map is $AC^\beta O$ but conversely is not true.

Proof. Let $E_G \subseteq X_t$ be regular open implies that $g_t(E_G)$ is group acted on β in Y. Since $g_t: X_t \to Y_t$ is $C^\beta O$. Therefore g_t is group acted on $C^\beta O$.

Theorem 4.5. If $g_t: X_t \to Y_t$ is group acted on $AC^\beta O$ and $E_G \subseteq X_t$ is open $g_t(E_G)$ is τ_B closed in Y_t.

Proof. Let $E_G \subseteq X_t$ and $g_t: X_t \to Y_t$ exist group acted on $AC^\beta O$, implies that $\beta(g_t(E_G)) \subseteq g_t(E_G))$. Implies that

$\beta(g_t(E_G)) \subseteq g_t(E_G)$.

Since, $g_t(E_G) \subseteq g_t(E_G)$ like E_G is open. However $g_t(E_G) \subseteq \beta\left(g_t(E_G)\right)$, we have $g_t(E_G) \subseteq \beta\left(g_t(E_G)\right)$. Therefore $g_t(E_G)$ is τ_B closed in Y_t.

Theorem 4.6. Let G is a topology Group if g is open $(r$-open) and g_1 is group acted on $C^\beta O$, then $g_1 \circ g_2$ is group acted on $AC^\beta O$.

Proof. Let $R_G \subseteq X_t$ be r-open implies $g_2(R_G)$ is open $(r$-open) in Y_t implies that $g_1(g_2(R_G)) = g_1 \circ g_2(R_G)$ is β closed in G. Hence $g_1 \circ g_2$ is group acted on $AC^\beta O$.

Theorem 4.7. If g_2 is group acted on ACO or $[\text{group acted on } CrO]$, g_1 is group acted on β closed then $g_1 \circ g_2$ is group acted on almost contra β open.
Theorem 4.11. If \(g_1 : X \rightarrow Y \) and \(g_2 : Y \rightarrow Z \) are group actions on \(X \) and \(Y \) respectively, then the composition \(g_2 \circ g_1 : X \rightarrow Z \) is a group action on \(X \) by \(Z \).

Proof. Let \(E_G \subseteq X \) be a group action on \(r \)-open in \(X \Rightarrow g_2(E_G) \) is closed \([r-\text{closed}]\) in \(Y \Rightarrow g_1(g_2(E_G)) = g_1 \circ g_2(E_G) \),

is group acted on \(\beta \)-closed in \(G \). Hence \(g_1 \circ g_2 \) is a group acted on almost contra \(\beta \)-open.

Theorem 4.8. If \(g_1 : X \rightarrow Y \) be group acted on almost contra \(\beta \)-open then \(\beta(g_1(E_G)) \subseteq g_1(E_G) \).

Proof. Let \(E_G \subseteq X \) be group acted on almost contra \(\beta \)-open then \(g_1(E_G) \) is \(\beta \)-closed in \(Y \) and \(g_1(E_G) = g_2(E_G) \). This implies

\[
\beta(g_1(E_G)) \subseteq \beta(g_2(E_G)).
\]

Since \(g_1(E_G) \) is group acted on \(\beta \)-open in \(Y \)

\[
\beta(g_1(E_G)) = g_1(E_G).
\]

Therefore \(\beta(g_1(E_G)) = g_1(E_G) \) for every subset \(E_G \) of \(X \).

Example 4.9. Let

\[
X = Y = \{1, 2, 3\},
\]

\[
\tau_1 = \{\emptyset, \{1\}, \{1, 2\}, X\},
\]

\[
\tau_2 = \{\emptyset, \{1\}, \{2\}, \{1, 2\}, Y\}.
\]

Let \(g_1 : X \rightarrow Y \) be the identity map then \(\beta(g_1(E_G)) = g_1(E_G) \), for every subset \(E_G \) of \(X \). However \(g_1 \) is group acted on not \(\text{CSO} \), since \(g_1(\{1, 2\}) = \{1, 2\} \) is not \(\beta \)-closed.

Theorem 4.10. Let \(X, Y, Z \) be the topological group and the group acting on each \(\beta \)-closed set is \(r \)-open in \(Y \) then the group acting on \(\text{AC} \) is composed of two \(\text{AC} \) maps.

Proof. Let \(g_1 : X \rightarrow Y \) and \(h_1 : Y \rightarrow Z \) be groups acting on a \(\text{AC} \) map. Let \(E_G \) be any \(r \)-open set in \(X \Rightarrow g_1(E_G) \) is \(\beta \)-closed in \(Y \Rightarrow g_2(E_G) \) is group acting on \(r \)-open in \(Y \). It means that \(h_1(g_1(E_G)) = h_1 \circ g_1(E_G) \) is \(\beta \)-closed. Therefore \(h_1 \circ g_1 \) is group acting on \(\text{AC} \).

Let \(g_1 : X \rightarrow Y \), \(h_1 : Y \rightarrow Z \) be group acting on \(\text{AC} \) map. Let \(E_G \) be any \(r \)-open set in \(X \Rightarrow g_1(E_G) \) is \(r \)-closed in \(Y \Rightarrow g_1(E_G) \) is \(\beta \)-closed in \(Y \Rightarrow g_1(E_G) \) is group acting on \(r \)-open in \(Y \). It implies that \(h_1(g_1(E_G)) \) in \(Z \) is \(r \)-closed and in \(Z \) \(h_1 \circ g_1(E_G) \) is \(\beta \)-closed. Therefore \(h_1 \circ g_1 \) is group acting on \(\text{AC} \).

Theorem 4.11. If \(g_1 : X \rightarrow Y \) is group acted on \(\text{AC} \) and \(E_G \) is an open set of \(X \) then \(g_{E_G} : (X, \tau_1(E_G)) \rightarrow (Y, \tau_2) \) is group acted on \(\text{AC} \).

Proof. Let \(R \) be an open group acted on \(r \)-open set in \(E_G \). Then \(R = E_G \cap T_G \) for some open set \(T_G \) of \(X \) and so \(R \) is open in \(X \Rightarrow g_1(R) \) is group acted on \(\beta \) closed in \(Y \). But \(g_1(R) = g_{E_G}(R) \). Therefore \(g_{E_G} \) is group acted on \(\text{AC} \).

5. Conclusion

We introduced different functions related to \(\text{CSO} \) map and \(\text{AC} \) map in this paper and analysed their properties, concepts and results available in the literature. Moreover, we introduce the concepts of group acted to the topological spaces’ \(\text{CSO} \) map, \(\text{AC} \) map. Further analysis of many topics in topological space group behaviour.

References

ISSN(P):2319 – 3786
ISSN(O):2321 – 5666

Malaya Journal of Matematik
