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Abstract
In this paper, we introduce ”Mixed Type Quintic - Sextic functional equations” and then provide their general
solution, and prove generalized Ulam - Hyers stabilities in Banach spaces and Fuzzy normed spaces, by using
both the direct Hyers - Ulam method and the alternative fixed point method.
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1. Introduction
The stability problem for functional equation is originated

from a question of S.M. Ulam [45] under group homomor-
phisms and positively answered for an additive functional
equation on Banach spaces by D.H. Hyers [23] and T. Aoki [2].
It was further generalized and marvelous outcome has been
obtained by number of authors one can refer [21, 35, 38, 42].

Over the last seven decades, the above problem was tack-
led by numerous authors and its solutions via various forms of
functional equations were discussed. For more information on

such problems the interested readers can refer the monographs
of [1, 4, 5, 8, 18, 22, 24–26, 33, 36, 37, 41, 43, 48].

The general solution of Quintic and Sextic functional
equations

f (x+3y)−5 f (x+2y)+10 f (x+ y)−10 f (x)

+5 f (x− y)− f (x−2y) = 120 f (y) (1.1)

and

f (x+3y)−6 f (x+2y)+15 f (x+ y)−20 f (x)+15 f (x− y)

−6 f (x−2y)+ f (x−3y) = 720 f (y) (1.2)

was introduced and investigated by T.Z. Xu et. al., [47]
and establish the generalized Ulam - Hyers stability in quasi
β−normed spaces via fixed point method .

In this paper, we introduce the Mixed Type Quintic- Sex-
tic functional equation of the form

E(w+4v)−5E(w+3v)− 1
2

(
Eq

s (w+3v)
)
+10E(w+2v)

+
5
2

(
Eq

s (w+2v)
)
−10E(w+ v)−5

(
Eq

s (w+ v)
)

+5E(w)+5
(

Eq
s (w)

)
−E(w− v)

− 5
2

(
Eq

s (w− v)
)
+
(

Eq
s (w−2v)

)
= 120E(v)+300

(
Eq

s (v)
)

(1.3)
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where Eq
s (w) =

(
E(w) + E(−w)

)
which is different from

(1.1) and (1.2). It is easy to verify that E(w) = c1w5 + c2w6

is the solution of the functional equation (1.3) for any positive
constants c1,c2.

The main aim of this paper is to provide the general so-
lution and generalized Ulam - Hyers stabilities of (1.3) in
Banach spaces and fuzzy normed spaces, by using both the
direct Hyers - Ulam method and the alternative fixed point
method.

Now, we present the result due to Margolis, Diaz [28] and
Radu [34] for fixed point theory.

Theorem 1.1. [28, 34] Suppose that for a complete general-
ized metric space (Ω,δ ) and a strictly contractive mapping
T : Ω−→Ω with Lipschitz constant L. Then, for each given
x ∈Ω , either

d(T nx,T n+1x) = ∞ ∀ n≥ 0,

or there exists a natural number n0 such that
(FPC1) d(T nx,T n+1x)< ∞ for all n≥ n0 ;
(FPC2) The sequence (T nx) is convergent to a fixed point y∗

of T
(FPC3) y∗ is the unique fixed point of T in the set
∆ = {y ∈Ω : d(T n0x,y)< ∞};
(FPC4) d(y∗,y)≤ 1

1−L d(y,Ty) for all y ∈ ∆.

2. General Solution

In this section, we test the general solution of the functional
equation (1.3). To prove the solution, we define U1 and U2
be real vector spaces.

Theorem 2.1. For an odd mapping E : U1 −→ U2 fulfill-
ing the functional equation (1.3) for all w,v ∈U1, then E is
quintic.

Proof. Given E : U1 −→U2 is an odd function. Using odd-
ness of E in (1.3), one can obtain that

E(w+4v)−5E(w+3v)+10E(w+2v)−10E(w+ v)

+5E(w)−E(w− v) = 120E(v) (2.1)

for all w,v ∈U1. Now, interchanging (w,v) by (0,0), (0,2w),
(4w,w), (3w,w), (2w,w), (w,w), (0,w) and (−w,w) in (2.1)

and using oddness of E, we arrive the subsequent equations

E(0) = 0
E(8w)−5E(6w)+10E(4w)−129E(2w) = 0 (2.2)
E(8w)−5E(7w)+10E(6w)−10E(5w)+5E(4w)

−E(3w)−120E(w) = 0 (2.3)
E(7w)−5E(6w)+10E(5w)−10E(4w)+5E(3w)

−E(2w)−120E(w) = 0 (2.4)
E(6w)−5E(5w)+10E(4w)−10E(3w)

+5E(2w)−121E(w) = 0 (2.5)
E(5w)−5E(4w)+10E(3w)−10E(2w)−115E(w) = 0

(2.6)

E(4w)−5E(3w)+10E(2w)−129E(w) = 0 (2.7)
E(3w)−4E(2w)−115E(w) = 0 (2.8)

for all w ∈U1. Subtracting (2.3) from (2.2), one can see that

5E(7w)−15E(6w)+10E(5w)+5E(4w)+E(3w)

−129E(2w)+120E(w) = 0 (2.9)

for all w ∈U1. Multiplying (2.4) by 5 and subtracting from
(2.9), one can observe that

E(6w)−40E(5w)+55E(4w)−24E(3w)

−1245E(2w)−720E(w) = 0 (2.10)

for all w ∈U1. Multiplying (2.5) by 10 and subtracting from
(2.10), one can find that

10E(5w)−45E(4w)+76E(3w)

−174E(2w)+1930E(w) = 0 (2.11)

for all w ∈U1. Multiplying (2.6) by 10 and subtracting from
(2.11), one can verify that

5E(4w)−24E(3w)−74E(2w)+3080E(w) = 0
(2.12)

for all w ∈U1. Multiplying (2.7) by 5 and subtracting from
(2.12), one can see that

E(3w)−124E(2w)+3725E(w) = 0 (2.13)

for all w ∈U1. Subtracting (2.8) from (2.13), one can arrive

120E(2w)−3840E(w) = 0 (2.14)

for all w ∈U1. Thus it follows from (2.14), we achieve

120E(2w) = 3840E(w) =⇒ E(2w) = 32E(w)

=⇒ E(2w) = 25E(w) (2.15)

for all w ∈U1. Hence E is quintic.

Theorem 2.2. For an even mapping E : U1 −→U2 fulfilling
the functional equation (1.3) for all w,v ∈U1, then E is sextic.
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Proof. Given E : U1 −→U2 is an even function. Using even-
ness of E in (1.3), one can obtain that

E(w+4v)−6E(w+3v)+15E(w+2v)−20E(w+ v)

+15E(w)−6E(w− v)+E(w−2v) = 720E(v)
(2.16)

for all w,v ∈U1. Now, interchanging (w,v) by (0,0), (0,2w),
(4w,w), (3w,w), (2w,w), (w,w), (0,w) and (−w,w) in (2.16)
and using evenness of E, we arrive the subsequent equations

E(0) = 0
E(8w)−6E(6w)+16E(4w)−746E(2w) = 0 (2.17)
E(8w)−6E(7w)+15E(6w)−20E(5w)+15E(4w)

−6E(3w)+E(2w)−720E(w) = 0 (2.18)
E(7w)−6E(6w)+15E(5w)−20E(4w)+15E(3w)

−6E(2w)−719E(w) = 0 (2.19)
E(6w)−6E(5w)+15E(4w)−20E(3w)

+15E(2w)−726E(w) = 0 (2.20)
E(5w)−6E(4w)+15E(3w)−20E(2w)−704E(w) = 0

(2.21)

E(4w)−6E(3w)+16E(2w)−746E(w) = 0 (2.22)
2E(3w)−12E(2w)−690E(w) = 0 (2.23)

for all w ∈U1. Subtracting (2.18) from (2.17), one can see
that

6E(7w)−21E(6w)+20E(5w)+E(4w)

+6E(3w)−747E(2w)+720E(w) = 0 (2.24)

for all w ∈U1. Multiplying (2.19) by 6 and subtracting from
(2.24), one can observe that

15E(6w)−70E(5w)+121E(4w)−84E(3w)

−711E(2w)+5034E(w) = 0 (2.25)

for all w ∈U1. Multiplying (2.20) by 15 and subtracting from
(2.25), one can find that

20E(5w)−104E(4w)+216E(3w)

−936E(2w)+15924E(w) = 0 (2.26)

for all w ∈U1. Multiplying (2.21) by 20 and subtracting from
(2.26), one can verify that

16E(4w)−84E(3w)−536E(2w)+30004E(w) = 0
(2.27)

for all w ∈U1. Multiplying (2.22) by 16 and subtracting from
(2.27), one can see that

12E(3w)−792E(2w)+41940E(w) = 0 (2.28)

for all w ∈U1. Multiplying (2.23) by 6 and subtracting from
(2.28), one can arrive

720E(2w)−46080E(w) = 0 (2.29)

for all w ∈U1. Thus it follows from (2.29), we achieve

720E(2w) = 46080E(w) =⇒ E(2w) = 26E(w)
(2.30)

for all w ∈U1. Hence E is sextic.

Hereafter, through this article, we use the following nota-
tions:

• The functional equation can be taken as

E (w,v) =E(w+4v)−5E(w+3v)− 1
2

(
Eq

s (w+3v)
)

+10E(w+2v)+
5
2

(
Eq

s (w+2v)
)

−10E(w+ v)−5
(

Eq
s (w+ v)

)
+5E(w)+5

(
Eq

s (w)
)
−E(w− v)

− 5
2

(
Eq

s (w− v)
)
+
(

Eq
s (w−2v)

)
−120E(v)−300

(
Eq

s (v)
)
,

where Eq
s (w) =

(
E(w)+E(−w)

)
.

• Let α = {−1,+1}.

• Define a constant ξ as

ξψ =

{
2, i f ψ = 0;
1
2 , i f ψ = 1.

3. Stability Results In Banach Space
In this section, we confirm the generalized Ulam - Hyers
stability in Banach space using Hyers - Ulam method and
the alternative fixed point method. In order to establish the
stability results, let us take W1 be a normed space and W2 be
a Banach space.

3.1 Hyers - Ulam Method
Theorem 3.1. For an odd mapping Eq : W1 −→W2 fulfilling
the functional inequality∥∥Eq(w,v)

∥∥≤S (w,v) (3.1)

for all w,v ∈W1. Then there exists one and only quintic func-
tion Q5 : W1 −→W2 which satisfying the functional equation
(1.3) and the functional inequality

∥∥Q5(w)−Eq(w)
∥∥≤ 1

25 ·5!
×

∞

∑
γ= 1−α

2

1
25γα

S5

(
2γα w,2γα w

)
(3.2)

for all w ∈W1. The mapping Q5 is defined as

Q5(w) = lim
β→∞

1
25αβ

Eq

(
2αβ w

)
(3.3)
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for all w ∈W1, where S : W 2
1 −→ [0,∞) is a function fulfill-

ing the condition

lim
β→∞

1
25αβ

S
(

2αβ w,2αβ v
)
= 0 (3.4)

for all w,v ∈W1. The function S5

(
2γα w,2γα w

)
is defined by

S5

(
2γα w,2γα w

)
= S (0,2γα ·2w)+S (2γα ·4w,2γα w)

+5S (2γα ·3w,2γα w)

+10S (2γα ·2w,2γα w)

+10S (2γα w,2γα w)

+5S (0,2γα w)

+S (−2γα w,2γα w) (3.5)

for all w ∈W1.

Proof. Using oddness of E in (3.1), one can obtain that∥∥Eq(w+4v)−5Eq(w+3v)+10Eq(w+2v)

−10Eq(w+ v)+5Eq(w)−Eq(w− v)

−120Eq(v)
∥∥≤S (w,v) (3.6)

for all w,v∈W1. Now, interchanging (w,v) by (0,2w), (4w,w),
(3w,w), (2w,w), (w,w), (0,w) and (−w,w) in (3.6) and using
oddness of E, we arrive the subsequent inequalities∥∥Eq(8w)−5Eq(6w)+10Eq(4w)−129Eq(2w)

∥∥
≤S (0,2w) (3.7)∥∥Eq(8w)−5Eq(7w)+10Eq(6w)−10Eq(5w)

+5Eq(4w)−Eq(3w)−120Eq(w)
∥∥≤S (4w,w) (3.8)∥∥Eq(7w)−5Eq(6w)+10Eq(5w)−10Eq(4w)

+5Eq(3w)−Eq(2w)−120Eq(w)
∥∥≤S (3w,w) (3.9)∥∥Eq(6w)−5Eq(5w)+10Eq(4w)−10Eq(3w)

+5Eq(2w)−121Eq(w)
∥∥≤S (2w,w) (3.10)∥∥Eq(5w)−5Eq(4w)+10Eq(3w)

−10Eq(2w)−115Eq(w)
∥∥≤S (w,w) (3.11)∥∥Eq(4w)−5Eq(3w)+10Eq(2w)−129Eq(w)

∥∥≤S (0,w)
(3.12)∥∥Eq(3w)−4Eq(2w)−115Eq(w)

∥∥≤S (−w,w)
(3.13)

for all w ∈W1. From (3.7) and (3.8), we have∥∥5Eq(7w)−15Eq(6w)+10Eq(5w)+5Eq(4w)

+Eq(3w)−129Eq(2w)+120Eq(w)
∥∥

≤
∥∥Eq(8w)−5Eq(6w)+10Eq(4w)−129Eq(2w)

∥∥
+
∥∥Eq(8w)−5Eq(7w)+10Eq(6w)−10Eq(5w)

+5Eq(4w)−Eq(3w)−120Eq(w)
∥∥

≤S (0,2w)+S (4w,w) (3.14)

for all w ∈W1. Multiplying (3.9) by 5, we see that∥∥5Eq(7w)−25Eq(6w)+50Eq(5w)−50Eq(4w)

+25Eq(3w)−5Eq(2w)−600Eq(w)
∥∥≤ 5S (3w,w)

(3.15)

for all w ∈W1. It follows from (3.14) and (3.15), we arrive∥∥10Eq(6w)−40Eq(5w)+55Eq(4w)−24Eq(3w)

−124Eq(2w)−720Eq(w)
∥∥

≤S (0,2w)+S (4w,w)+5S (3w,w) (3.16)

for all w ∈W1. Multiplying (3.10) by 10, we find that∥∥10Eq(6w)−50Eq(5w)+100Eq(4w)−100Eq(3w)

+50Eq(2w)−1210Eq(w)
∥∥≤ 10S (2w,w) (3.17)

for all w ∈W1. It follows from (3.17) and (3.16), we obtain∥∥10Eq(5w)−45Eq(4w)+76Eq(3w)

−174Eq(2w)+1930Eq(w)
∥∥

≤S (0,2w)+S (4w,w)+5S (3w,w)+10S (2w,w)
(3.18)

for all w ∈W1. Multiplying (3.11) by 10, we see that∥∥10Eq(5w)−50Eq(4w)+100Eq(3w)

−100Eq(2w)−1150Eq(w)
∥∥≤ 10S (w,w)

(3.19)

for all w ∈W1. From (3.18) and (3.19), we get∥∥5Eq(4w)−24Eq(3w)−74Eq(2w)+3080Eq(w)
∥∥

≤S (0,2w)+S (4w,w)+5S (3w,w)

+10S (2w,w)+10S (w,w) (3.20)

for all w ∈W1. Multiplying (3.12) by 5, we have∥∥5Eq(4w)−25Eq(3w)+50Eq(2w)−645Eq(w)
∥∥

≤ 5S (0,w) (3.21)

for all w ∈W1. Combining (3.20) and (3.21), we arrive∥∥Eq(3w)−124Eq(2w)+3725Eq(w)
∥∥

≤S (0,2w)+S (4w,w)+5S (3w,w)

+10S (2w,w)+10S (w,w)+5S (0,w) (3.22)

for all w ∈W1. It follows from (3.13) and (3.22), we achieve∥∥120Eq(2w)−3840Eq(w)
∥∥

≤S (0,2w)+S (4w,w)+5S (3w,w)+10S (2w,w)

+10S (w,w)+5S (0,w)+S (−w,w) (3.23)

for all w ∈W1. Let us take

S5(w,w) = S (0,2w)+S (4w,w)+5S (3w,w)

+10S (2w,w)+10S (w,w)+5S (0,w)
+S (−w,w) (3.24)
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for all w ∈W1. Using (3.24) in (3.24), we reach∥∥120Eq(2w)−3840Eq(w)
∥∥≤S5(w,w) (3.25)

for all w ∈W1. It follows from (3.25) that∥∥∥∥Eq(2w)
25 −Eq(w)

∥∥∥∥≤ 1
25 ·5!

×S5(w,w) (3.26)

for all w ∈ W1. Changing w by 2w and multiply by 1
25 in

(3.26) and adding the resultant inequality to (3.26), one can
obtain∥∥∥∥Eq(22w)

210 −Eq(w)
∥∥∥∥

≤ 1
25 ·5!

×
[
S5(w,w)+

1
25 S5(2w,2w)

]
(3.27)

for all w ∈W1. Generalized for a positive integer β , we have∥∥∥∥∥Eq(2β w)
25β

−Eq(w)

∥∥∥∥∥≤ 1
25 ·5!

×
β−1

∑
γ=0

S5(2γ w,2γ w)
25γ

(3.28)

for all w ∈W1. By defining w by 2δ w and dividing by 25δ in
(3.28) and letting β → ∞, it shows that the sequence{

Eq(2β w)
25β

}

is a Cauchy sequence. Since W2 is complete, this sequence
converges to a point Q5(w) in W2. Thus, we define this func-
tion by

Q5(w) = lim
β→∞

Eq(2β w)
25β

(3.29)

for all w ∈ W1. Taking limit as β tends to ∞ in (3.28) and
using (3.29), we arrive (3.2) for the case α = 1.

To prove that the existing Q5(w) satisfies the functional
equation (1.3), changing (w,v) by (2β w,2β v) and dividing by
25β in (3.1), we get

1
25β

∥∥∥Eq(2β w,2β v)
∥∥∥≤ 1

25β
×S (2β w,2β v) (3.30)

for all w,v ∈W1. Letting β tends to ∞ in (3.30) using (3.4),
(3.29), we obtain

Q5(w,v) = 0 (3.31)

for all w,v ∈ W1. Thus Q5 satisfies the functional equation
(1.3).

It is easy to prove that the existence of Q5 is unique. In-
deed, let R5 be an another quintic mapping satisfying (1.3)
and (3.2). Now

Q5(2δ w) = 25δ Q5(w) and R5(2δ w) = 25δ R5(w).

Thus,

‖Q5(w)−R5(w)‖

=
1

25δ

{∥∥∥Q5(2δ w)−R5(2δ w)
∥∥∥}

≤ 1
25δ

{∥∥∥Q5(2δ w)−Eq(2δ w)
∥∥∥+∥∥∥R5(2δ w)−Eq(2δ w)

∥∥∥}
≤ 1

24 ·5!
×

∞

∑
γ=0

1
25(γ+δ )

S5

(
2γ+δ w,2γ+δ w

)
(3.32)

for all w ∈ W1. Letting δ tends to ∞ in (3.32), we have
Q5(w)− R5(w) = 0 which implies Q5(w) = R5(w) for all
w ∈W1. Hence the theorem holds for α = 1.

On changing w by
w
2

in (3.25), we get

∥∥∥Eq(w)−25Eq

(w
2

)∥∥∥≤ 1
5!
×S5

(w
2
,

w
2

)
(3.33)

for all w ∈W1. Replacing w by
w
2

in (3.33) and multiplying

by 25 and adding the resultant inequality to (3.33), we arrive∥∥∥Eq(w)−210Eq

( w
22

)∥∥∥
≤ 1

5!
×
[
S5

(w
2
,

w
2

)
+25S5

( w
22 ,

w
22

)]
(3.34)

for all w ∈W1. Generalizing for a positive integer β , we see
that ∥∥∥Eq(w)−25β Eq

( w
2β

)∥∥∥
≤ 1

5!
×

β

∑
γ=1

25β−1S5

( w
2β

,
w
2β

)
=

1
25 ·5!

×
β

∑
γ=1

25β S5

( w
2β

,
w
2β

)
(3.35)

for all w ∈W1. The rest of the proof is similar clues that of
case α = 1. Hence the proof is complete.

The following corollary is an immediate consequence of
Theorem 3.1 regarding the Ulam - Hyers stability [23] of the
functional equation (1.3).

Corollary 3.2. For an odd mapping Eq : W1 −→W2 fulfilling
the functional inequality∥∥Eq(w,v)

∥∥≤Φ (3.36)

for all w,v ∈W1 where Φ > 0 is a constant. Then there exists
one and only quintic function Q5 : W1−→W2 which satisfying
the functional equation (1.3) and the functional inequality∥∥Q5(w)−Eq(w)

∥∥≤ 33Φ

5!|31|
(3.37)

for all w ∈W1.
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The following corollary is an immediate consequence of
Theorem 3.1 regarding the Ulam - Hyers - THRassias stability
[38] of the functional equation (1.3).

Corollary 3.3. For an odd mapping Eq : W1 −→W2 fulfilling
the functional inequality∥∥Eq(w,v)

∥∥≤{ Φ
{
||w||φ + ||v||φ

}
;

Φ
{
||w||φ1 + ||v||φ2

}
;

(3.38)

for all w,v ∈W1 where Φ > 0 is a constant and φ ,φ1,φ2 6= 5.
Then there exists one and only quintic function Q5 : W1 −→
W2 which satisfying the functional equation (1.3) and the
functional inequality

∥∥Q5(w)−Eq(w)
∥∥≤


Γ5T Φ||w||φ

5!|25−2φ |
;

Γ5T 1 Φ||w||φ1

5!|25−2φ1 |
+

Γ5T 2 Φ||w||φ2

5!|25−2φ2 |
;

(3.39)

where

Γ5T =
(

11 ·2φ +5 ·3φ +4φ +43
)

;

Γ5T 1 =
(

10 ·2φ1 +5 ·3φ1 +4φ1 +32
)

;

Γ5T 2 =
(

2φ2 +11
)

;

(3.40)

for all w ∈W1.

The following corollary is an immediate consequence of
Theorem 3.1 regarding the Ulam - Hyers - JMRassias stability
[42] of the functional equation (1.3).

Corollary 3.4. For an odd mapping Eq : W1 −→W2 fulfilling
the functional inequality

∥∥Eq(w,v)
∥∥≤{ Φ

{
||w||φ ||v||φ +

[
||w||2φ + ||v||2φ

]}
;

Φ
{
||w||φ1 ||v||φ2 +

[
||w||φ1+φ2 + ||v||φ1+φ2

]}
;

(3.41)

for all w,v∈W1 where Φ> 0 is a constant and 2φ ,φ1+φ2 6= 5.
Then there exists one and only quintic function Q5 : W1 −→
W2 which satisfying the functional equation (1.3) and the
functional inequality

∥∥Q5(w)−Eq(w)
∥∥≤


Γ5J Φ||w||φ

5!|25−22φ |
;

Γ5J1 Φ||w||φ1+φ2

5!|25−2φ1+φ2 |
;

(3.42)

where

Γ5J =
(

10 ·2φ +11 ·22φ +5(3φ +32φ )+4φ +42φ +54
)

;

Γ5J1 =
(

11 ·2φ1+φ2 +5 ·3φ1+φ2 +4φ1+φ2

+4φ1 +5 ·3φ1 +10 ·2φ1 +54
)

;

(3.43)

for all w ∈W1.

Theorem 3.5. For an even mapping Es : W1 −→W2 fulfilling
the functional inequality

‖Es(w,v)‖ ≤S (w,v) (3.44)

for all w,v∈W1. Then there exists one and only sextic function
Q6 : W1 −→W2 which satisfying the functional equation (1.3)
and the functional inequality

‖Q6(w)−Es(w)‖≤
1

26 ·6!
×

∞

∑
γ= 1−α

2

1
26γα

S6

(
2γα w,2γα w

)
(3.45)

for all w ∈W1. The mapping Q6 is defined as

Q6(w) = lim
β→∞

1
26αβ

Es

(
2αβ w

)
(3.46)

for all w ∈W1, where S : W 2
1 −→ [0,∞) is a function fulfill-

ing the condition

lim
β→∞

1
26αβ

S
(

2αβ w,2αβ v
)
= 0 (3.47)

for all w,v ∈W1. The function S6

(
2γα w,2γα w

)
is defined by

S6

(
2γα w,2γα w

)
= S (0,2γα ·2w)+S (2γα ·4w,2γα w)

+5S (2γα ·3w,2γα w)+10S (2γα ·2w,2γα w)

+10S (2γα w,2γα w)+5S (0,2γα w)

+S (−2γα w,2γα w) (3.48)

for all w ∈W1.

Proof. Using evenness of E in (3.44), one can obtain that

‖Es(w+4v)−6Es(w+3v)+15Es(w+2v)

−20Es(w+ v)+15Es(w)−6Es(w− v)

+Es(w−2v)−720Es(v)‖ ≤S (w,v) (3.49)

for all w,v∈W1. Now, interchanging (w,v) by (0,2w), (4w,w),
(3w,w), (2w,w), (w,w), (0,w) and (−w,w) in (3.49) and us-
ing evenness of E, we arrive the subsequent inequalities

‖Es(8w)−6Es(6w)+16Es(4w)−746Es(2w)‖
≤S (0,2w) (3.50)
‖Es(8w)−6Es(7w)+15Es(6w)−20Es(5w)

+15Es(4w)−6Es(3w)+Es(2w)−720Es(w)‖
≤S (4w,w) (3.51)
‖Es(7w)−6Es(6w)+15Es(5w)−20Es(4w)

+15Es(3w)−6Es(2w)−719Es(w)‖ ≤S (3w,w)
(3.52)

‖Es(6w)−6Es(5w)+15Es(4w)−20Es(3w)

+15Es(2w)−726Es(w)‖ ≤S (2w,w) (3.53)
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‖Es(5w)−6Es(4w)+15Es(3w)

−20Es(2w)−704Es(w)‖ ≤S (w,w) (3.54)
‖Es(4w)−6Es(3w)+16Es(2w)−746Es(w)‖ ≤S (0,w)

(3.55)

‖2Es(3w)−12Es(2w)−690Es(w)‖ ≤S (−w,w)
(3.56)

for all w ∈W1. From (3.50) and (3.51), we have

‖6Es(7w)−21Es(6w)+20Es(5w)+Es(4w)

+6Es(3w)−747Es(2w)+720Es(w)‖
≤ ‖Es(8w)−6Es(6w)+16Es(4w)−746Es(2w)‖
+‖Es(8w)−6Es(7w)+15Es(6w)−20Es(5w)

+15Es(4w)−6Es(3w)+Es(2w)−720Es(w)‖
≤S (0,2w)+S (4w,w) (3.57)

for all w ∈W1. Multiplying (3.52) by 6, we see that

‖6Es(7w)−36Es(6w)+90Es(5w)−120Es(4w)

+90Es(3w)−36Es(2w)−5514Es(w)‖ ≤ 6S (3w,w)
(3.58)

for all w ∈W1. It follows from (3.57) and (3.58), we arrive

‖15Es(6w)−70Es(5w)+121Es(4w)−84Es(3w)

−711Es(2w)+5034Es(w)‖
≤S (0,2w)+S (4w,w)+6S (3w,w) (3.59)

for all w ∈W1. Multiplying (3.53) by 15, we find that

‖15Es(6w)−90Es(5w)+225Es(4w)−300Es(3w)

+225Es(2w)−10890Es(w)‖ ≤ 15S (2w,w) (3.60)

for all w ∈W1. Combining (3.60) and (3.59), we obtin

‖20Es(5w)−104Es(4w)+216Es(3w)

−936Es(2w)+15924Es(w)‖
≤S (0,2w)+S (4w,w)

+6S (3w,w)+15S (2w,w) (3.61)

for all w ∈W1. Multiplying (3.54) by 20, we get

‖20Es(5w)−120Es(4w)+300Es(3w)

−400Es(2w)−14080Es(w)‖ ≤ 20S (w,w) (3.62)

for all w ∈W1. It follows from (3.61) and (3.62), we have

‖16Es(4w)−84Es(3w)−536Es(2w)+30004Es(w)‖
≤S (0,2w)+S (4w,w)+6S (3w,w)

+15S (2w,w)+20S (w,w) (3.63)

for all w ∈W1. Multiplying (3.55) by 16, we see that

‖16Es(4w)−96Es(3w)+256Es(2w)−11936Es(w)‖
≤ 16S (0,w) (3.64)

for all w ∈W1. From (3.63) and (3.64), we arrive

‖12Es(3w)−792Es(2w)+41940Es(w)‖
≤S (0,2w)+S (4w,w)+6S (3w,w)

+15S (2w,w)+20S (w,w)+16S (0,w) (3.65)

for all w ∈W1. Multiplying (3.56) by 6 and it follows from
(3.65), we achieve

‖720Es(2w)−46080Es(w)‖
≤S (0,2w)+S (4w,w)+6S (3w,w)+15S (2w,w)

+20S (w,w)+16S (0,w)+6S (−w,w) (3.66)

for all w ∈W1. Let us take

S6(w,w) = S (0,2w)+S (4w,w)+6S (3w,w)

+15S (2w,w)+20S (w,w)+16S (0,w)
+6S (−w,w) (3.67)

for all w ∈W1. Using (3.67) in (3.67), we reach

‖720Es(2w)−46080Es(w)‖ ≤S6(w,w) (3.68)

for all w ∈W1. It follows from (3.68) that∥∥∥∥Es(2w)
26 −Es(w)

∥∥∥∥≤ 1
26 ·6!

×S6(w,w) (3.69)

for all w ∈ W1. Changing w by 2w and multiply by 1
26 in

(3.69) and adding the resultant inequality to (3.69), one can
obtain∥∥∥∥Es(22w)

212 −Es(w)
∥∥∥∥≤ 1

26 ·6!

[
S6(w,w)+

1
26 S6(2w,2w)

]
(3.70)

for all w ∈W1. Generalized for a positive integer β , we have∥∥∥∥∥Es(2β w)
26β

−Es(w)

∥∥∥∥∥≤ 1
26 ·6!

×
β−1

∑
γ=0

S6(2γ w,2γ w)
26γ

(3.71)

for all w ∈W1. The rest of the proof is similar lines to that of
Theorem 3.1. Hence the proof is complete.

The following corollary is an immediate consequence of
Theorem 3.5 regarding the Ulam - Hyers stability [23] of the
functional equation (1.3).

Corollary 3.6. For an even mapping Es : W1 −→W2 fulfilling
the functional inequality

‖Es(w,v)‖ ≤Φ (3.72)

for all w,v ∈W1 where Φ > 0 is a constant. Then there exists
one and only sextic function Q6 : W1 −→W2 which satisfying
the functional equation (1.3) and the functional inequality

‖Q6(w)−Es(w)‖ ≤
65Φ

6!|63|
(3.73)

for all w ∈W1.
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The following corollary is an immediate consequence of
Theorem 3.5 regarding the Ulam - Hyers - THRassias stability
[38] of the functional equation (1.3).

Corollary 3.7. For an even mapping Es : W1 −→W2 fulfilling
the functional inequality

‖Es(w,v)‖ ≤
{

Φ
{
||w||φ + ||v||φ

}
;

Φ
{
||w||φ1 + ||v||φ2

}
;

(3.74)

for all w,v ∈W1 where Φ > 0 is a constant and φ ,φ1,φ2 6= 6.
Then there exists one and only sextic function Q6 : W1 −→
W2 which satisfying the functional equation (1.3) and the
functional inequality

‖Q6(w)−Es(w)‖ ≤


Γ6T Φ||w||φ

6!|26−2φ |
;

Γ6T 1 Φ||w||φ1

6!|26−2φ1 |
+

Γ6T 2 Φ||w||φ2

6!|26−2φ2 |
;

(3.75)

where

Γ6T =
(

16 ·2φ +6 ·3φ +4φ +91
)

;

Γ6T 1 =
(

15 ·2φ1 +6 ·3φ1 +4φ1 +26
)

;

Γ6T 2 =
(

2φ2 +65
)

;

(3.76)

for all w ∈W1.

The following corollary is an immediate consequence of
Theorem 3.5 regarding the Ulam - Hyers - JMRassias stability
[42] of the functional equation (1.3).

Corollary 3.8. For an even mapping Es : W1 −→W2 fulfilling
the functional inequality

‖Es(w,v)‖≤
{

Φ
{
||w||φ ||v||φ +

[
||w||2φ + ||v||2φ

]}
;

Φ
{
||w||φ1 ||v||φ2 +

[
||w||φ1+φ2 + ||v||φ1+φ2

]}
;

(3.77)

for all w,v∈W1 where Φ> 0 is a constant and 2φ ,φ1+φ2 6= 6.
Then there exists one and only sextic function Q6 : W1 −→
W2 which satisfying the functional equation (1.3) and the
functional inequality

‖Q6(w)−Es(w)‖ ≤


Γ6J Φ||w||2φ

6!|26−22φ |
;

Γ6J1 Φ||w||φ1+φ2

6!|26−2φ1+φ2 |
;

(3.78)

where

Γ6J =
(

16 ·2φ +15 ·22φ +6(3φ +32φ )+4φ +42φ +117
)

;

Γ6J1 =
(

16 ·2φ1+φ2 +5(3φ1+φ2 +3φ1)

+4φ1+φ2 +4φ1 +15 ·2φ1 +90
)

;

(3.79)

for all w ∈W1.

Theorem 3.9. For a mapping E : W1 −→ W2 fulfilling the
functional inequality

‖E (w,v)‖ ≤S (w,v) (3.80)

for all w,v ∈ W1. Then there exists one and only quintic
function Q5 : W1 −→ W2 and one and only sextic function
Q6 : W1 −→W2 which satisfying the functional equation (1.3)
and the functional inequality

‖E(w)−Q5(w)−Q6(w)‖

≤ 1
26 ·5!

∞

∑
γ= 1−α

2

1
25γα

{
S5

(
2γα w,2γα w

)
+ S5

(
−2γα w,−2γα w

)}
+

1
27 ·6!

∞

∑
γ= 1−α

2

1
26γα

{
S6

(
2γα w,2γα w

)
+ S6

(
−2γα w,−2γα w

)}
(3.81)

for all w ∈W1. The mappings Q5 and Q6 are defined in (3.3)
and (3.46) for all w ∈ W1, where S : W 2

1 −→ [0,∞) is a
function fulfilling the conditions (3.4) and (3.47) for all w,v ∈
W1. The functions S5

(
2γα w,2γα w

)
and S6

(
2γα w,2γα w

)
are given in (3.5) and (3.48) for all w ∈W1.

Proof. We know that by definition of odd function, we have

EO(w) =
Eq(w)−Eq(−w)

2
(3.82)

for all w ∈W1. It follows from (3.82) that

‖EO(w,v)‖ ≤
1
2

{
Eq(w,v)−Eq(−w,−v)

}
≤ 1

2

{
S (w,v)+S (−w,−v)

}
(3.83)

for all w ∈W1. Thus by Theorem 3.1, we arrive

‖Q5(w)−EO(w)‖

≤ 1
26 ·5!

∞

∑
γ= 1−α

2

1
25γα

{
S5

(
2γα w,2γα w

)
+ S5

(
−2γα w,−2γα w

)}
(3.84)

for all w ∈W1. We know that by definition of even function,
we have

EE(w) =
Eq(w)+Eq(−w)

2
(3.85)

for all w ∈W1. It follows from (3.85) that

‖EE(w,v)‖ ≤
1
2

{
Es(w,v)−Es(−w,−v)

}
≤ 1

2

{
S (w,v)+S (−w,−v)

}
(3.86)
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for all w ∈W1. Thus by Theorem 3.5, we arrive

‖Q6(w)−EE(w)‖

≤ 1
27 ·6!

∞

∑
γ= 1−α

2

1
26γα

{
S6

(
2γα w,2γα w

)
+ S6

(
−2γα w,−2γα w

)}
(3.87)

for all w ∈W1. Now, define a function

E(w) = EO(w)+EE(w) (3.88)

for all w ∈ W1. Combining (3.88), (3.84) and (3.87), we
derived our result.

The following corollary is an immediate consequence of
Theorem 3.9 regarding the Ulam - Hyers stability [23] of the
functional equation (1.3).

Corollary 3.10. For a mapping E : W1 −→W2 fulfilling the
functional inequality

‖E (w,v)‖ ≤Φ (3.89)

for all w,v ∈ W1 where Φ > 0 is a constant. Then there
exists one and only quintic function Q5 : W1 −→W2 and one
and only sextic function Q6 : W1 −→W2 which satisfying the
functional equation (1.3) and the functional inequality

‖E(w)−Q5(w)−Q6(w)‖≤
(

33
5!|31|

+
65

6!|63|

)
Φ (3.90)

for all w ∈W1.

The following corollary is an immediate consequence of
Theorem 3.9 regarding the Ulam - Hyers - THRassias stability
[38] of the functional equation (1.3).

Corollary 3.11. For a mapping E : W1 −→W2 fulfilling the
functional inequality

‖E (w,v)‖ ≤
{

Φ
{
||w||φ + ||v||φ

}
;

Φ
{
||w||φ1 + ||v||φ2

}
;

(3.91)

for all w,v∈W1 where Φ> 0 is a constant and φ ,φ1,φ2 6= 5,6.
Then there exists one and only quintic function Q5 : W1 −→
W2 and one and only sextic function Q6 : W1 −→W2 which
satisfying the functional equation (1.3) and the functional
inequality

‖E(w)−Q5(w)−Q6(w)‖

≤



(
Γ5T

5!|25−2φ |
+

Γ6T

6!|26−2φ |

)
Φ||w||φ ;{(

Γ5T 1
5!|25−2φ1 | +

Γ6T 1
6!|26−2φ1 |

)
Φ||w||φ1

+
(

Γ6T 2
6!|26−2φ2 | +

Γ5T 2
5!|25−2φ2 |

)
Φ||w||φ2

}
;

(3.92)

where Γgs are defined in (3.40) and (3.76) respectively for all
w ∈W1.

The following corollary is an immediate consequence of
Theorem 3.9 regarding the Ulam - Hyers - JMRassias stability
[42] of the functional equation (1.3).

Corollary 3.12. For a mapping E : W1 −→W2 fulfilling the
functional inequality

‖E (w,v)‖≤
{

Φ
{
||w||φ ||v||φ +

[
||w||2φ + ||v||2φ

]}
;

Φ
{
||w||φ1 ||v||φ2 +

[
||w||φ1+φ2 + ||v||φ1+φ2

]}
;

(3.93)

for all w,v ∈ W1 where Φ > 0 is a constant and 2φ ,φ1 +
φ2 6= 5,6. Then there exists one and only quintic function
Q5 : W1 −→W2 and one and only sextic function Q6 : W1 −→
W2 which satisfying the functional equation (1.3) and the
functional inequality

‖E(w)−Q5(w)−Q6(w)‖

≤


{(

Γ5J
5!|25−22φ | +

Γ6J
6!|26−22φ |

)
Φ||w||2φ

}
;{(

Γ5J1
5!|25−2φ1+φ2 | +

Γ6J1
6!|26−2φ1+φ2 |

)
Φ||w||φ1+φ2

}
;

(3.94)

where Γ′gs are defined in (3.43) and (3.79) respectively for all
w ∈W1.

3.2 Alternative Fixed Point Method
Theorem 3.13. For an odd mapping Eq : W1 −→W2 fulfilling
the functional inequality (3.1) for all w,v ∈ W1, where S :
W 2

1 −→ [0,∞) is a function fulfilling the condition

lim
β→∞

1

ξ
5β

ψ

S
(

ξ
β

ψ w,ξ β

ψ v
)
= 0 (3.95)

for all w,v ∈W1. Then there exists one and only quintic func-
tion Q5 : W1 −→W2 which satisfying the functional equation
(1.3) and the functional inequality∥∥Q5(w)−Eq(w)

∥∥≤ L 1−ψ

1−L
S
(

w,w
)

(3.96)

for all w ∈W1. If L = L (ψ), with the property

1
ξ 5

ψ

S5

(
ξψ w,ξψ w

)
= L S5

(
w,w

)
(3.97)

with the condition that

S5

(
w,w

)
=

1
5!

S5

(w
2
,

w
2

)
, (3.98)

where S5

(
w,w

)
is defined in (3.24) for all w ∈W1.

Proof. Consider the set

B =
{

E1|E1 : W1 −→W2,E1(0) = 0
}

(3.99)

Let us introduce the generalized metric on (3.99) by

inf
{

ζ : ‖E1(w)−E2(w)‖ ≤ ζS5

(
w,w

)}
(3.100)
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for all w ∈ W1. One can easy to see verify that (3.100) is
complete with respect to the defined metric. Define a mapping
ϒ : B→B by

ϒEq(w) =
1

ξ 5
ψ

Eq(ξψ) (3.101)

for all w ∈W1. Now, for any E1,E2 ∈B, we arrive

‖E1(w)−E2(w)‖ ≤ ζS5

(
w,w

)
=⇒

∥∥∥∥∥ 1
ξ 5

ψ

E1(ξψ)−
1

ξ 5
ψ

E2(ξψ)

∥∥∥∥∥≤ ζS5

(
w,w

)
=⇒‖ϒE1(w)−ϒE2(w)‖ ≤L ζS5

(
w,w

)
for all w ∈ W1. This implies that ϒ is a strictly contractive
mapping on B with Lipschitz constant L . It follows from
(3.26) that∥∥∥∥Eq(2w)

25 −Eq(w)
∥∥∥∥≤ 1

25 ·5!
S5(w,w) (3.102)

for all w ∈W1.
For the case ψ = 0, it follows from (3.97), (3.98), (3.101)

and (3.102),∥∥ϒEq(w)−Eq(w)
∥∥≤L S5(w,w) = L 1−0S5(w,w)

(3.103)

for all w ∈W1.
Replacing w by w

2 in (3.102), we obtain∥∥∥Eq(w)−25Eq

(w
2

)∥∥∥≤ 1
5!

S5

(w
2
,

w
2

)
(3.104)

for all w ∈W1.
For the case ψ = 1, it follows from (3.97), (3.98), (3.101)

and (3.104),∥∥Eq(w)−ϒEq(w)
∥∥≤S5(w,w) = L 1−1S5(w,w)

(3.105)

for all w ∈W1. From (3.103) and (3.105), we see that∥∥Eq(w)−ϒEq(w)
∥∥≤L 1−ψS5(w,w) (3.106)

for all w ∈W1. Thus, condition (FPC1) of Theorem 1.1 holds.
It follows from condition (FPC2 ) of Theorem 1.1 , that there
exists a fixed point Q5 of ϒ in L such that

Q5(w) = lim
β→∞

1
ξ 5

ψ

Eq

(
ξψ w

)
(3.107)

for all w ∈ W1. To prove the existing Q5 satisfies (1.3), the
proof is similar to that of Theorem 3.1.

Again by condition (FPC3) of Theorem 1.1 , Q5 is the
unique fixed point of ϒ in the set

∆ =
{

Q5 :
∥∥Eq(w)−Q5(w)

∥∥≤ ∞

}
(3.108)

for all w ∈W1. Finally, by condition (FPC4) of Theorem 1.1 ,
we get∥∥Eq(w)−Q5(w)

∥∥≤ 1
1−L

∥∥Eq(w)−ϒEq(w)
∥∥

=⇒
∥∥Eq(w)−Q5(w)

∥∥≤ L 1−ψ

1−L
S5(w,w)

for all w ∈W1. This completes the proof of the theorem.

The following corollary is an immediate consequence
of Theorem 3.13 regarding the Ulam - Hyers stability [23],
Ulam - Hyers - THRassias stability [38] and Ulam - Hyers -
JMRassias stability [42] of the functional equation (1.3).

Corollary 3.14. For an odd mapping Eq : W1 −→W2 fulfill-
ing the functional inequality

∥∥Eq(w,v)
∥∥≤


Φ;
Φ
{
||w||φ + ||v||φ

}
;

Φ
{
||w||φ ||v||φ +

[
||w||2φ + ||v||2φ

]}
;

(3.109)

for all w,v ∈W1 where Φ > 0 and φ is a constant. Then there
exists one and only quintic function Q5 : W1 −→ W2 which
satisfying the functional equation (1.3) and the functional
inequality

∥∥Q5(w)−Eq(w)
∥∥≤



33Φ

5!|31|
;

Γ5T Φ||w||φ

5!|25−2φ |
; φ 6= 5

Γ5JΦ||w||2φ

5!|25−22φ |
; 2φ 6= 5

(3.110)

where Γgs are defined in (3.40) and (3.43) respectively for all
w ∈W1.

Proof. If we take

S (w,v) =


Φ;
Φ
{
||w||φ + ||v||φ

}
;

Φ
{
||w||φ ||v||φ +

[
||w||2φ + ||v||2φ

]}
;

(3.111)

for all w,v ∈W1. Changing (w,v) by (ξ
β

ψ w,ξ β

ψ v) and dividing

by ξ
5β

ψ in (3.111) and letting β tends to ∞, we see that (3.95)
holds for all w,v ∈W1.

It follows from (3.98), (3.111) and (3.24), one can find
that

S
(

w,w
)

=
1
5!

S
(w

2
,

w
2

)

=



33Φ

5! ;(
11·2φ+5·3φ+4φ+43

)
Φ||w||φ

5!2φ ;(
10·2φ+11·22φ+5(3φ+32φ )+4φ+42φ+54

)
Φ||w||2φ

5!22φ ;
(3.112)
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for all w ∈W1.
Again, it follows from (3.97), (3.111) and (3.24), one can

observe that

1
ξ 5

ψ

S5

(
ξψ w,ξψ w

)

=



33Φ

5! ξ 5
ψ

;(
11·2φ+5·3φ+4φ+43

)
Φ||w||φ

5! ξ
5−φ
ψ

;(
10·2φ+11·22φ+5(3φ+32φ )+4φ+42φ+54

)
Φ||w||2φ

5! ξ
5−2φ
ψ

;

=



L S5

(
w,w

)
;

L S5

(
w,w

)
;

L S5

(
w,w

)
;

(3.113)

for all w ∈W1. Thus, the functional inequality (3.96) holds
for the following cases.

For ψ = 0 : L =
1

ξ 5
ψ

=
1
25 = 2−5

∥∥Q5(w)−Eq(w)
∥∥≤ L 1−ψ

1−L
S5

(
w,w

)

=

(
2−5
)1−0

1−2−5 S5

(
w,w

)
=

1
31

S5

(
w,w

)
For ψ = 1 : L = ξ

5
ψ = 25

∥∥Q5(w)−Eq(w)
∥∥≤ L 1−ψ

1−L
S5

(
w,w

)

=

(
25
)1−1

1−25 S5

(
w,w

)
=

1
−31

S5

(
w,w

)
For ψ = 0 : L =

1

ξ
5−φ

ψ

=
1

25−φ
= 2φ−5 : φ < 5

∥∥Q5(w)−Eq(w)
∥∥≤ L 1−ψ

1−L
S5

(
w,w

)

=

(
2φ−5

)1−0

1−2φ−5 S5

(
w,w

)
=

2φ

25−2φ
S5

(
w,w

)

For ψ = 1 : L = ξ
5−φ

ψ = 25−φ : φ > 5

∥∥Q5(w)−Eq(w)
∥∥≤ L 1−ψ

1−L
S5

(
w,w

)

=

(
25−φ

)1−1

1−25−φ
S5

(
w,w

)
=

2φ

2φ −25 S5

(
w,w

)
For ψ = 0 : L =

1

ξ
5−2φ

ψ

=
1

25−2φ
= 22φ−5 : 2φ < 5

∥∥Q5(w)−Eq(w)
∥∥≤ L 1−ψ

1−L
S5

(
w,w

)

=

(
22φ−5

)1−0

1−22φ−5 S5

(
w,w

)
=

22φ

25−22φ
S5

(
w,w

)
For ψ = 1 : L = ξ

5−2φ

ψ = 25−2φ : 2φ > 5

∥∥Q5(w)−Eq(w)
∥∥≤ L 1−ψ

1−L
S5

(
w,w

)

=

(
25−2φ

)1−1

1−25−2φ
S5

(
w,w

)
=

22φ

22φ −25 S5

(
w,w

)

Theorem 3.15. For an even mapping Es : W1−→W2 fulfilling
the functional inequality (3.44) for all w,v ∈W1, where S :
W 2

1 −→ [0,∞) is a function fulfilling the condition

lim
β→∞

1

ξ
6β

ψ

S
(

ξ
β

ψ w,ξ β

ψ v
)
= 0 (3.114)

for all w,v∈W1. Then there exists one and only sextic function
Q6 : W1 −→W2 which satisfying the functional equation (1.3)
and the functional inequality

‖Q6(w)−Es(w)‖ ≤
L 1−ψ

1−L
S6

(
w,w

)
(3.115)

for all w ∈W1. If L = L (ψ), with the property

1
ξ 6

ψ

S6

(
ξψ w,ξψ w

)
= L S6

(
w,w

)
(3.116)

with the condition that

S6

(
w,w

)
=

1
6!

S6

(w
2
,

w
2

)
, (3.117)

where S6

(
w,w

)
is defined in (3.67) for all w ∈W1.
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Proof. Consider the set

B =
{

E2|E2 : W1 −→W2,E2(0) = 0
}

(3.118)

Let us introduce the generalized metric on (3.118) by

inf
{

ζ : ‖E1(w)−E2(w)‖ ≤ ζS6

(
w,w

)}
(3.119)

for all w ∈ W1. One can easy to see verify that (3.119) is
complete with respect to the defined metric. Define a mapping
ϒ : B→B by

ϒEs(w) =
1

ξ 6
ψ

Es(ξψ) (3.120)

for all w ∈W1. Now, for any E1,E2 ∈B, we arrive

‖E1(w)−E2(w)‖ ≤ ζS6

(
w,w

)
=⇒

∥∥∥∥∥ 1
ξ 6

ψ

E1(ξψ)−
1

ξ 6
ψ

E2(ξψ)

∥∥∥∥∥≤ ζS6

(
w,w

)
=⇒‖ϒE1(w)−ϒE2(w)‖ ≤L ζS6

(
w,w

)
for all w ∈ W1. This implies that ϒ is a strictly contractive
mapping on B with Lipschitz constant L . The rest of the
proof is similar lines to that of Theorem 3.13. This completes
the proof of the theorem.

The following corollary is an immediate consequence
of Theorem 3.15 regarding the Ulam - Hyers stability [23],
Ulam - Hyers - THRassias stability [38] and Ulam - Hyers -
JMRassias stability [42] of the functional equation (1.3).

Corollary 3.16. For an even mapping Es : W1 −→W2 fulfill-
ing the functional inequality

‖Es(w,v)‖ ≤


Φ;
Φ
{
||w||φ + ||v||φ

}
;

Φ
{
||w||φ ||v||φ +

[
||w||2φ + ||v||2φ

]}
;

(3.121)

for all w,v ∈W1 where Φ > 0 and φ is a constant. Then there
exists one and only sextic function Q6 : W1 −→ W2 which
satisfying the functional equation (1.3) and the functional
inequality

‖Q6(w)−Es(w)‖ ≤



65Φ

6!|63|
;

Γ6T Φ||w||φ

6!|26−2φ |
; φ 6= 6

Γ6J Φ||w||2φ

6!|26−22φ |
; 2φ 6= 6

(3.122)

where Γ′gs are defined in (3.76) and (3.79) respectively for all
w ∈W1.

Proof. The proof of the corollary is similar clues and ideas of
Corollary 3.14. Hence the details of the proof are omitted.

Theorem 3.17. For a mapping E : W1 −→W2 fulfilling the
functional inequality (3.80) for all w,v ∈ W1, where S :
W 2

1 −→ [0,∞) is a function fulfilling the conditions (3.95)
and (3.114) for all w,v ∈W1. Then there exists one and only
quintic function Q5 : W1 −→W2 and one and only sextic func-
tion Q6 : W1 −→W2 which satisfying the functional equation
(1.3) and the functional inequality

‖E(w)−Q5(w)−Q6(w)‖

≤ L 1−ψ

1−L

{
S
(

w,w
)
+S

(
−w,−w

)}
(3.123)

for all w ∈W1. If L = L (ψ), with the properties and condi-
tions (3.97), (3.116) (3.98), (3.117) for all w ∈W1.

Proof. From (3.83) of Theorem 3.9 and by Theorem 3.13, we
obtain

‖Q5(w)−EO(w)‖≤
1
2
×L 1−ψ

1−L

{
S
(

w,w
)
+S

(
−w,−w

)}
(3.124)

for all w ∈ W1. Also, from (3.85) of Theorem 3.9 and by
Theorem 3.15, we obtain

‖Q6(w)−EsE(w)‖≤
1
2
×L 1−ψ

1−L

{
S
(

w,w
)
+S

(
−w,−w

)}
(3.125)

for all w ∈ W1. Finally, from (3.88) of of Theorem 3.9 and
(3.124), (3.125), we prove our desired result.

The following corollary is an immediate consequence
of Theorem 3.17 regarding the Ulam - Hyers stability [23],
Ulam - Hyers - THRassias stability [38] and Ulam - Hyers -
JMRassias stability [42] of the functional equation (1.3).

Corollary 3.18. For an mapping E : W1 −→W2 fulfilling the
functional inequality

‖E (w,v)‖ ≤


Φ;
Φ
{
||w||φ + ||v||φ

}
;

Φ
{
||w||φ ||v||φ +

[
||w||2φ + ||v||2φ

]}
;

(3.126)

for all w,v ∈W1 where Φ > 0 and φ is a constant. Then there
exists one and only quintic function Q5 : W1 −→W2 and one
and only sextic function Q6 : W1 −→W2 which satisfying the
functional equation (1.3) and the functional inequality

‖E(w)−Q5(w)−Q6(w)‖

≤


(

33
5!|31| +

65
6!|63|

)
2Φ;(

Γ5T
5!|25−2φ | +

Γ6T 2Φ||w||φ
6!|26−2φ |

)
; φ 6= 5,6(

Γ5J
5!|25−22φ | +

Γ6J
6!|26−22φ |

)
2Φ||w||2φ ; 2φ 6= 5,6

(3.127)

where Γ′gs are defined in (3.40), (3.43), (3.76) and (3.79)
respectively for all w ∈W1.
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4. Stability Results In Fuzzy Banach
Space

In this section, we confirm the generalized Ulam - Hyers sta-
bility in Fuzzy Banach space using Hyers and Radus methods.

Fuzzy theory was initiated by Zadeh [49] in 1965. Cur-
rently, this theory is a powerful tool for modeling uncertainty
and vagueness in miscellaneous problems arising in the field
of science and engineering. We use the definition of fuzzy
normed spaces given in [11] and [29–32].

4.1 Definitions on Fuzzy Banach Spaces
Definition 4.1. Let X be a real linear space. A function
N : X×R−→ [0,1] is said to be a fuzzy norm on X if for all
x,y ∈ X and all s, t ∈ R,
(FNS1) N(x,c) = 0 for c≤ 0;
(FNS2) x = 0 if and only if N(x,c) = 1 for all c > 0;
(FNS3) N(cx, t) = N

(
x, t
|c|

)
if c 6= 0;

(FNS4) N(x+ y,s+ t)≥ min{N(x,s),N(y, t)};
(FNS5) N(x, ·) is a non-decreasing function on R and
limt→∞N(x, t) = 1;
(FNS6) for x 6= 0,N(x, ·) is (upper semi) continuous on R.

The pair (X ,N) is called a fuzzy normed linear space.
One may regard N(X , t) as the truth-value of the statement
the norm of x is less than or equal to the real number t’.

Example 4.2. Let (X , || · ||) be a normed linear space. Then

N (x, t) =


t

t +‖x‖
, t > 0, x ∈ X ,

0, t ≤ 0, x ∈ X

is a fuzzy norm on X.

Definition 4.3. Let (X ,N) be a fuzzy normed linear space.
Let xn be a sequence in X. Then xn is said to be convergent if
there exists x ∈ X such that lim

n→∞
N(xn− x, t) = 1 for all t > 0.

In that case, x is called the limit of the sequence xn and we
denote it by N− lim

n→∞
xn = x.

Definition 4.4. A sequence xn in X is called Cauchy if for
each ε > 0 and each t > 0 there exists n0 such that for all
n≥ n0 and all p > 0, we have N(xn+p− xn, t)> 1− ε.

Definition 4.5. Every convergent sequence in a fuzzy normed
space is Cauchy. If each Cauchy sequence is convergent, then
the fuzzy norm is said to be complete and the fuzzy normed
space is called a fuzzy Banach space.

Definition 4.6. A mapping f : X −→Y between fuzzy normed
spaces X and Y is continuous at a point x0 if for each sequence
{xn} covering to x0 in X, the sequence f{xn} converges to
f (x0) . If f is continuous at each point of x0 ∈ X then f is
said to be continuous on X .

The stability of a quiet number of functional equations in
Fuzzy Banach space were inspected in [3, 6, 7, 9, 10, 29–32].
In order to establish results, we need the following assump-
tions. Let W1 be a linear space, W2 be a Fuzzy Banach space
and W3 be a Fuzzy normed space.

4.2 Hyers - Ulam Method
Theorem 4.7. For an odd mapping Eq : W1 −→W2 fulfilling
the functional inequality

N (Eq(w,v),z)≥N ′ (S (w,v),z) (4.1)

for all w,v ∈ W1 and all z ∈ W1. Then there exists one and
only quintic function Q5 : W1 −→ W2 which satisfying the
functional equation (1.3) and the functional inequality

N (Q5(w)−Eq(w),z)≥N ′
(

S5(w,w),
5!|25− ε| z

33

)
(4.2)

for all w ∈W1 and all z ∈W1. The mapping Q5 is defined as

lim
β→∞

N

(
Q5(w)−

1
25αβ

Eq

(
2αβ w

)
,z
)
= 1 (4.3)

for all w ∈ W1 and all z ∈ W1, where S : W 2
1 −→ W3 is a

function fulfilling the condition

lim
β→∞

N ′
(
S
(

2αβ w,2αβ v
)
,25αβ z

)
= 1 (4.4)

for all w,v ∈W1 and all z ∈W1 with the condition that

N ′
(
S
(

2αβ w,2αβ w
)
,z
)
=N ′

(
ε

αβ S
(

w,w
)
,z
)

(4.5)

for all w ∈ W1 and all z ∈ W1 for some ε > 0 with 0 <(
ε

25

)α

< 1. The function S5

(
w,w

)
is defined by

S5(w,w) = min
{

N ′ (S (0,2w),z)+N ′ (S (4w,w),z)

+N ′ (S (3w,w),z)+N ′ (S (2w,w),z)

+N ′ (S (w,w),z)+N ′ (S (0,w),z)

+N ′ (S (−w,w),z)
}

(4.6)

for all w ∈W1 and all z ∈W1.

Proof. Using oddness of E in (4.1), one can obtain that

N (Eq(w+4v)−5Eq(w+3v)+10Eq(w+2v)

−10Eq(w+ v)+5Eq(w)−Eq(w− v)−120Eq(v),z)

≥N ′ (S (w,v),z) (4.7)

for all w,v ∈W1 and all z ∈W1. Now, interchanging (w,v) by
(0,2w), (4w,w), (3w,w), (2w,w), (w,w), (0,w) and (−w,w)
in (4.7) and using oddness of Eq, we arrive the subsequent
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inequalities

N (Eq(8w)−5Eq(6w)+10Eq(4w)−129Eq(2w),z)

≥N ′ (S (0,2w),z) (4.8)
N (Eq(8w)−5Eq(7w)+10Eq(6w)−10Eq(5w)

+5Eq(4w)−Eq(3w)−120Eq(w),z)

≥N ′ (S (4w,w),z) (4.9)
N (Eq(7w)−5Eq(6w)+10Eq(5w)−10Eq(4w)

+5Eq(3w)−Eq(2w)−120Eq(w),z)

≥N ′ (S (3w,w),z) (4.10)
N (Eq(6w)−5Eq(5w)+10Eq(4w)−10Eq(3w)

+5Eq(2w)−121Eq(w),z)

≥N ′ (S (2w,w),z) (4.11)
N (Eq(5w)−5Eq(4w)+10Eq(3w)−10Eq(2w)

−115Eq(w),z)≥N ′ (S (w,w),z) (4.12)
N (Eq(4w)−5Eq(3w)+10Eq(2w)

−129Eq(w),z)≥N ′ (S (0,w),z) (4.13)
N (Eq(3w)−4Eq(2w)−115Eq(w),z)

≥N ′ (S (−w,w),z) (4.14)

for all w ∈W1 and all z ∈W1. From (4.8) and (4.9), we get

N (5Eq(7w)−15Eq(6w)+10Eq(5w)+5Eq(4w)

+Eq(3w)−129Eq(2w)+120Eq(w),z+ z)

≥min
{

N (Eq(8w)−5Eq(6w)+10Eq(4w)

−129Eq(2w),z)

+N (Eq(8w)−5Eq(7w)+10Eq(6w)−10Eq(5w)

+5Eq(4w)−Eq(3w)−120Eq(w),z)
}

≥min
{

N ′ (S (0,2w),z)+N ′ (S (4w,w),z)
}
(4.15)

for all w ∈W1 and all z ∈W1. Multiplying (4.10) by 5, we see
that

N (5Eq(7w)−25Eq(6w)+50Eq(5w)−50Eq(4w)

+25Eq(3w)−5Eq(2w)−600Eq(w),5z)

≥N ′ (S (3w,w),z) (4.16)

for all w ∈ W1 and all z ∈ W1. It follows from (4.15) and
(4.16), we arrive

N (10Eq(6w)−40Eq(5w)+55Eq(4w)−24Eq(3w)

−124Eq(2w)720Eq(w),z+ z+5z)

≥min
{

N ′ (S (0,2w),z)+N ′ (S (4w,w),z)

+N ′ (S (3w,w),z)
}

(4.17)

for all w ∈W1 and all z ∈W1. Multiplying (4.11) by 10, we

have

N (10Eq(6w)−50Eq(5w)+100Eq(4w)−100Eq(3w)

+50Eq(2w)−1210Eq(w),10z)≥N ′ (S (2w,w),z)
(4.18)

for all w ∈W1 and all z ∈W1. Combining (4.18) and (4.17),
we obtain

N (10Eq(5w)−45Eq(4w)+76Eq(3w)−174Eq(2w)

+1930Eq(w),z+ z+5z+10z)

≥min
{

N ′ (S (0,2w),z)+N ′ (S (4w,w),z)

+N ′ (S (3w,w),z)+N ′ (S (2w,w),z)
}

(4.19)

for all w ∈W1 and all z ∈W1. Multiplying (4.12) by 10, we
find that

N (10Eq(5w)−50Eq(4w)+100Eq(3w)−100Eq(2w)

−1150Eq(w),10z)≥N ′ (S (w,w),z) (4.20)

for all w ∈ W1 and all z ∈ W1. It follows from (4.19) and
(4.20), we arrive

N (5Eq(4w)−24Eq(3w)−74Eq(2w)+3080Eq(w)

,z+ z+5z+10z+10z)

≥min
{

N ′ (S (0,2w),z)+N ′ (S (4w,w),z)

+N ′ (S (3w,w),z)+N ′ (S (2w,w),z)

+N ′ (S (w,w),z)
}

(4.21)

for all w ∈W1 and all z ∈W1. Multiplying (4.13) by 5, we see
that

N (5Eq(4w)−25Eq(3w)+50Eq(2w)−645Eq(w),5z)

≥N ′ (S (0,w),z) (4.22)

for all w ∈ W1 and all z ∈ W1. From (4.21) and (4.22), we
have

N (Eq(3w)−124Eq(2w)+3725Eq(w)

,z+ z+5z+10z+10z+5z)

≥min
{

N ′ (S (0,2w),z)+N ′ (S (4w,w),z)

+N ′ (S (3w,w),z)+N ′ (S (2w,w),z)

+N ′ (S (w,w),z)+N ′ (S (0,w),z)
}

(4.23)

for all w ∈ W1 and all z ∈ W1. It follows from (4.14) and
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(4.23), we arrive

N (120Eq(2w)−3840Eq(w),

z+ z+5z+10z+10z+5z+ z)

≥min
{

N ′ (S (0,2w),z)+N ′ (S (4w,w),z)

+N ′ (S (3w,w),z)+N ′ (S (2w,w),z)

+N ′ (S (w,w),z)+N ′ (S (0,w),z)

+N ′ (S (−w,w),z)
}

= N ′ (S5(w,w),z) (4.24)

for all w ∈ W1 and all z ∈ W1. The above equation can be
written as (4.24) that

N (120Eq(2w)−3840Eq(w),33z)≥N ′ (S5(w,w),z)
(4.25)

for all w ∈W1 and all z ∈W1. Using (FNS3) in (4.25), one
can get that

N

(
Eq(2w)

25 −Eq(w),
33z

25 ·5!

)
≥N ′ (S5(w,w),z)

(4.26)

for all w ∈W1 and all z ∈W1. Changing w by 2β w and using
(4.5), (FNS3) in (4.26), we arrive

N

(
Eq(2β+1w)

25(β+1) −
Eq(2β w)

25β
,

33z
2525β ·5!

)
≥N ′

(
S5(2β w,2β w),z

)
= N ′

(
ε

β S5(w,w),z
)

= N ′
(
S5(w,w),

z
εβ

)
(4.27)

for all w ∈W1 and all z ∈W1. Switching z by εβ z in (4.27)

N

(
Eq(2β+1w)

25(β+1) −
Eq(2β w)

25β
,

εβ

25β

33z
25 ·5!

)
≥N ′ (S5(w,w),z) (4.28)

for all w ∈W1 and all z ∈W1. One can easy to verify that

Eq(2β w)
25β

−Eq(w) =
β−1

∑
γ=0

Eq(2γ+1w)
25(γ+1) −

Eq(2γ w)
25γ

.

(4.29)

From (4.28) and (4.29), we reach

N

(
Eq(2β w)

25β
−Eq(w),

β−1

∑
γ=0

εγ

25γ

33z
25 ·5!

)

≥min
β−1⋃
γ=0

{
N

(
Eq(2γ+1w)

25(γ+1) −
Eq(2γ w)

25γ
,

εγ

25γ

z
25 ·5!

)}

≥min
β−1⋃
γ=0

{
N ′ (S5(w,w),z)

}
= N ′ (S5(w,w),z)

(4.30)

for all w ∈ W1 and all z ∈ W1. Interchanging w by 2δ w in
(4.30) and using (4.5), (FNS3) and then switching z by εδ z,
we achieve

N

(
Eq(2β+δ w)

25β+δ
−

Eq(2δ w)
25δ

,
β−1

∑
γ=0

(
ε

25

)γ+δ 33z
25 ·5!

)
≥N ′ (S5(w,w),z) (4.31)

for all w ∈W1 and all z ∈W1 for β > δ ≥ 0. With the help of
(FNS3), (4.31) can be remodified as

N

(
Eq(2β+δ w)

25β+δ
−

Eq(2δ w)
25δ

,z

)

≥N ′

S5(w,w),
z

δ+β−1

∑
γ=δ

(
ε

25

)γ 33
25 ·5!

 (4.32)

for all w ∈W1 and all z ∈W1.

By data
(

ε

25

)α

< 1 and since
β−1

∑
γ=0

(
ε

25

)γ

< ∞, by the

Cauchy criterion for convergence and (FNS5) implies that{
Eq(2β w)

25β

}

is a Cauchy sequence in W2. Since W2 is a fuzzy Banach
space, this sequence converges to some point Q5 ∈W2. Thus,
define the mapping Q5 : W1 −→W2 by

lim
β→∞

N

(
Q5(w)−

1
25β

Eq

(
2β w

)
,z
)
= 1 (4.33)

for all w ∈W1 and all z ∈W1. Setting δ = 0 and approaching
β tends to ∞ in (4.32), we reach

N (Q5(w)−Eq(w),z)≥N ′
(

S5(w,w),
z(25− ε)5!

33

)
(4.34)

for all w ∈W1 and all z ∈W1.
To prove that the existing Q5(w) satisfies the functional

equation (1.3), changing (w,v) by (2β w,2β v) and dividing by
25β in (4.1), we get

N (Eq(w,v),z) = N

(
1

25β
Eq(2β w,2β v),z

)
≥N ′

(
S (2β w,2β v),25β z

)
(4.35)
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for all w,v ∈W1 and all z ∈W1. Now,

N

(
Q5(w+4v)−5Q5(w+3v)− 1

2

(
Q5q

s
(w+3v)

)
+10Q5(w+2v)+

5
2

(
Q5q

s
(w+2v)

)
−10Q5(w+ v)

−5
(

Q5q
s
(w+ v)

)
+5Q5(w)+5

(
Q5q

s
(w)
)

−Q5(w− v)− 5
2

(
Q5q

s
(w− v)

)
+
(

Q5q
s
(w−2v)

)
−120Q5(v)−300

(
Q5q

s
(v)
)
,z
)

≥min
{

N

(
Q5(w+4v)− 1

25β
Eq(2β (w+4v)),

z
15

)
,

N

(
−5Q5(w+3v)+5

1
25β

Eq(2β (w+3v)),
z

15

)
,

N

(
−1

2
Q5q

s
(w+3v)+

1
2

1
25β

Eq(2β (w+3v)),
z

15

)
,

N

(
10Q5(w+2v)−10

1
25β

Eq(2β (w+2v)),
z

15

)
,

N

(
5
2

Q5q
s
(w+2v)− 5

2
1

25β
Eq(2β (w+2v)),

z
15

)
,

N

(
−10Q5(w+ v)+10

1
25β

Eq(2β (w+ v)),
z

15

)
,

N

(
−5Q5q

s
(w+ v)+5

1
25β

Eq(2β (w+ v)),
z

15

)
,

N

(
+5Q5(w)−5

1
25β

Eq(2β (w)),
z

15

)
,

N

(
5Q5q

s
(w)−5

1
25β

Eq(2β (w)),
z

15

)
,

N

(
−Q5(w− v)+

1
25β

Eq(2β (w− v)),
z

15

)
,

N

(
−5

2
Q5q

s
(w− v)+

5
2

1
25β

Eq(2β (w− v)),
z

15

)
,

N

(
Q5q

s
(w−2v)− 1

25β
Eq(2β (w−2v)),

z
15

)
,

N

(
−120Q5(v)+120

1
25β

Eq(2β (v)),
z

15

)
,

N

(
−300Q5q

s
(v)+300

1
25β

Eq(2β (v)),
z

15

)
,

N

(
1

25β
Eq(2β (w+4v))−5

1
25β

Eq(2β (w+3v))

− 1
2

1
25β

Eq(2β (w+3v))+10
1

25β
Eq(2β (w+2v))

+
5
2

1
25β

Eq(2β (w+2v))−10
1

25β
Eq(2β (w+ v))

−5
1

25β
Eq(2β (w+ v))+5

1
25β

Eq(2β (w))

+5
1

25β
Eq(2β (w))− 1

25β
Eq(2β (w− v))

− 5
2

1
25β

Eq(2β (w− v))+
1

25β
Eq(2β (w−2v))

−120
1

25β
Eq(2β (v))−300

1
25β

Eq(2β (v))
)
,

z
15

}
(4.36)

for all w ∈ W1 and all z ∈ W1. With the help of (4.33) and
(4.35) in (4.36)

N

(
Q5(w+4v)−5Q5(w+3v)− 1

2

(
Q5q

s
(w+3v)

)
+10Q5(w+2v)+

5
2

(
Q5q

s
(w+2v)

)
−10Q5(w+ v)

−5
(

Q5q
s
(w+ v)

)
+5Q5(w)+5

(
Q5q

s
(w)
)

−Q5(w− v)− 5
2

(
Q5q

s
(w− v)

)
+
(

Q5q
s
(w−2v)

)
−120Q5(v)−300

(
Q5q

s
(v)
)
,z
)

≥min{1,1,1,1,1,1,1,1,1,1,1,1,1,1,

N ′
(
S (2β w,2β v),25β z

)}
(4.37)

for all w ∈ W1 and all z ∈ W1. Approaching β tends to ∞

(4.37) and applying (4.3), we obtain

N

(
Q5(w+4v)−5Q5(w+3v)− 1

2

(
Q5q

s
(w+3v)

)
+10Q5(w+2v)+

5
2

(
Q5q

s
(w+2v)

)
−10Q5(w+ v)

−5
(

Q5q
s
(w+ v)

)
+5Q5(w)+5

(
Q5q

s
(w)
)

−Q5(w− v)− 5
2

(
Q5q

s
(w− v)

)
+
(

Q5q
s
(w−2v)

)
−120Q5(v)−300

(
Q5q

s
(v)
)
,z
)
= 1 (4.38)

for all w ∈W1 and all z ∈W1. Using (FNS2) in (4.38) we see
that

Q5(w+4v)−5Q5(w+3v)− 1
2

(
Q5q

s
(w+3v)

)
+10Q5(w+2v)+

5
2

(
Q5q

s
(w+2v)

)
−10Q5(w+ v)

−5
(

Q5q
s
(w+ v)

)
+5Q5(w)+5

(
Q5q

s
(w)
)

−Q5(w− v)− 5
2

(
Q5q

s
(w− v)

)
+
(

Q5q
s
(w−2v)

)
= 120Q5(v)+300

(
Q5q

s
(v)
)

for all w∈W1 and all z∈W1 which shows that Q5(w) satisfies
the functional equation (1.3).

It is easy to prove that the existence of Q5 is unique. In-
deed, let R5 be an another quintic mapping satisfying (1.3)
and (4.2). Now

Q5(2δ w) = 25δ Q5(w) and R5(2δ w) = 25δ R5(w).
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Thus,

N (Q5(w)−R5(w),z)

= N
(

Q5(2δ w)−R5(2δ w),25δ z
)

≥N ′

(
S5(2δ w,2δ w), 5!(25− ε)

25δ z
66

)

= N ′

(
S5(w,w), 5!(25− ε)

25δ z
εδ 66

)
(4.39)

for all w ∈W1 and all z ∈W1. Since

lim
δ→∞

N ′

(
S5(w,w), 5!(25− ε)

25δ z
εδ 66

)
= 1 (4.40)

because

lim
δ→∞

5!(25− ε)
25δ z

εδ 66
= ∞

for all z ∈W1. Letting δ tends to ∞ in (4.39), using (4.40) and
(FNS2), we have Q5(w)−R5(w) = 0 which implies Q5(w) =
R5(w) for all w ∈W1. Hence the theorem holds for α = 1.

On changing w by
w
2

in (4.25), we get

N
(

Eq(w)−25E
(w

2

)
,

z
5!

)
≥S5

(w
2
,

w
2

)
(4.41)

for all w ∈W1 and all z ∈W1. The rest of the proof is similar
clues that of case α = 1. Hence the proof is complete.

The following corollary is an immediate consequence of
Theorem 4.7 regarding the Ulam - Hyers stability [23] of the
functional equation (1.3).

Corollary 4.8. For an odd mapping Eq : W1 −→W2 fulfilling
the functional inequality

N (Eq(w,v),z)≥N ′ (Φ,z) (4.42)

for all w,v ∈ W1 and all z ∈ W1 where Φ > 0 is a constant.
Then there exists one and only quintic function Q5 : W1 −→
W2 which satisfying the functional equation (1.3) and the
functional inequality

N (Q5(w)−Eq(w),z)≥N ′
(

Φ,
5!|31|z

33

)
(4.43)

for all w ∈W1 and all z ∈W1.

The following corollary is an immediate consequence of
Theorem 4.7 regarding the Ulam - Hyers - THRassias stability
[38] of the functional equation (1.3).

Corollary 4.9. For an odd mapping Eq : W1 −→W2 fulfilling
the functional inequality

N (Eq(w,v),z)≥
{

N ′ (Φ{|w|φ + |v|φ} ,z) ;
N ′ (Φ{|w|φ1 + |v|φ2

}
,z
)

;
(4.44)

for all w,v∈W1 and all z∈W1 where Φ > 0 is a constant and
φ ,φ1,φ2 6= 5. Then there exists one and only quintic function
Q5 : W1 −→W2 which satisfying the functional equation (1.3)
and the functional inequality

N (Q5(w)−Eq(w),z)

≥

 N ′
(

Γ5T Φ|w|φ , 5!|25−2φ |
33

)
;

N ′
(

Γ5T 1 Φ|w|φ1 +Γ5T 2Φ|w|φ2 , 5!|25−2φ |
33

)
;

(4.45)

where Γ′gs are defined in (3.40) respectively for all w ∈ W1
and all z ∈W1.

The following corollary is an immediate consequence of
Theorem 4.7 regarding the Ulam - Hyers - JMRassias stability
[42] of the functional equation (1.3).

Corollary 4.10. For an odd mapping Eq : W1 −→W2 fulfill-
ing the functional inequality

N (Eq(w,v),z)≥
{

N ′ (Φ{|w|φ |v|φ + [|w|2φ + |v|2φ
]}

,z
)

;
N ′ (Φ{|w|φ1 |v|φ2 +

[
|w|φ1+φ2 + |v|φ1+φ2

]}
,z
)

;
(4.46)

for all w,v∈W1 and all z∈W1 where Φ > 0 is a constant and
2φ ,φ1 +φ2 6= 5. Then there exists one and only quintic func-
tion Q5 : W1 −→W2 which satisfying the functional equation
(1.3) and the functional inequality

N (Q5(w)−Eq(w),z)

≥

 N ′
(

Γ5J Φ|w|φ , 5!|25−22φ |
33

)
;

N ′
(

Γ5J1 Φ|w|φ1+φ2 , 5!|25−2φ1+φ2 | z
33

)
;

(4.47)

where Γ′gs are defined in (3.43) respectively for all w ∈ W1
and all z ∈W1.

Theorem 4.11. For an even mapping Es : W1−→W2 fulfilling
the functional inequality

N (Es(w,v),z)≥N ′ (S (w,v),z) (4.48)

for all w,v∈W1 and all z∈W1. Then there exists one and only
sextic function Q6 : W1 −→W2 which satisfying the functional
equation (1.3) and the functional inequality

N (Q6(w)−Es(w),z)≥N ′
(

S6(w,w),
6!|26− ε| z

65

)
(4.49)

for all w ∈W1 and all z ∈W1. The mapping Q6 is defined as

lim
β→∞

N

(
Q6(w)−

1
26αβ

Es

(
2αβ w

)
,z
)
= 1 (4.50)

for all w ∈ W1 and all z ∈ W1, where S : W 2
1 −→ W3 is a

function fulfilling the condition

lim
β→∞

N ′
(
S
(

2αβ w,2αβ v
)
,26αβ z

)
= 1 (4.51)
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for all w,v ∈W1 and all z ∈W1 with the condition that

N ′
(
S
(

2αβ w,2αβ w
)
,z
)
=N ′

(
ε

αβ S
(

w,w
)
,z
)

(4.52)

for all w ∈ W1 and all z ∈ W1 for some ε > 0 with 0 <(
ε

26

)α

< 1. The function S6

(
w,w

)
is defined by

S6(w,w) = min
{
N ′ (S (0,2w),z)+N ′ (S (4w,w),z)

+N ′ (S (3w,w),z)+N ′ (S (2w,w),z)

+N ′ (S (w,w),z)+N ′ (S (0,w),z)

+N ′ (S (−w,w),z)
}

(4.53)

for all w ∈W1 and all z ∈W1.

Proof. Using evenness of E in (4.48), one can obtain that

N (Es(w+4v)−6Es(w+3v)+15Es(w+2v)−20Es(w+ v)

+15Es(w)−6Es(w− v)+Es(w−2v)−720Es(v),z)

≥N ′ (S (w,v),z) (4.54)

for all w,v ∈W1 and all z ∈W1. Now, interchanging (w,v) by
(0,2w), (4w,w), (3w,w), (2w,w), (w,w), (0,w) and (−w,w)
in (4.54) and using evenness of Es, we arrive the subsequent
inequalities

N (Es(8w)−6Es(6w)+16Es(4w)−746Es(2w),z)

≥N ′ (S (0,2w),z) (4.55)
N (Es(8w)−6Es(7w)+15Es(6w)−20Es(5w)

+15Es(4w)−6Es(3w)+Es(2w)−720Es(w),z)

≥N ′ (S (4w,w),z) (4.56)
N (Es(7w)−6Es(6w)+15Es(5w)−20Es(4w)

+15Es(3w)−6Es(2w)−719Es(w),z)

≥N ′ (S (3w,w),z) (4.57)
N (Es(6w)−6Es(5w)+15Es(4w)−20Es(3w)

+15Es(2w)−726Es(w),z)

≥N ′ (S (2w,w),z) (4.58)
N (Es(5w)−6Es(4w)+15Es(3w)−20Es(2w)

−704Es(w),z)≥N ′ (S (w,w),z) (4.59)
N (Es(4w)−6Es(3w)+16Es(2w)−746Es(w),z)

≥N ′ (S (0,w),z) (4.60)
N (2Es(3w)−12Es(2w)−690Es(w),z)

≥N ′ (S (−w,w),z) (4.61)

for all w ∈ W1 and all z ∈ W1. From (4.55) and (4.56), we
have

N (6Es(7w)−21Es(6w)+20Es(5w)+Es(4w)

+6Es(3w)−747Es(2w)+720Es(w),z+ z)

≥min
{

N (Es(8w)−6Es(6w)+16Es(4w)

−746Es(2w),z)

+N (Es(8w)−6Es(7w)+15Es(6w)−20Es(5w)

+15Es(4w)−6Es(3w)+Es(2w)−720Es(w),z)
}

≥min
{

N ′ (S (0,2w),z)+N ′ (S (4w,w),z)
}
(4.62)

for all w ∈W1 and all z ∈W1. Multiplying (4.57) by 6, we see
that

N (6Es(7w)−36Es(6w)+90Es(5w)−120Es(4w)

+90Es(3w)−36Es(2w)−5514Es(w),6z)

≥N ′ (S (3w,w),z) (4.63)

for all w ∈ W1 and all z ∈ W1. It follows from (4.62) and
(4.63), we arrive

N (15Es(6w)−70Es(5w)+121Es(4w)−84Es(3w)

−711Es(2w)+5034Es(w),z+ z+6z)

≥min
{

N ′ (S (0,2w),z)+N ′ (S (4w,w),z)

+N ′ (S (3w,w),z)
}

(4.64)

for all w ∈W1 and all z ∈W1. Multiplying (4.58) by 15, we
get

N (15Es(6w)−90Es(5w)+225Es(4w)−300Es(3w)

+225Es(2w)−10890Es(w),15z)

≥N ′ (S (2w,w),z) (4.65)

for all w ∈W1 and all z ∈W1. Combining (4.65) and (4.64),
we obtain

N (20Es(5w)−104Es(4w)+216Es(3w)−936Es(2w)

+15924Es(w),z+ z+6z+15z)

≥min
{

N ′ (S (0,2w),z)+N ′ (S (4w,w),z)

+N ′ (S (3w,w),z)+N ′ (S (2w,w),z)
}

(4.66)

for all w ∈W1 and all z ∈W1. Multiplying (4.59) by 20, we
find that

N (20Es(5w)−120Es(4w)+300Es(3w)−400Es(2w)

−14080Es(w),20z)≥N ′ (S (w,w),z) (4.67)

for all w ∈ W1 and all z ∈ W1. From (4.66) and (4.67), we
arrive
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N (16Es(4w)−84Es(3w)−536Es(2w)

+30004Es(w),z+ z+6z+15z+20z)

≥min
{

N ′ (S (0,2w),z)+N ′ (S (4w,w),z)

+N ′ (S (3w,w),z)+N ′ (S (2w,w),z)

+N ′ (S (w,w),z)
}

(4.68)

for all w ∈W1 and all z ∈W1. Multiplying (4.60) by 16, we
see that

N (16Es(4w)−96Es(3w)+256Es(2w)

−11936Es(w),16z)≥N ′ (S (0,w),z) (4.69)

for all w ∈ W1 and all z ∈ W1. It follows from (4.68) and
(4.69), we arrive

N (12Es(3w)−792Es(2w)+41940Es(w)

,z+ z+6z+15z+20z+16z)

≥min
{

N ′ (S (0,2w),z)+N ′ (S (4w,w),z)

+N ′ (S (3w,w),z)+N ′ (S (2w,w),z)

+N ′ (S (w,w),z)+N ′ (S (0,w),z)
}

(4.70)

for all w ∈W1 and all z ∈W1. Multiplying (4.61) by 6 and it
follows from and (4.70), we arrive

N (720Es(2w)−46080Es(w),

z+ z+6z+15z+20z+16z+6z)

≥min
{

N ′ (S (0,2w),z)+N ′ (S (4w,w),z)

+N ′ (S (3w,w),z)+N ′ (S (2w,w),z)

+N ′ (S (w,w),z)+N ′ (S (0,w),z)

+N ′ (S (−w,w),z)
}

= N ′ (S6(w,w),z) (4.71)

for all w ∈ W1 and all z ∈ W1. The above equation can be
written as

N (720Es(2w)−46080Es(w),65z)≥N ′ (S6(w,w),z)
(4.72)

for all w ∈W1 and all z ∈W1. Using (FNS3) in (4.72), one
can get that

N

(
Es(2w)

26 −Es(w),
65z

26 ·6!

)
≥N ′ (S6(w,w),z)

(4.73)

for all w ∈W1 and all z ∈W1. Changing w by 2β w and using
(4.52), (FNS3) in (4.73), we arrive

N

(
Es(2β+1w)

26(β+1) −
Es(2β w)

26β
,

65z
2626β ·6!

)
≥N ′

(
S6(2β w,2β w),z

)
= N ′

(
ε

β S6(w,w),z
)

= N ′
(
S6(w,w),

z
εβ

)
(4.74)

for all w ∈W1 and all z ∈W1. Switching z by εβ z in (4.74)

N

(
Es(2β+1w)

26(β+1) −
Es(2β w)

26β
,

εβ

26β

65z
26 ·6!

)
≥N ′ (S6(w,w),z) (4.75)

for all w ∈W1 and all z ∈W1. The rest of the proof is similar
clues that of Theorem 4.7. Hence the proof is complete.

The following corollary is an immediate consequence of
Theorem 4.11 regarding the Ulam - Hyers stability [23] of the
functional equation (1.3).

Corollary 4.12. For an even mapping Es : W1 −→W2 fulfill-
ing the functional inequality

N (Es(w,v),z)≥N ′ (Φ,z) (4.76)

for all w,v ∈ W1 and all z ∈ W1 where Φ > 0 is a constant.
Then there exists one and only sextic function Q6 : W1 −→
W2 which satisfying the functional equation (1.3) and the
functional inequality

N (Q6(w)−Es(w),z)≥N ′
(

Φ,
6!|63|z

65

)
(4.77)

for all w ∈W1 and all z ∈W1.

The following corollary is an immediate consequence
of Theorem 4.11 regarding the Ulam - Hyers - THRassias
stability [38] of the functional equation (1.3).

Corollary 4.13. For an even mapping Es : W1 −→W2 fulfill-
ing the functional inequality

N (Es(w,v),z)≥
{

N ′ (Φ{|w|φ + |v|φ} ,z) ;
N ′ (Φ{|w|φ1 + |v|φ2

}
,z
)

;
(4.78)

for all w,v∈W1 and all z∈W1 where Φ > 0 is a constant and
φ ,φ1,φ2 6= 6. Then there exists one and only sextic function
Q6 : W1 −→W2 which satisfying the functional equation (1.3)
and the functional inequality

N (Q6(w)−Es(w),z)

≥

 N ′
(

Γ6T Φ|w|φ , 6!|26−2φ |
65

)
;

N ′
(

Γ6T 1 Φ|w|φ1 +Γ6T 2 Φ|w|φ2 , 6!|26−2φ |
65

)
;

(4.79)

where Γ′gs are defined in (3.76) respectively for all w ∈ W1
and all z ∈W1.
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The following corollary is an immediate consequence
of Theorem 4.11 regarding the Ulam - Hyers - JMRassias
stability [42] of the functional equation (1.3).

Corollary 4.14. For an even mapping Es : W1 −→W2 fulfill-
ing the functional inequality

N (Es(w,v),z)

≥
{

N ′ (Φ{|w|φ |v|φ + [|w|2φ + |v|2φ
]}

,z
)

;
N ′ (Φ{|w|φ1 |v|φ2 +

[
|w|φ1+φ2 + |v|φ1+φ2

]}
,z
)

;
(4.80)

for all w,v∈W1 and all z∈W1 where Φ > 0 is a constant and
2φ ,φ1+φ2 6= 6. Then there exists one and only sextic function
Q6 : W1 −→W2 which satisfying the functional equation (1.3)
and the functional inequality

N (Q6(w)−Es(w),z)

≥

 N ′
(

Γ6J Φ|w|φ , 6!|26−22φ |
65

)
;

N ′
(

Γ6J1 Φ|w|φ1+φ2 , 6!|26−2φ1+φ2 | z
65

)
;

(4.81)

where Γ′gs are defined in (3.79) respectively for all w ∈ W1
and all z ∈W1.

Theorem 4.15. For a mapping E : W1 −→W2 fulfilling the
functional inequality

N (E (w,v),z)≥N ′ (S (w,v),z) (4.82)

for all w,v ∈ W1 and all z ∈ W1. Then there exists one and
only quintic function Q5 : W1 −→ W2 and a one and only
sextic function Q6 : W1 −→W2 which satisfying the functional
equation (1.3) and the functional inequality

N (E(w)−Q5(w)−Q6(w),z)

≥min
{

N ′
(

S5(w,w),
5!|25− ε| z

33

)
,

N ′
(

S5(−w,−w),
5!|25− ε| z

33

)
,

N ′
(

S6(w,w),
6!|26− ε| z

65

)
,

N ′
(

S6(−w,−w),
6!|26− ε| z

65

)}
(4.83)

for all w ∈ W1 and all z ∈ W1. The mappings Q5 , Q6 are
defined in (4.3), (4.50) for all w ∈W1 and all z ∈W1, where
S : W 2

1 −→ W3 is a function fulfilling the conditions (4.4),
(4.51) for all w,v ∈ W1 and all z ∈ W1 with the conditions
that (4.5), (4.52) for all w,v ∈ W1 and all z ∈ W1 for some

ε > 0 with 0 <
(

ε

25

)α

< 1, 0 <
(

ε

26

)α

< 1. The functions

S5

(
w,w

)
, S6

(
w,w

)
are defined in (4.6), (4.53) for all w ∈

W1 and all z ∈W1.

Proof. We know that by definition of odd function, we have

EO(w) =
Eq(w)−Eq(−w)

2
(4.84)

for all w ∈W1. It follows from (4.84) that

N (EO(u,v),z)

= N

(
1
2

{
Eq(w,v)−Eq(−w,−v)

}
,z
)

= N
({

Eq(w,v)−Eq(−w,−v)
}
,2z
)

≥min
{

N (Eq(w,v),z) ,N (Eq(−w,−v),z)
}

(4.85)

for all w ∈W1. Thus by Theorem 4.7, we arrive

N (Es(w)−Q5(w),z)

≥min
{

N ′
(

S5(w,w),
5!|25− ε| z

33

)
,

N ′
(

S5(−w,−w),
5!|25− ε| z

33

)}
(4.86)

for all w ∈W1 and all z ∈W1.
We know that by definition of even function, we have

EE(w) =
Eq(w)+Eq(−w)

2
(4.87)

for all w ∈W1. It follows from (4.87) that

N (EE(u,v),z)

= N

(
1
2

{
Es(w,v)+Es(−w,−v)

}
,z
)

= N
({

Es(w,v)+Es(−w,−v)
}
,2z
)

≥min
{

N (Es(w,v),z) ,N (Es(−w,−v),z)
}

(4.88)

for all w ∈W1. Thus by Theorem 4.11, we arrive

N (Es(w)−Q6(w),z)

≥min
{

N ′
(

S6(w,w),
6!|26− ε| z

65

)
,

N ′
(

S6(−w,−w),
6!|26− ε| z

65

)}
(4.89)

for all w ∈W1 and all z ∈W1. Now, define a function

E(w) = EO(w)+EE(w) (4.90)

for all w ∈W1. Combining (4.86), (4.89) and (4.90), we reach
our result.

The following corollary is an immediate consequence of
Theorem 4.15 regarding the Ulam - Hyers stability [23] of the
functional equation (1.3).
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Corollary 4.16. For a mapping E : W1 −→W2 fulfilling the
functional inequality

N (E (w,v),z)≥N ′ (Φ,z) (4.91)

for all w,v ∈ W1 and all z ∈ W1 where Φ > 0 is a constant.
Then there exists one and only quintic function Q5 : W1−→W2
and a one and only sextic function Q6 : W1 −→ W2 which
satisfying the functional equation (1.3) and the functional
inequality

N (E(w)−Q5(w)−Q6(w),z)

≥min
{

N ′
(

Φ,
5!|31|z

33

)
,N ′

(
Φ,

6!|63|z
65

)}
(4.92)

for all w ∈W1 and all z ∈W1.

The following corollary is an immediate consequence
of Theorem 4.15 regarding the Ulam - Hyers - THRassias
stability [38] of the functional equation (1.3).

Corollary 4.17. For a mapping E : W1 −→W2 fulfilling the
functional inequality

N (E (w,v),z)≥
{

N ′ (Φ{|w|φ + |v|φ} ,z) ;
N ′ (Φ{|w|φ1 + |v|φ2

}
,z
)

;
(4.93)

for all w,v ∈ W1 and all z ∈ W1 where Φ > 0 is a constant
and φ ,φ1,φ2 6= 6. Then there exists one and only quintic
function Q5 : W1 −→W2 and a one and only sextic function
Q6 : W1 −→W2 which satisfying the functional equation (1.3)
and the functional inequality

N (E(w)−Q5(w)−Q6(w),z)

≥



min
{

N ′
(

Γ5T Φ|w|φ , 5!|25−2φ |
33

)
,

N ′
(

Γ6T Φ|w|φ , 6!|26−2φ |
65

)}
;

min
{

N ′
(

Γ5T 1 Φ|w|φ1 +Γ5T 2 Φ|w|φ2 , 5!|25−2φ |
33

)
,

N ′
(

Γ6T 1Φ|w|φ1 +Γ6T 2Φ|w|φ2 , 6!|26−2φ |
65

)}
;

(4.94)

where Γ′gs are defined in (3.40) and (3.76) respectively for all
w ∈W1 and all z ∈W1.

The following corollary is an immediate consequence
of Theorem 4.15 regarding the Ulam - Hyers - JMRassias
stability [42] of the functional equation (1.3).

Corollary 4.18. For a mapping E : W1 −→W2 fulfilling the
functional inequality

N (E (w,v),z)

≥
{

N ′ (Φ{|w|φ |v|φ + [|w|2φ + |v|2φ
]}

,z
)

;
N ′ (Φ{|w|φ1 |v|φ2 +

[
|w|φ1+φ2 + |v|φ1+φ2

]}
,z
)

;
(4.95)

for all w,v ∈ W1 and all z ∈ W1 where Φ > 0 is a constant
and 2φ ,φ1 +φ2 6= 6. Then there exists one and only quintic
function Q5 : W1 −→W2 and a one and only sextic function
Q6 : W1 −→W2 which satisfying the functional equation (1.3)
and the functional inequality

N (E(w)−Q5(w)−Q6(w),z)

≥



min
{

N ′
(

Γ5J Φ|w|φ , 5!|25−22φ |
33

)
,

N ′
(

Γ6J Φ|w|φ , 6!|26−22φ |
65

)}
;

min
{

N ′
(

Γ5J1 Φ|w|φ1+φ2 , 5!|25−2φ1+φ2 | z
33

)
,

N ′
(

Γ6J1 Φ|w|φ1+φ2 , 6!|26−2φ1+φ2 | z
65

)}
;

(4.96)

where Γ′gs are defined in (3.43) and (3.79) respectively for all
w ∈W1 and all z ∈W1.

4.3 Alternative Fixed Point Method
Theorem 4.19. For an odd mapping Eq : W1 −→W2 fulfilling
the functional inequality (4.1) for all w,v ∈W1 and all z ∈W1,
where S : W 2

1 −→ [0,∞) is a function fulfilling the condition

lim
β→∞

N ′
(
S
(

ξ
β

ψ w,ξ β

ψ v
)
,ξ

5β

ψ z
)
= 1 (4.97)

for all w,v ∈ W1 and all z ∈ W1. Then there exists one and
only quintic function Q5 : W1 −→ W2 which satisfying the
functional equation (1.3) and the functional inequality

N (Q5(w)−Eq(w),z)≥N ′
(

S5(w,w),
L 1−ψ

1−L
z
)

(4.98)

for all w ∈W1 and all z ∈W1. If L = L (ψ), with the prop-
erty

N ′

(
1

ξ 5
ψ

S5

(
ξψ w,ξψ w

)
,z

)
=N′

(
LS5

(
w,w

)
,z
)

(4.99)

with the condition that

S5

(
w,w

)
=

33
5!

S5

(w
2
,

w
2

)
, (4.100)

where S5

(
w,w

)
is defined in (4.24) for all w ∈W1 and all

z ∈W1.

Proof. Consider the set

B =
{

E1|E1 : W1 −→W2,E1(0) = 0
}

(4.101)

Let us introduce the generalized metric on (4.101) by

inf
{

ζ : N (E1(w)−E2(w),z)≥N ′
(
S5

(
w,w

)
,ζ z

)}
(4.102)
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for all w ∈W1 and all z ∈W1. One can easy to see verify that
(4.102) is complete with respect to the defined metric. Define
a mapping ϒ : B→B by

ϒEq(w) =
1

ξ 5
ψ

Eq(ξψ) (4.103)

for all w ∈W1 and all z ∈W1. Now, for any E1,E2 ∈B, we
arrive

N (E1(w)−E2(w),z)≥N ′
(
S5

(
w,w

)
,ζ z

)
N

(
1

ξ 5
ψ

E1(ξψ)−
1

ξ 5
ψ

E2(ξψ),z

)
≥N ′

(
S5

(
w,w

)
,ζ ξ

5
ψ z
)

N (ϒE1(w)−ϒE2(w),z)≥N ′
(
S5

(
w,w

)
,L ζ z

)
for all w ∈W1 and all z ∈W1. This implies that ϒ is a strictly
contractive mapping on B with Lipschitz constant L . It
follows from (4.26) that

N

(
Eq(2w)

25 −Eq(w),
33z

25 ·5!

)
≥N ′ (S5(w,w),z)

(4.104)

for all w ∈W1 and all z ∈W1.
For the case ψ = 0, it follows from (4.99), (4.100), (4.103),

(FNS3) and (4.104),

N (ϒEq(w)−Eq(w),z)

≥N ′ (S5(w,w),L z) = N ′ (S5(w,w),L 1−0z
)

(4.105)

for all w ∈W1 and all z ∈W1.
Replacing w by w

2 in (4.104), we obtain

N

(
Eq(w)−25Eq

(w
2

)
,

33z
5!

)
≥N ′

(
S5

(w
2
,

w
2

)
,z
)

(4.106)

for all w ∈W1 and all z ∈W1.
For the case ψ = 1, it follows from (4.99), (4.100), (4.103),

(FNS3) and (4.106),

N (Eq(w)−ϒEq(w),z)≥N ′ (S5(w,w),1 · z)
= N ′ (S5(w,w),L 1−1z

)
(4.107)

for all w ∈W1 and all z ∈W1. From (4.105) and (4.107), we
see that

N (Eq(w)−ϒEq(w),z)≥N ′ (S5(w,w),L 1−ψ z
)

(4.108)

for all w ∈ W1 and all z ∈ W1. Thus, condition (FPC1) of
Theorem 1.1 holds. It follows from condition (FPC2 ) of

Theorem 1.1 , that there exists a fixed point Q5 of ϒ in L
such that

lim
β→∞

N

(
Q5(w)−

1
ξ 5

ψ

Eq

(
ξψ w

)
,z

)
= 1 (4.109)

for all w∈W1 and all z∈W1. To prove the existing Q5 satisfies
(1.3), the proof is similar to that of Theorem 4.7.

Again by condition (FPC3) of Theorem 1.1 , Q5 is the
unique fixed point of ϒ in the set

∆ =
{

Q5 : N (Eq(w)−Q5(w),z)≥ ∞

}
(4.110)

for all w ∈W1 and all z ∈W1. Finally, by condition (FPC4) of
Theorem 1.1 , we get

N (Eq(w)−Q5(w),z)

≥N

(
Eq(w)−ϒEq(w),

(
1

1−L

)
z
)

= N ′
(

S5(w,w),
(

L 1−ψ

1−L

)
z
)

for all w ∈W1 and all z ∈W1. This completes the proof of the
theorem.

The following corollary is an immediate consequence
of Theorem 4.19 regarding the Ulam - Hyers stability [23],
Ulam - Hyers - THRassias stability [38] and Ulam - Hyers -
JMRassias stability [42] of the functional equation (1.3).

Corollary 4.20. For an odd mapping Eq : W1 −→W2 fulfill-
ing the functional inequality

N (Eq(w,v),z)≥


Φ;
Φ
{
||w||φ + ||v||φ

}
;

Φ
{
||w||φ ||v||φ +

[
||w||2φ + ||v||2φ

]}
;

(4.111)

for all w,v ∈ W1 and all z ∈ W1 where Φ > 0 and φ is a
constant. Then there exists one and only quintic function
Q5 : W1 −→W2 which satisfying the functional equation (1.3)
and the functional inequality

N (Q5(w)−Eq(w),z)

≥


N ′

(
Φ, 33

5!|31| z
)

;

N ′
(

Γ5T Φ||w||φ , 33
5!|2φ−25| z

)
; φ 6= 5

N ′
(

Γ5J Φ||w||2φ , 33
5!|22φ−25| z

)
; 2φ 6= 5

(4.112)

where Γ′gs are defined in (3.40) and (3.43) respectively for all
w ∈W1 and all z ∈W1.

Proof. If we take

N ′ (S (w,v),z)=


N ′ (Φ,z) ;
N ′ (Φ{||w||φ + ||v||φ} ,z) ;
N ′ (Φ{||w||φ ||v||φ + [||w||2φ + ||v||2φ

]}
,z
)

;
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(4.113)

for all w,v ∈W1. Changing (w,v) by (ξ
β

ψ w,ξ β

ψ v) and dividing

by ξ
5β

ψ in (4.113) and letting β tends to ∞, we see that (4.97)
holds for all w,v ∈W1 and all z ∈W1.

It follows from (4.100), (4.113) and (4.24), one can find
that

S
(

w,w
)

=
33
5!

S
(w

2
,

w
2

)

=



33Φ

5! ;

33
(

11·2φ+5·3φ+4φ+43
)

Φ||w||φ

5!2φ ;

33
(

10·2φ+11·22φ+5(3φ+32φ )+4φ+42φ+54
)

Φ||w||2φ

5!22φ ;
(4.114)

for all w ∈W1 and all z ∈W1.
Again, it follows from (4.99), (4.113) and (4.24), one can

observe that

N ′

(
1

ξ 5
ψ

S5

(
ξψ w,ξψ w

)
,z

)
=



N ′
(
S5

(
w,w

)
,L z

)
;

N ′
(
S5

(
w,w

)
,L z

)
;

N ′
(
S5

(
w,w

)
,L z

)
;

(4.115)

for all w ∈W1 and all z ∈W1. Thus, the functional inequality
(4.98) holds for the following cases.

For ψ = 1 : L = ξ
5
ψ = 25

N (Q5(w)−Eq(w),z)≥N ′
(

S5

(
w,w

)
,
L 1−ψ

1−L
z
)

= N ′

S5

(
w,w

)
,

(
25
)1−1

1−25 z


= N ′

(
S5

(
w,w

)
,

1
−31

z
)

For ψ = 0 : L =
1

ξ 5
ψ

=
1
25 = 2−5

N (Q5(w)−Eq(w),z)≥N ′
(

S5

(
w,w

)
,
L 1−ψ

1−L
z
)

= N ′

S5

(
w,w

)
,

(
2−5
)1−0

1−2−5 z


= N ′

(
S5

(
w,w

)
,

1
31

z
)

For ψ = 1 : L = ξ
5−φ

ψ = 25−φ : φ > 5

N (Q5(w)−Eq(w),z)≥N ′
(

S5

(
w,w

)
,
L 1−ψ

1−L
z
)

= N ′

S5

(
w,w

)
,

(
25−φ

)1−1

1−25−φ
z


= N ′

(
S5

(
w,w

)
,

2φ

2φ −25 z
)

For ψ = 0 : L =
1

ξ
5−φ

ψ

=
1

25−φ
= 2φ−5 : φ < 5

N (Q5(w)−Eq(w),z)≥N ′
(

S5

(
w,w

)
,
L 1−ψ

1−L
z
)

= N ′

S5

(
w,w

)
,

(
2φ−5

)1−0

1−2φ−5 z


= N ′

(
S5

(
w,w

)
,

2φ

25−2φ
z
)

For ψ = 1 : L = ξ
5−2φ

ψ = 25−2φ : 2φ > 5

N (Q5(w)−Eq(w),z)≥N ′
(

S5

(
w,w

)
,
L 1−ψ

1−L
z
)

= N ′

S5

(
w,w

)
,

(
25−2φ

)1−1

1−25−2φ
z


= N ′

(
S5

(
w,w

)
,

22φ

22φ −25 z
)

For ψ = 0 : L =
1

ξ
5−2φ

ψ

=
1

25−2φ
= 22φ−5 : 2φ < 5

N (Q5(w)−Eq(w),z)≥N ′
(

S5

(
w,w

)
,
L 1−ψ

1−L
z
)

= N ′

S5

(
w,w

)
,

(
22φ−5

)1−0

1−22φ−5 z


= N ′

(
S5

(
w,w

)
,

22φ

25−22φ
z
)

Theorem 4.21. For an even mapping Es : W1−→W2 fulfilling
the functional inequality (4.1) for all w,v ∈W1 and all z ∈W1,
where S : W 2

1 −→ [0,∞) is a function fulfilling the condition

lim
β→∞

N ′
(
S
(

ξ
β

ψ w,ξ β

ψ v
)
,ξ

6β

ψ z
)
= 1 (4.116)
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for all w,v∈W1 and all z∈W1. Then there exists one and only
sextic function Q6 : W1 −→W2 which satisfying the functional
equation (1.3) and the functional inequality

N (Q6(w)−Es(w),z)≥N ′
(

S6(w,w),
L 1−ψ

1−L
z
)

(4.117)

for all w ∈W1 and all z ∈W1. If L = L (ψ), with the prop-
erty

N ′

(
1

ξ 6
ψ

S6

(
ξψ w,ξψ w

)
,z

)
=N′

(
LS6

(
w,w

)
,z
)

(4.118)

with the condition that

S6

(
w,w

)
=

65
6!

S6

(w
2
,

w
2

)
, (4.119)

where S6

(
w,w

)
is defined in (4.24) for all w ∈W1 and all

z ∈W1.

Proof. Consider the set

B =
{

E2|E2 : W1 −→W2,E2(0) = 0
}

(4.120)

Let us introduce the generalized metric on (4.120) by

inf
{

ζ : N (E1(w)−E2(w),z)≥N ′
(
S6

(
w,w

)
,ζ z

)}
(4.121)

for all w ∈W1 and all z ∈W1. One can easy to see verify that
(4.121) is complete with respect to the defined metric. Define
a mapping ϒ : B→B by

ϒEs(w) =
1

ξ 6
ψ

Es(ξψ) (4.122)

for all w ∈W1 and all z ∈W1. Now, for any E1,E2 ∈B, we
arrive

N (E1(w)−E2(w),z)≥N ′
(
S6

(
w,w

)
,ζ z

)
N

(
1

ξ 6
ψ

E1(ξψ)−
1

ξ 6
ψ

E2(ξψ),z

)
≥N ′

(
S6

(
w,w

)
,ζ ξ

5
ψ z
)

N (ϒE1(w)−ϒE2(w),z)≥N ′
(
S6

(
w,w

)
,L ζ z

)
for all w ∈W1 and all z ∈W1. This implies that ϒ is a strictly
contractive mapping on B with Lipschitz constant L . It
follows from (4.26) that

N

(
Es(2w)

26 −Es(w),
65z

26 ·6!

)
≥N ′ (S6(w,w),z)

(4.123)

for all w ∈W1 and all z ∈W1.

For the case ψ = 0, it follows from (4.118), (4.119),
(4.122), (FNS3) and (4.123),

N (ϒEs(w)−Es(w),z)≥N ′ (S6(w,w),L z)

= N ′ (S6(w,w),L 1−0z
)

(4.124)

for all w ∈W1 and all z ∈W1.
Replacing w by w

2 in (4.123), we obtain

N

(
Es(w)−26Es

(w
2

)
,

65z
6!

)
≥N ′

(
S6

(w
2
,

w
2

)
,z
)

(4.125)

for all w ∈W1 and all z ∈W1.
For the case ψ = 1, it follows from (4.118), (4.119),

(4.122), (FNS3) and (4.125),

N (Es(w)−ϒEs(w),z)≥N ′ (S6(w,w),1 · z)
= N ′ (S6(w,w),L 1−1z

)
(4.126)

for all w ∈W1 and all z ∈W1. From (4.124) and (4.126), we
see that

N (Es(w)−ϒEs(w),z)≥N ′ (S6(w,w),L 1−ψ z
)

(4.127)

for all w ∈ W1 and all z ∈ W1. Thus, condition (FPC1) of
Theorem 1.1 holds. The rest of the proof is similar lines
to that of Theorem 4.19. This completes the proof of the
theorem.

The following corollary is an immediate consequence
of Theorem 4.21 regarding the Ulam - Hyers stability [23],
Ulam - Hyers - THRassias stability [38] and Ulam - Hyers -
JMRassias stability [42] of the functional equation (1.3).

Corollary 4.22. For an even mapping Es : W1 −→W2 fulfill-
ing the functional inequality

N (Es(w,v),z)≥


Φ;
Φ
{
||w||φ + ||v||φ

}
;

Φ
{
||w||φ ||v||φ +

[
||w||2φ + ||v||2φ

]}
;

(4.128)

for all w,v ∈ W1 and all z ∈ W1 where Φ > 0 and φ is a
constant. Then there exists one and only sextic function Q6 :
W1 −→W2 which satisfying the functional equation (1.3) and
the functional inequality

N (Q6(w)−Es(w),z)

≥


N ′

(
Φ, 65

6!|63| z
)

;

N ′
(

Γ6T Φ||w||φ , 65
6!|2φ−26| z

)
; φ 6= 6

N ′
(

Γ6J Φ||w||2φ , 65
6!|22φ−26| z

)
; 2φ 6= 6

(4.129)
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where Γ′gs are defined in (3.76) and (3.79) respectively for all
w ∈W1 and all z ∈W1.

Proof. The proof of the corollary is similar clues and ideas of
Corollary 4.20. Hence the details of the proof are omitted.

Theorem 4.23. For a mapping E : W1 −→W2 fulfilling the
functional inequality (4.82) for all w,v ∈W1 and all z ∈W1,
where S : W 2

1 −→ [0,∞) is a function fulfilling the condition
(4.97), (4.116) for all w,v ∈ W1 and all z ∈ W1. Then there
exists one and only quintic function Q5 : W1 −→ W2 and a
one and only sextic function Q6 : W1 −→W2 which satisfying
the functional equation (1.3) and the functional inequality

N (E(w)−Q5(w)−Q6(w),z)

≥min
{

N ′
(

S5(w,w),
L 1−ψ

1−L
z
)
,

N ′
(

S5(−w,−w),
L 1−ψ

1−L
z
)
,

N ′
(

S6(w,w),
L 1−ψ

1−L
z
)
,

N ′
(

S6(−w,−w),
L 1−ψ

1−L
z
)}

(4.130)

for all w ∈ W1 and all z ∈ W1. If L = L (ψ), with the
properties and conditions (4.99), (4.118) (4.100), (4.119)
where S5

(
w,w

)
, S6

(
w,w

)
are defined in (4.24), (4.71)for

all w ∈W1 and all z ∈W1.

Proof. The proof of the the proof is similar lines to that of
Theorem 4.15.

The following corollary is an immediate consequence
of Theorem 4.23 regarding the Ulam - Hyers stability [23],
Ulam - Hyers - THRassias stability [38] and Ulam - Hyers -
JMRassias stability [42] of the functional equation (1.3).

Corollary 4.24. For a mapping E : W1 −→W2 fulfilling the
functional inequality

N (Es(w,v),z)≥


Φ;
Φ
{
||w||φ + ||v||φ

}
;

Φ
{
||w||φ ||v||φ +

[
||w||2φ + ||v||2φ

]}
;

(4.131)

for all w,v ∈ W1 and all z ∈ W1 where Φ > 0 and φ is a
constant. Then there exists one and only quintic function Q5 :
W1 −→W2 and a one and only sextic function Q6 : W1 −→
W2 which satisfying the functional equation (1.3) and the
functional inequality

N (E(w)−Q5(w)−Q6(w),z)

≥



min
{

N ′
(

Φ, 33
5!|31| z

)
,N ′

(
Φ, 65

6!|63| z
)}

;

min
{

N ′
(

Γ5T Φ||w||φ , 33
5!|2φ−25| z

)
,

N ′
(

Γ6T Φ||w||φ , 65
6!|2φ−26| z

)}
; φ 6= 5,6

min
{

N ′
(

Γ5J Φ||w||2φ , 33
5!|22φ−25| z

)
,

N ′
(

Γ6J Φ||w||2φ , 65
6!|22φ−26| z

)}
; 2φ 6= 6

(4.132)

where Γ′gs are defined in (3.40), (3.76), (3.43) and (3.79)
respectively for all w ∈W1 and all z ∈W1.
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