1-Harmonious coloring of triangular snakes

Akhlaak Mansuri¹, Rohit Mehta² and R. S. Chandel³

Abstract
In this article, we discuss the 1-harmonious coloring and investigate the 1-harmonious chromatic number of triangular snakes and alternate triangular snakes. We also find some relations between the 1-harmonious chromatic number of triangular snakes and alternate triangular snakes.

Keywords
1-harmonious coloring, triangular snakes, alternate triangular snakes.

AMS Subject Classification
05C15, 05C75.

1 Department of Mathematics, Government Girls College, Mandsaur (M.P.) India.
2 Department of Mathematics, Radharaman Engineering College, Bhopal (M.P.) India.
3 Department of Mathematics, Government Geetanjali Girls College, Bhopal (M.P.) India.
*Corresponding author: akhlaakmansuri@gmail.com; rohitmehta1010@gmail.com; rs_chandel2009@yahoo.co.in

1. Introduction
Throughout this paper, we considered only finite and undirected graphs without any loops or multiple edges. A proper vertex coloring of a graph G is a function $c : V(G) \rightarrow \{1, 2, \ldots, k\}$ in which if $u, v \in V(G)$ are adjacent, then $c(u) \neq c(v)$ and if this coloring uses at most k colors is known as k-coloring. The minimum number of colors are required for this coloring is called its chromatic number, and is generally denoted by $\chi(G)$. The 1-harmonious coloring [4] is a kind of vertex coloring such that the color pairs of end vertices of every edge are different only for adjacent edges and a minimum number of colors are required for this coloring is called the 1-harmonious chromatic number, denoted by $h_1(G)$. A triangular snake [2, 5–7, 9, 10] is a triangular cactus whose block-cutpoint graph is a path (a triangular snake is obtained from a path u_1, u_2, \ldots, u_n by joining u_i and u_{i+1} to a new vertex w_i for $i = 1, 2, \ldots, n - 1$). A double triangular snake graph $D(T_n)$ consists of two triangular snakes that have a common path, a triple triangular snake consists of three triangular snakes with a common path and consequently k-triangular snake graph $k(T_n)$ consists of k triangular snakes with a common path. A double alternate triangular snake graph $D(AT_n)$ consists of two alternate triangular snakes with a common path, a triple alternate triangular snake consists of three alternate triangular snakes with a common path and consequently k-alternate triangular snake graph $k(AT_n)$ consists of k alternate triangular snakes with a common path. In this paper, we study the 1-harmonious coloring with the chromatic number of above mentioned triangular snakes and find some relations between the 1-harmonious chromatic number of these snakes.
That is, a triple triangular snake is obtained from a path $u_1, u_2, ..., u_n$ by joining u_i and u_{i+1} (alternatively) to a new vertex v_i for $i = 1, 2, ..., n - 1$ and to a new vertex w_i for $i = 1, 2, ..., n - 1$.

Definition 2.4 ([2, 3, 5–8]). An alternate triangular snake A_{T_n} is the graph obtained from a path $u_1, u_2, ..., u_n$ by joining u_i and u_{i+1} (alternatively) to new vertex v_i for $i = 1, 2, ..., n - 1$ (that is, every alternate edge of a path is replaced by cycle C_5).

Definition 2.5 ([2, 3, 5–8]). A double alternate triangular snake $D(A_{T_n})$ is obtained from a path $u_1, u_2, ..., u_n$ by joining u_i and u_{i+1} (alternatively) to new vertex v_i for $i = 1, 2, ..., n - 1$ and w_i for $i = 1, 2, ..., n - 1$.

Definition 2.6 ([2, 5, 9]). A triple alternate quadrilateral snake $T(A_{T_n})$ is obtained from a path $u_1, u_2, ..., u_n$ by joining u_i and u_{i+1} (alternatively) to new vertices v_i for $i = 1, 2, ..., n - 1$ and x_i for $i = 1, 2, ..., n - 1$.

Throughout the paper we consider n as the number of vertices of path P_n.

3. 1-Harmonious Coloring of Triangular Snakes

Theorem 3.1. For $n \geq 3$, triangular snake T_n, the 1-harmonious chromatic number, $h_1(T_n) = \Delta(T_n) + 1$.

Proof. Let us consider the path graph P_n with n vertices $u_1, u_2, ..., u_n$ and T_n as the triangular snake with maximum degree, $\Delta(T_n) = 4$. Let the vertices of T_n, $V(T_n) = \{u_i : 1 \leq i \leq n\} \cup \{v_i : 1 \leq i \leq n - 1\}$ and the edges of T_n, $E(T_n) = \{u_iu_{i+1} : 1 \leq i \leq n - 1\} \cup \{u_iv_i, u_iw_i : 1 \leq i \leq n - 1\}$. The number of vertices and edges in T_n are $2n - 1$ and $3n - 3$ respectively. Now we split the proof into three cases.

Case 1: Suppose $n = 3k$. Define coloring $c : V(T_n) \rightarrow \{1, 2, 3, 4, 5\}$ for $n \geq 3$ by $c(u_i) = 1$ ($i = 1, 4, 7, ..., n - 2$), $c(u_i) = 2$ ($i = 2, 5, 8, ..., n - 1$), and $c(u_i) = 3$ ($i = 3, 6, 9, ..., n$). Two sub cases arise here for even n and odd n.

Sub case 1: If n is odd, $c(v_i) = 4$ ($i = 1, 3, 5, ..., n - 2$), $c(v_i) = 5$ ($i = 2, 4, 6, ..., n - 1$).

Sub case 2: If n is even, $c(v_i) = 4$ ($i = 1, 3, 5, ..., n - 1$), $c(v_i) = 5$ ($i = 2, 4, 6, ..., n - 2$).

Vertices $u_2, u_3, ..., u_{n-1}$ are of maximum degree 4 whereas the degree of u_1, u_n is 2, u_i is adjacent to u_{i+1} ($1 \leq i \leq n - 1$) and vertices u_i ($1 \leq i \leq n$) are adjacent to v_j ($1 \leq j \leq n - 1$). Therefore 5 colors are to be needed to color T_n. From figure 1, clearly we find that for each vertex, adjacent vertices are colored with different color. Therefore, $h_1(T_n) = 5$.

Case 2: Suppose $n = 3k + 1$. Define coloring $c : V(T_n) \rightarrow \{1, 2, 3, 4, 5\}$ for $n \geq 3$ by $c(u_i) = 1$ ($i = 1, 4, 7, ..., n$), $c(u_i) = 2$ ($i = 2, 5, 8, ..., n - 2$), $c(u_i) = 3$ ($i = 3, 6, 9, ..., n - 1$). Again two sub cases arises for even n and odd n, sub-cases and remaining procedure can be done as describe in case 1.

Case 3: Suppose $n = 3k + 2$. Define coloring $c : V(T_n) \rightarrow \{1, 2, 3, 4, 5\}$, for $n \geq 3$ by $c(u_i) = 1$ ($i = 1, 4, 7, ..., n - 1$), $c(u_i) = 2$ ($i = 2, 5, 8, ..., n - 2$), $c(u_i) = 3$ ($i = 3, 6, 9, ..., n - 1$), $c(v_i) = 4$ ($i = 1, 3, 5, ..., n - 1$), $c(v_i) = 5$ ($i = 2, 4, 6, ..., n - 2$), and $c(w_i) = 6$ for ($i = 1, 3, 5, ..., n - 1$), $c(w_i) = 7$ ($i = 2, 4, 6, ..., n - 2$).

...
we follow the procedure as described in case 1. In all three

Again two sub cases arises for even

Case 2: Suppose $n = 3k + 1$ Define coloring $c : V(DT_n) \rightarrow \{1, 2, 3, 4, 5, 6, 7\} \text{ for } n \geq 3$ by $c(u_i) = 1 \ (i = 1, 4, 7, \ldots, n)$, $c(u_i) = 2 \ (i = 2, 5, 8, \ldots, n - 2)$, $c(u_i) = 3 \ (i = 3, 6, 9, \ldots, n - 1)$. Again two sub cases arises for even n and odd n, these subcases and remaining procedure can be done as described in case 1. Figure 5 shows the coloring for DT_4.

Case 3: Suppose $n = 3k + 2$. Define coloring $c : V(DT_k) \rightarrow \{1, 2, 3, 4, 5, 6, 7\}$, for $n \geq 3$ by $c(u_i) = 1 \ (i = 1, 4, 7, \ldots, n)$, $c(u_i) = 2 \ (i = 2, 5, 8, \ldots, n - 1)$, $c(u_i) = 3 \ (i = 3, 6, 9, \ldots, n - 2)$. Here again two sub cases arises for even n and odd n, for that we follow the procedure as described in case 1. In all three cases, 1-harmonious chromatic number, $h_1(DT_n) = 7$. Figure 6 shows the coloring for T_5.

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{figure4.png}
\caption{1-harmonious coloring of DT_6, $h_1(DT_6) = 7$}
\end{figure}

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{figure5.png}
\caption{1-harmonious coloring of DT_4, $h_1(DT_4) = 7$}
\end{figure}

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{figure6.png}
\caption{1-harmonious coloring of DT_5, $h_1(DT_5) = 7$}
\end{figure}

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{figure7.png}
\caption{1-harmonious coloring of TT_6, $h_1(TT_6) = 9$}
\end{figure}

Theorem 3.3. For $n \geq 3$, triple triangular snake TT_n, the 1-harmonious chromatic number, $h_1(TT_n) = \Delta(TT_n) + 1$.

Proof. Let us consider the path graph P_n with n vertices u_1, u_2, \ldots, u_n and TT_n as the triangular snake with maximum degree, $\Delta(TT_n) = 8$. Let the vertices of TT_n, $V(TT_n) = \{u_i : 1 \leq i \leq n\} \cup \{w_i, v_i : 1 \leq i \leq n - 1\}$ the edges of TT_n $E(TT_n) = \{u_iu_{i+1} : 1 \leq i \leq n\} \cup \{u_iw_i, v_iu_{i+1}, u_iw_i, w_iu_{i+1}, u_iw_i, x_iu_{i+1} : 1 \leq i \leq n - 1\}$. The number of vertices and edges in TT_n are $4n - 3$ and $7n - 7$ respectively. Now split the proof into following three cases.

Case 1: Suppose $n = 3k$. Define coloring $c : V(TT_n) \rightarrow \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$ for $n \geq 3$ by $c(u_i) = 1 \ (i = 1, 4, 7, \ldots, n - 2)$, $c(u_i) = 2 \ (i = 2, 5, 8, \ldots, n - 1)$, $c(u_i) = 3 \ (i = 3, 6, 9, \ldots, n)$. Two sub cases arise here for even n and odd n.

Sub case 1: If n is odd, $c(v_i) = 4 \ (i = 1, 3, 5, \ldots, n - 2)$, $c(v_i) = 5 \ (i = 2, 4, 6, \ldots, n - 1)$, $c(w_i) = 6 \ (i = 1, 3, 5, \ldots, n - 2)$, $c(w_i) = 7 \ (i = 2, 4, 6, \ldots, n - 1)$, $c(x_i) = 8 \ (i = 1, 3, 5, \ldots, n - 2)$, $c(x_i) = 9 \ (i = 2, 4, 6, \ldots, n - 1)$.

Sub case 2: If n is even, $c(v_i) = 4 \ (i = 1, 3, 5, \ldots, n - 1)$, $c(v_i) = 5 \ (i = 2, 4, 6, \ldots, n - 2)$, $c(w_i) = 6 \ (i = 1, 3, 5, \ldots, n - 1)$, $c(w_i) = 7 \ (i = 2, 4, 6, \ldots, n - 2)$, $c(x_i) = 8 \ (i = 1, 3, 5, \ldots, n - 1)$, $c(x_i) = 9 \ (i = 2, 4, 6, \ldots, n - 2)$.

Vertices $u_2, u_3, \ldots, u_{n-1}$ are of maximum degree 8 whereas the degree of u_1, u_n is 4, u_i is adjacent to u_{i+1} $(1 \leq i \leq n - 1)$ and vertices u_i $(1 \leq i \leq n)$ are adjacent to v_j, w_j $(1 \leq j \leq n - 1)$. Therefore 7 colors are to be needed to color DT_n. From figure 4, clearly we find that for each vertex, the adjacent vertices are colored with different color. Therefore, $h_1(DT_n) = 7$.

Case 2: Suppose $n = 3k + 1$ Define coloring $c : V(TT_n) \rightarrow \{1, 2, 3, 4, 5, 6, 7\}$ for $n \geq 3$ by $c(u_i) = 1 \ (i = 1, 4, 7, \ldots, n)$, $c(u_i) = 2 \ (i = 2, 5, 8, \ldots, n - 2)$, $c(u_i) = 3 \ (i = 3, 6, 9, \ldots, n - 1)$.

Case 3: Suppose $n = 3k + 2$. Define coloring $c : V(TT_n) \rightarrow \{1, 2, 3, 4, 5, 6, 7\}$ for $n \geq 3$ by $c(u_i) = 1 \ (i = 1, 4, 7, \ldots, n - 2)$, $c(u_i) = 2 \ (i = 2, 5, 8, \ldots, n - 1)$, $c(u_i) = 3 \ (i = 3, 6, 9, \ldots, n - 2)$. Again two sub cases arises for even n and odd n, these subcases and remaining procedure can be done as described in case 1. From figure 7, clearly we find that for each vertex, the adjacent vertices are colored with different color. Therefore, $h_1(TT_n) = 9$.

Case 2: Suppose $n = 3k + 1$ Define coloring $c : V(TT_n) \rightarrow \{1, 2, 3, 4, 5, 6, 7\}$ for $n \geq 3$ by $c(u_i) = 1 \ (i = 1, 4, 7, \ldots, n)$, $c(u_i) = 2 \ (i = 2, 5, 8, \ldots, n - 2)$, $c(u_i) = 3 \ (i = 3, 6, 9, \ldots, n - 1)$.

Again two sub cases arises for even n and odd n, these subcases and remaining procedure can be done as described in case 1. Figure 8 shows the coloring for TT_4.

Case 3: Suppose $n = 3k + 2$. Define coloring $c : V(TT_n) \rightarrow \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$ for $n \geq 3$ by $c(u_i) = 1 \ (i = 1, 4, 7, \ldots, n - 2)$, $c(u_i) = 2 \ (i = 2, 5, 8, \ldots, n - 1)$, $c(u_i) = 3 \ (i = 3, 6, 9, \ldots, n - 2)$. Here again two sub cases arises for even n and odd n, for that we follow the procedure as describe in case 1. In all three
Theorem 3.4. For $n \geq 3$, k-triangular snake kT_n, the 1-harmonious chromatic number, $h_1(kT_n) = \triangle(kT_n) + 1$.

Proof. Consequently, it is obvious from above theorems. □

4. 1-Harmonious Coloring of Alternate Triangular Snakes

Theorem 4.1. For $n \geq 4$, alternate triangular snake AT_n, the 1-harmonious chromatic number, $h_1(AT_n) = \triangle(AT_n) + 1$.

Proof. Let us consider the path graph P_n with n vertices u_1, u_2, \ldots, u_n and AT_n as the alternate triangular snake with maximum degree, $\triangle(AT_n) = 3$.

Let the vertices of AT_n, $V(AT_n) = \{u_i : 1 \leq i \leq n\} \cup \{v_i : 1 \leq i \leq \frac{n}{2}\}$ and the edges of AT_n, $E(AT_n) = \{u_iu_{i+1} : 1 \leq i \leq n\} \cup \{u_iv_i, v_iu_{i+1} : 1 \leq i \leq n-1\}$. The number of vertices and edges in AT_n are $\frac{3n}{2}$ and $2n - 1$ respectively. Define coloring $c : V(AT_n) \rightarrow \{1, 2, 3, 4\}$. Three case are arises here; for $n = 6k$, $n = 6k - 2$ and $n = 6k + 2$. Remaining proof and coloring process may be followed as discussed in the section 3.

\[\triangle(D(AT_n)) = 4 \]

Figure 10, 11 and 12 shows the coloring for $n = 6k$, $n = 6k - 2$ and $n = 6k + 2$ respectively. Hence the result. □

Theorem 4.2. For $n \geq 4$, double alternate triangular snake $D(AT_n)$, the 1-harmonious chromatic number, $h_1(D(AT_n)) = \triangle(D(AT_n)) + 1$.

Proof. Let us consider the path graph P_n with n vertices u_1, u_2, \ldots, u_n and $D(AT_n)$ as the double alternate triangular snake with maximum degree, $\triangle(D(AT_n)) = 5$.

\[\triangle(D(AT_n)) = 5 \]

Figure 13, 14 shows the coloring for $n = 6k$, $n = 6k - 2$ and $n = 6k + 2$ respectively. Hence the result. □
respectively. Define coloring $c: V(D(AT_n)) \to \{1, 2, 3, 4, 5\}$. Three case are arises here: for $n = 3k, n = 6k - 2$ and $n = 6k + 2$. Remaining proof and coloring process may be followed as discussed in the section 3. Figure 13, 14 and 15 show the coloring for $n = 3k$, $n = 6k - 2$ and $n = 6k + 2$ respectively. Hence the result.

Theorem 4.3. For $n \geq 4$, triple alternate triangular snake $T(AT_n)$, the 1-harmonious chromatic number, $h_1(T(AT_n)) = \Delta(T(AT_n)) + 1$.

Proof. Let P_n Let us consider the path graph P_n with n vertices u_1, u_2, \ldots, u_n and $T(AT_n)$ as the triple alternate triangular snake with maximum degree, $\Delta(T(AT_n)) = 5$.

Figure 15. 1-harmonious coloring of $D(AT_5)$, $h_1(D(AT_5)) = 5$.

Let the vertices of $T(AT_n)$,

$$V(T(AT_n)) = \{u_i : 1 \leq i \leq n\} \cup \{v_i, w_i, x_i : 1 \leq i \leq \frac{n}{2}\}$$

and the edges of $T(AT_n)$, $E(T(AT_n)) = \{u_iu_{i+1} : 1 \leq i \leq n\} \cup \{u_iw_i, v_iw_{i+1}, w_ix_{i+1}, u_ix_i, x_{i}u_{i+1} : 1 \leq i \leq n - 1\}$. The number of vertices and edges in $T(AT_n)$ are $\frac{3n}{2}$ and $4n - 1$ respectively. Define coloring $c: V(T(AT_n)) \to \{1, 2, 3, 4, 5, 6\}$ Three case are arises here: for $n = 3k, n = 6k - 2$ and $n = 6k + 2$. Remaining proof and coloring process may be followed as discussed in the section 3. Figure 16, 17 and 18 show the coloring for $n = 3k$, $n = 6k - 2$ and $n = 6k + 2$ respectively. Hence the result.

Theorem 4.4. For $n \geq 4$, k-alternate triangular snake kAT_n, the 1-harmonious chromatic number, $h_1(kAT_n) = \Delta(kT_n) + 1$.

Proof. Consequently, it is obvious from above theorems.

5. Relations Between the 1-Harmonious Chromatic Number of Triangular and Alternate Triangular Snakes

From section 3 and 4, we observed the following relations between the 1-harmonious chromatic number of these triangular and alternate triangular snakes:

- $h_1(T_n) = h_1(AT_n) + 1$.
- $h_1(DT_n) = h_1(D(AT_n)) + 2$.
- $h_1(TT_n) = h_1(T(AT_n)) + 3$ and so on... consequently.
- $h_1(kT_n) = h_1(kAT_n) + k$.

6. Conclusions

In this article, we discuss the 1-harmonious coloring and find the 1-harmonious chromatic number of triangular and
alternate triangular snakes i.e.

\[h_1(T_n) = \triangle (T_n) + 1, \]
\[h_1(DT_n) = \triangle (DT_n) + 1, \]
\[h_1(TT_n) = \triangle (TT_n) + 1, \]
\[h_1(kT_n) = 2k + 3, \]
\[h_1(AT_n) = \triangle (AT_n) + 1, \]
\[h_1(D(AT_n)) = \triangle (D(AT_n)) + 1, \]
\[h_1(T(AT_n)) = \triangle (T(AT_n)) + 1 \]
\[h_1(kAT_n) = \triangle (kT_n) + 1. \]

We also find the relations between 1-harmonious chromatic number of these snakes i.e. \(h_1(T_n) = h_1(AT_n) + 1, h_1(DT_n) = h_1(D(AT_n)) + 2, h_1(TT_n) = h_1(T(AT_n)) + 3 \) and so on. Consequently, \(h_1(kT_n) = h_1(kAT_n) + k. \)

References