Density of an m-Bipolar Fuzzy Graph

Ramakrishna Mankena ${ }^{1}$, T.V. Pradeep Kumar², Ch. Ramprasad ${ }^{3 *}$ and J. Vijaya Kumar ${ }^{4}$

Abstract

In this article, density, balanced, strictly balanced, complement of an m-bipolar fuzzy graph (m-BPFG), selfcomplementary between m-BPFG and its complement are defined and corresponding properties are studied.

\section*{Keywords} m-BPFG, Density of an m-BPFG, Balanced, Self complementary. ${ }^{1}$ Department of Mathematics, Acharya Nagarjuna University, Malla Reddy College of Engineering, Hyderabad, India. ${ }^{2}$ Department of Mathematics, University College of Engineering, Acharya Nagarjuna University, Nagarjuna Nagar, India. ${ }^{3,4}$ Department of Mathematics, Vasireddy Venkatadri Institute of Technology, Namburu, Guntur, Guntur-522508, Andhra Pradesh, India. *Corresponding author: ${ }^{3}$ rams.prof@gmail.com Article History: Received 14 December 2020; Accepted 18 February 2021

Contents

1 Introduction 551
2 Preliminaries 551
3 Density of an m-BPFG 552
4 Direct product of two m-bipolar fuzzy graphs 555
5 Conclusion 556
References 556

1. Introduction

Fuzzy sets are introduced for the parameters to solve problems related to vague and uncertain in real life situations are demonstrated by Zadeh [11] in 1965. The limitations of traditional model were overcome by the introduction of bipolar fuzzy concept in 1994 by Zhang [12, 13]. This was further improved by Chen et al. [3] to m-polar fuzzy set theory.

Free body diagrams using set of nodes connected by lines representing pairs are good problem solving tools in nondeterministic real life situations. Thus, Kaufmann [7] was first to introduced the idea of fuzzy graph from Zadeh fuzzy relation. Rosenfeld [8] gave the idea of fuzzy vertex, fuzzy edges and fuzzy cycle etc. Akram [1] studied the some properties of bipolar fuzzy graphs. Later Rashmanlou et al. [10] studied the categorical properties of bipolar fuzzy graphs. Ghorai and Pal [4-6] introduced the concept of m-polar fuzzy graphs and studied some properties on it. Ramprasad et al. [9] introduced the product m-polar fuzzy line and intersection graphs. Bera and pal [2] introduced the concept of m-polar interval-valued fuzzy graph and studied the algebraic properties of density, regularity and irregularity etc. on m-PIVFG.

This paper attempts to develop theory to analyze parameters combining concepts from mpolar fuzzy graph and bipolar fuzzy graph as a unique effort. The resultant graph is turned mBPFG and studied properties on it.

2. Preliminaries

All the vertices and edges of an m-polar fuzzy graph have m components and those components are fixed. But these components may be bipolar. Using this idea, m-BPFG has been introduced.

Before defining m-bipolar fuzzy graph, we assume the following:

For a given set V, define an equivalence relation \leftrightarrow on $V \times V-\{(k, k): k \in V\}$ as follows: $\left(k_{1}, l_{1}\right) \leftrightarrow\left(k_{2}, l_{2}\right) \Leftrightarrow$ either $\left(k_{1}, l_{1}\right)=\left(k_{2}, l_{2}\right)$ or $k_{1}=l_{2}, l_{1}=k_{2}$. The quotient set got in this way is denoted by $\overrightarrow{V^{2}}$.

Definition 2.1. An m-bipolar fuzzy set (m-BPFS) S on V is defined by

$$
\begin{aligned}
S(s)=\{ & \left\langle\left[p_{1} \circ \psi_{S}^{p}(s), p_{1} \circ \psi_{S}^{n}(s)\right],\left[p_{2} \circ \psi_{S}^{p}(s), p_{2} \circ \psi_{S}^{n}(s)\right],\right. \\
& \left.\left.\cdots,\left[p_{m} \circ \psi_{S}^{p}(s), p_{m} \circ \psi_{S}^{n}(s)\right]\right\rangle\right\}
\end{aligned}
$$

for all $s \in V$ or shortly

$$
S(s)=\left\{\left\langle\left[p_{j} \circ \psi_{S}^{p}(s), p_{j} \circ \psi_{S}^{n}(s)\right]_{j=1}^{m}\right\rangle \mid s \in V\right\}
$$

where the functions $p_{j} \circ \psi_{S}^{p}: V \rightarrow[0,1]$ and $p_{j} \circ \psi_{S}^{n}: V \rightarrow$ $[-1,0]$ denote the positive memberships and negative memberships of the element respectively.

Definition 2.2. Let S be an m-BPFS on a set V. An m-bipolar fuzzy relation on a set S is m-BPFS T of $V \times V, T(s, t)=$
$\left\{\left\langle\left[p_{1} \circ \psi_{T}^{p}(s, t), p_{1} \circ \psi_{T}^{n}(s, t)\right],\left[p_{2} \circ \psi_{T}^{p}(s, t), p_{2} \circ \psi_{T}^{n}(s, t)\right]\right.\right.$, $\left.\left.\cdots,\left[p_{m} \circ \psi_{T}^{p}(s, t), p_{m} \circ \psi_{T}^{n}(s, t)\right]\right\rangle\right\}$ for all $s, t \in V$ or shortly

$$
T(s, t)=\left\{\left\langle\left[p_{j} \circ \psi_{T}^{p}(s, t), p_{j} \circ \psi_{T}^{n}(s, t)\right]_{j=1}^{m}\right\rangle \mid s, t \in V\right\}
$$

such that $p_{j} \circ \psi_{T}^{p}(s, t) \leq \min \left\{p_{j} \circ \psi_{S}^{p}(s), p_{j} \circ \psi_{S}^{p}(t)\right\} p_{j} \circ$ $\psi_{T}^{n}(s, t) \geq \max \left\{p_{j} \circ \psi_{S}^{n}(s), p_{j} \circ \psi_{S}^{n}(t)\right\}$, for every $j=1,2$, \cdots, m and $s, t \in V$.

Definition 2.3. An m-bipolar fuzzy graph (m-BPFG) of a graph $G^{*}=(V, E)$ is a pair $G=(V, S, T)$ where

$$
S=\left\langle\left[p_{j} \circ \psi_{S}^{p}, p_{j} \circ \psi_{S}^{n}\right]_{j=1}^{m}\right\rangle,
$$

$p_{j} \circ \psi_{S}^{p}: V \rightarrow[0,1]$ and $p_{j} \circ \psi_{S}^{n}: V \rightarrow[-1,0]$ is an $m-B P F S$ on $V ;$ and $T=\left\langle\left[p_{j} \circ \psi_{T}^{p}, p_{j} \circ \psi_{T}^{n}\right]_{j=1}^{m}\right\rangle, p_{j} \circ \psi_{T}^{p}: \vec{V}^{2} \rightarrow[0,1]$ and $p_{j} \circ \psi_{T}^{n}: \vec{V}^{2} \rightarrow[-1,0]$ is an $m-B P F S$ in $\overrightarrow{V^{2}}$ such that $p_{j} \circ \psi_{T}^{p}(k, l) \leq \min \left\{p_{j} \circ \psi_{S}^{p}(k), p_{j} \circ \psi_{S}^{p}(l)\right\}, p_{j} \circ \psi_{T}^{n}(k, l) \geq$ $\max \left\{p_{j} \circ \psi_{S}^{n}(k), p_{j} \circ \psi_{S}^{n}(l)\right\}$ for all $(k, l) \in \vec{V}^{2}, j=1,2, \cdots, m$ and $p_{j} \circ \psi_{T}^{p}(k, l)=p_{j} \circ \psi_{T}^{n}(k, l)=0$ for all $(k, l) \in \overrightarrow{V^{2}}-E$.

Definition 2.4. Let $G=(V, S, T)$ be an $m-B P F G$ of a graph $G^{*}=(V, E)$. An m-BPFG $N=(Q, C, D)$ is said to be an m bipolar fuzzy subgraph of G induced by Q if $Q \subseteq V C(s)=$ $S(s)$ for all $s \in Q$ and $D(s, t)=T(s, t)$ for all $(s, t) \in \overrightarrow{Q^{2}}$.

Definition 2.5. An m-BPFG $G=(V, S, T)$ of a graph $G^{*}=$ (V, E) is complete if for every $s, t \in V$ and $j=1,2, \cdots m$ satisfying $p_{j} \circ \psi_{T}^{p}(s, t)=\min \left\{p_{j} \circ \psi_{s}^{p}(s), p_{j} \circ \psi_{s}^{p}(t)\right\} p_{j} \circ$ $\psi_{T}^{n}(s, t)=\max \left\{p_{j} \circ \psi_{S}^{n}(s), p_{j} \circ \psi_{S}^{n}(t)\right\}$.

Definition 2.6. An m-BPFG $G=(V, S, T)$ of a graph $G^{*}=$ (V, E) is strong if for every $(s, t) \in E$ and $j=1,2, \cdots, m$ satisfying $p_{j} \circ \psi_{T}^{p}(s, t)=\min \left\{p_{j} \circ \psi_{S}^{p}(s), p_{j} \circ \psi_{S}^{p}(t)\right\} p_{j} \circ$ $\psi_{T}^{n}(s, t)=\max \left\{p_{j} \circ \psi_{S}^{n}(s), p_{j} \circ \psi_{S}^{n}(t)\right\}$.

3. Density of an m-BPFG

In this section, complement, density, balanced, strictly balanced and self complementary of an m-BPFG are defined and studied some of its properties.

Definition 3.1. Let $G=(V, S, T)$ be an $m-B P F G$ of $G^{*}=$ (V, E). The complement of G is an $m-B P F G \bar{G}=(V, \bar{S}, \bar{T})$ of $\overline{G^{*}}=\left(V, \overline{V^{2}}\right)$ such that $\bar{S}=S$ and \bar{T} is defined by

$$
\begin{aligned}
p_{j} \circ \psi_{\bar{T}}(s, t) & =\left[p_{j} \circ \psi_{\bar{T}}^{p}(s, t), p_{j} \circ \psi_{\bar{T}}^{n}(s, t)\right] \\
p_{j} \circ \psi_{\bar{T}}^{p}(s, t) & =\left\{p_{j} \circ \psi_{S}^{p}(s) \wedge p_{j} \circ \psi_{S}^{p}(t)\right\}-p_{j} \circ \psi_{T}^{p}(s, t) \\
p_{j} \circ \psi_{\bar{T}}^{n}(s, t) & =\left\{p_{j} \circ \psi_{S}^{n}(s) \vee p_{j} \circ \psi_{S}^{n}(t)\right\}-p_{j} \circ \psi_{T}^{n}(s, t)
\end{aligned}
$$

for every $(s, t) \in \vec{V}^{2}$ and $j=1,2, \cdots m$.

Definition 3.2. The density of an $m-B P F G G=(V, S, T)$ of $G^{*}=(V, E)$ is

$$
\begin{aligned}
& \chi(G)=\left\langle\left[p_{j} \circ \chi^{p}(G), p_{j} \circ \chi^{n}(G)\right]_{j=1}^{m}\right\rangle= \\
& \left\langle\left[\frac{2 \sum_{s, t \in V} p_{j} \circ \psi_{T}^{p}(s, t)}{\sum_{(s, t) \in E}\left\{p_{j} \circ \psi_{S}^{p}(s) \wedge p_{j} \circ \psi_{S}^{p}(t)\right\}},\right.\right. \\
& \left.\left.\quad \frac{2 \sum_{s, t \in V} p_{j} \circ \psi_{T}^{n}(s, t)}{\sum_{(s, t) \in E}\left\{p_{j} \circ \psi_{S}^{n}(s) \vee p_{j} \circ \psi_{S}^{n}(t)\right\}}\right]_{j=1}^{m}\right\rangle .
\end{aligned}
$$

Definition 3.3. An m-BPFG $G=(V, S, T)$ of $G^{*}=(V, E)$ is balanced if $\chi(Q) \leq \chi(G)$ for all non-empty subgraphs Q of G. i.e. for all $j=1,2, \cdots m$, we have $p_{j} \circ \chi^{p}(Q) \leq p_{j} \circ \chi^{p}(G)$ and $p_{j} \circ \chi^{n}(Q) \leq p_{j} \circ \chi^{n}(G)$.

Definition 3.4. An m-BPFG $G=(V, S, T)$ of $G^{*}=(V, E)$ is strictly balanced if $\chi(G)=\chi(Q)$ for all non-empty subgraphs Q of G.

Example 3.5. Consider a $2-B P F G G=(V, S, T)$ of $G^{*}=$ (V, E) as shown in the Figure 1.

Figure 1. Strictly balanced 2 -BPFG G

For this 2 -BPFG, we have $\chi(G)=\langle[0.5,1.6],[1.5,1.8]\rangle$ and the densities of a non-empty subgraphs of G are $\chi\left(H_{1}=(P, Q)\right)=\chi\left(H_{2}=(Q, R)\right)=\chi\left(H_{3}=(R, P)\right)=$ $\langle[0.5,1.6],[1.5,1.8]\rangle$. Therefore G is a strictly balanced 2 BPFG.

Definition 3.6. Let $G_{1}=\left(V_{1}, S_{1}, T_{1}\right)$ and $G_{2}=\left(V_{2}, S_{2}, T_{2}\right)$ be two m-BPFGs on crisp graphs $G_{1}^{*}=\left(V_{1}, E_{1}\right)$ and $G_{2}^{*}=$ $\left(V_{2}, E_{2}\right)$ respectively. An isomorphism between G_{1} and G_{2} is a bijective mapping ϕ from V_{1} to V_{2} such that for each $j=1,2, \cdots m p_{j} \circ \psi_{S_{1}}^{p}(s)=p_{j} \circ \psi_{S_{2}}^{p}(\phi(s)), p_{j} \circ \psi_{S_{1}}^{n}(s)=p_{j} \circ$ $\psi_{S_{2}}^{n}(\phi(s)) \forall s \in V_{1}$.

$$
\begin{aligned}
& \quad p_{j} \circ \psi_{T_{1}}^{p}(s, t)=p_{j} \circ \psi_{T_{2}}^{p}(\phi(s), \phi(t)), p_{j} \circ \psi_{T_{1}}^{n}(s, t)= \\
& \\
& p_{j} \circ \psi_{T_{2}}^{n}(\phi(s), \phi(t)) \\
& \forall(s, t) \in \overrightarrow{V_{1}^{2}}
\end{aligned}
$$

Definition 3.7. An m-BPFG is said to be self-complementary if $G \cong \bar{G}$.

Theorem 3.8. Every complete $m-B P F G$ is balanced

Proof. Let $G=(V, S, T)$ be a complete m-BPFG and Q be a non empty subgraph of G. Then for every $j=1,2, \cdots m$

$$
\begin{aligned}
& {\left[p_{j} \circ \chi^{p}(G), p_{j} \circ \chi^{n}(G)\right]} \\
& =\left[\frac{2 \sum_{s, t \in V} p_{j} \circ \psi_{T}^{p}(s, t)}{\sum_{(s, t) \in E}\left\{p_{j} \circ \psi_{S}^{p}(s) \wedge p_{j} \circ \psi_{S}^{p}(t)\right\}},\right. \\
& \left.\frac{2 \sum_{s, t \in V} p_{j} \circ \psi_{T}^{n}(s, t)}{\sum_{(s, t) \in E}\left\{p_{j} \circ \psi_{S}^{n}(s) \vee p_{j} \circ \psi_{S}^{n}(t)\right\}}\right] \\
& =\left[\frac{2 \sum_{s, t \in V}\left\{p_{j} \circ \psi_{S}^{p}(s) \wedge p_{j} \circ \psi_{S}^{p}(t)\right\}}{\sum_{(s, t) \in E}\left\{p_{j} \circ \psi_{S}^{p}(s) \wedge p_{j} \circ \psi_{S}^{p}(t)\right\}},\right. \\
& \left.\frac{2 \sum_{s, t \in V}\left\{p_{j} \circ \psi_{S}^{n}(s) \vee p_{j} \circ \psi_{S}^{n}(t)\right\}}{\sum_{(s, t) \in E}\left\{p_{j} \circ \psi_{S}^{n}(s) \vee p_{j} \circ \psi_{S}^{n}(t)\right\}}\right]=[2,2] \\
& {\left[p_{j} \circ \chi^{p}(Q), p_{j} \circ \chi^{n}(Q)\right]} \\
& =\left[\frac{2 \sum_{s, t \in V(Q)} p_{j} \circ \psi_{T}^{p}(s, t)}{\sum_{(s, t) \in E(Q)}\left\{p_{j} \circ \psi_{S}^{p}(s) \wedge p_{j} \circ \psi_{S}^{p}(t)\right\}},\right. \\
& \left.\frac{2 \sum_{s, t \in V(Q)} p_{j} \circ \psi_{T}^{n}(s, t)}{\sum_{(s, t) \in E(Q)}\left\{p_{j} \circ \psi_{S}^{n}(s) \vee p_{j} \circ \psi_{S}^{n}(t)\right\}}\right] \\
& \leq\left[\frac{2 \sum_{s, t \in V(Q)}\left\{p_{j} \circ \psi_{S}^{p}(s) \wedge p_{j} \circ \psi_{S}^{p}(t)\right\}}{\sum_{(s, t) \in E(Q)}\left\{p_{j} \circ \psi_{S}^{p}(s) \wedge p_{j} \circ \psi_{S}^{p}(t)\right\}},\right. \\
& \left.\frac{2 \sum_{s, t \in V(Q)}\left\{p_{j} \circ \psi_{S}^{n}(s) \vee p_{j} \circ \psi_{S}^{n}(t)\right\}}{\sum_{(s, t) \in E(Q)}\left\{p_{j} \circ \psi_{S}^{n}(s) \vee p_{j} \circ \psi_{S}^{n}(t)\right\}}\right]=[2,2]
\end{aligned}
$$

(where $V(Q)$ and $E(Q)$ represents the vertex set and edge set of $Q)$. Thus $G=(V, S, T)$ is a balanced m-BPFG.

Corollary 3.9. Every strong m-BPFG is balanced.

Theorem 3.10. The complement of a strictly balanced m$B P F G$ is strictly balanced.
Proof. Follows from the definition.
Theorem 3.11. Let $G=(V, S, T)$ be a strictly balanced m BPFG and let $\bar{G}=(V, \bar{S}, \bar{T})$ be its complement. Then $\chi(G)+$ $\chi(\bar{G})=\langle[2,2],[2,2], \cdots,[2,2]\rangle$
Proof. Let Q be any non-empty subgraph of G. Since G is strictly balanced m-BPFG then $\chi(Q)=\chi(G)$ for every $Q \subseteq G$. Now, for all $(s, t) \in \overline{V^{2}}$ and $j=1,2, \cdots, m$ we have
(i) $p_{j} \circ \psi_{\bar{T}}^{p}(s, t)=\left\{p_{j} \circ \psi_{S}^{p}(s) \wedge p_{j} \circ \psi_{S}^{p}(t)\right\}-p_{j} \circ \psi_{T}^{p}(s, t)$
(ii) $p_{j} \circ \psi_{\bar{T}}^{n}(s, t)=\left\{p_{j} \circ \psi_{S}^{n}(s) \vee p_{j} \circ \psi_{S}^{n}(t)\right\}-p_{j} \circ \psi_{T}^{n}(s, t)$

Dividing (i) by $\left\{p_{j} \circ \psi_{S}^{p}(s) \wedge p_{j} \circ \psi_{S}^{p}(t)\right\}$ on both sides, we get

$$
\begin{gathered}
\frac{p_{j} \circ \psi_{\bar{T}}^{p}(s, t)}{\left\{p_{j} \circ \psi_{S}^{p}(s) \wedge p_{j} \circ \psi_{S}^{p}(t)\right\}}=1-\frac{p_{j} \circ \psi_{T}^{p}(s, t)}{\left\{p_{j} \circ \psi_{S}^{p}(s) \wedge p_{j} \circ \psi_{S}^{p}(t)\right\}} \\
\sum_{s, t \in V} \frac{p_{j} \circ \psi_{\bar{T}}^{p}(s, t)}{\left\{p_{j} \circ \psi_{S}^{p}(s) \wedge p_{j} \circ \psi_{S}^{p}(t)\right\}}=1-\sum_{s, t \in V} \frac{p_{j} \circ \psi_{T}^{p}(s, t)}{\left\{p_{j} \circ \psi_{S}^{p}(s) \wedge p_{j} \circ \psi_{S}^{p}(t)\right\}} \\
2 \sum_{s, t \in V} \frac{p_{j} \circ \psi_{T}^{p}(s, t)}{\left\{p_{j} \circ \psi_{S}^{p}(s) \wedge p_{j} \circ \psi_{S}^{p}(t)\right\}}=2-2 \sum_{s, t \in V} \frac{p_{j} \circ \psi_{T}^{p}(s, t)}{\left\{p_{j} \circ \psi_{S}^{p}(s) \wedge p_{j} \circ \psi_{S}^{p}(t)\right\}}
\end{gathered}
$$

i.e. $p_{j} \circ \chi^{p}(\bar{G})=2-p_{j} \circ \chi^{p}(G)$. Similarly, $p_{j} \circ \chi^{n}(\bar{G})=2-$ $p_{j} \circ \chi^{n}(G)$. Therefore $\chi(G)+\chi(\bar{G})=\langle[2,2],[2,2], \cdots,[2,2]\rangle$.

Corollary 3.12. Every balanced m-BPFG is need not be complete.
Theorem 3.13. Let $G=(V, S, T)$ be a strong $m-B P F G$ graph, then \bar{G} is balanced.

Proof. Suppose that G is a strong m-BPFG. Then for all $(s, t) \in E$ and $j=1,2, \cdots, m$. We have
$p_{j} \circ \psi_{T}^{p}(s, t)=\min \left\{p_{j} \circ \psi_{S}^{p}(s), p_{j} \circ \psi_{S}^{p}(t)\right\}, p_{j} \circ \psi_{T}^{n}(s, t)=$ $\max \left\{p_{j} \circ \psi_{S}^{n}(s), p_{j} \circ \psi_{S}^{n}(t)\right\}$ 。

From \bar{G}, for all $(s, t) \in E$ and $j=1,2, \cdots, m$ we have

$$
\begin{aligned}
& p_{j} \circ \psi_{\bar{T}}^{p}(s, t)=\left\{p_{j} \circ \psi_{S}^{p}(s) \wedge p_{j} \circ \psi_{S}^{p}(t)\right\}-p_{j} \circ \psi_{T}^{p}(s, t) \\
& p_{j} \circ \psi_{\bar{T}}^{n}(s, t)=\left\{p_{j} \circ \psi_{S}^{n}(s) \vee p_{j} \circ \psi_{S}^{n}(t)\right\}-p_{j} \circ \psi_{T}^{n}(s, t)
\end{aligned}
$$

As G is strong, we get

$$
\left[p_{j} \circ \psi_{\bar{T}}^{p}(s, t), p_{j} \circ \psi_{\bar{T}}^{n}(s, t)\right]=[0,0]
$$

$\forall(s, t) \in E$ and $p_{j} \circ \psi_{\bar{T}}^{p}(s, t)=\left\{p_{j} \circ \psi_{S}^{p}(s) \wedge p_{j} \circ \psi_{S}^{p}(t)\right\}$ and $p_{j} \circ \psi_{\bar{T}}^{n}(s, t)=\left\{p_{j} \circ \psi_{S}^{n}(s) \vee p_{j} \circ \psi_{S}^{n}(t)\right\}$ for all $\forall(s, t) \in \bar{E}$.
Hence, \bar{G} is a strong $m-B P F G$ and it implies that \bar{G} is balanced.

Theorem 3.14. Let $G=(V, S, T)$ be a self complementary $m-B P F G$ of $G^{*}=(V, E)$. Then for all $(s, t) \in E$ and $j=$ $1,2, \cdots, m$.
We have $\sum_{s \neq t} p_{j} \circ \psi_{T}^{p}(s, t)=\frac{1}{2} \sum_{s \neq 1}\left\{p_{j} \circ \psi_{S}^{p}(s) \wedge p_{j} \circ \psi_{S}^{p}(t)\right\}$ $\sum_{s \neq l} p_{j} \circ \psi_{T}^{n}(s, t)=\frac{1}{2} \sum_{s \neq t}\left(p_{j} \circ \psi_{S}^{n}(s) \vee p_{j} \circ \psi_{S}^{n}(t)\right)$.
Proof. Suppose that $G=(V, S, T)$ is a self complementary m-BPFG of G^{*}. Then there exists an isomorphism ϕ from G to \bar{G} such that $p_{j} \circ \psi_{S}^{p}(s)=p_{j} \circ \psi_{\bar{s}}^{p}(\phi(s)), p_{j} \circ \psi_{S}^{n}(s)=p_{j} \circ$ $\psi_{\bar{s}}^{n}(\phi(s)) \forall s \in V$ and $p_{j} \circ \psi_{T}^{p}(s, t)=p_{j} \circ \psi_{\bar{T}}^{p}(\phi(s), \phi(t)), p_{j} \circ$ $\psi_{T}^{n}(s, t)=p_{j} \circ \psi_{\bar{T}}^{n}(\phi(s), \phi(t)) \forall(s, t) \in \vec{V}^{2}$. Let $(s, t) \in \vec{V}^{2}$. Then for $j=1,2, \cdots, m$, we have

$$
\begin{aligned}
p_{j} \circ \psi_{\bar{T}}^{p}(\phi(s), \phi(t))= & \left\{p_{j} \circ \psi_{S}^{p}(\phi(s)) \wedge p_{j} \circ \psi_{S}^{p}(\phi(t))\right\} \\
& -p_{j} \circ \psi_{T}^{p}(\phi(s), \phi(t)) \\
p_{j} \circ \psi_{\bar{T}}^{n}(\phi(s), \phi(t))= & \left\{p_{j} \circ \psi_{S}^{n}(\phi(s)) \vee p_{j} \circ \psi_{S}^{n}(\phi(t))\right\} \\
& -p_{j} \circ \psi_{T}^{n}(\phi(s), \phi(t)) \\
\text { i.e. } p_{j} \circ \psi_{T}^{p}(s, t)= & \left\{p_{j} \circ \psi_{S}^{p}(\phi(s)) \wedge p_{j} \circ \psi_{S}^{p}(\phi(t))\right\} \\
& -p_{j} \circ \psi_{T}^{p}(\phi(s), \phi(t)) \\
p_{j} \circ \psi_{T}^{n}(s, t)= & \left\{p_{j} \circ \psi_{S}^{n}(\phi(s)) \vee p_{j} \circ \psi_{S}^{n}(\phi(t))\right\} \\
& -p_{j} \circ \psi_{T}^{n}(\phi(s), \phi(t))
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
& \sum_{s \neq t} p_{j} \circ \psi_{T}^{p}(\phi(s), \phi(t))+\sum_{s \neq t} p_{j} \circ \psi_{T}^{p}(s, t) \\
& =\sum_{s \neq t}\left\{p_{j} \circ \psi_{S}^{p}(\phi(s)) \wedge p_{j} \circ \psi_{S}^{p}(\phi(t))\right\} \\
& =\sum_{s \neq t}\left\{p_{j} \circ \psi_{S}^{p}(s) \wedge p_{j} \circ \psi_{S}^{p}(t)\right\}
\end{aligned}
$$

That is,

$$
\begin{aligned}
2 \sum_{s \neq t} p_{j} \circ \psi_{T}^{p}(s, t) & =\sum_{s \neq t}\left\{p_{j} \circ \psi_{S}^{p}(s) \wedge p_{j} \circ \psi_{S}^{p}(t)\right\} \\
\sum_{s \neq t} p_{j} \circ \psi_{T}^{p}(s, t) & =\frac{1}{2} \sum_{s \neq t}\left\{p_{j} \circ \psi_{S}^{p}(s) \wedge p_{j} \circ \psi_{S}^{p}(t)\right\}
\end{aligned}
$$

Similarly

$$
\sum_{s \neq t} p_{j} \circ \psi_{T}^{n}(s, t)=\frac{1}{2} \sum_{s \neq l}\left(p_{j} \circ \psi_{S}^{n}(s) \vee p_{j} \circ \psi_{S}^{n}(t)\right)
$$

Theorem 3.15. Let $G_{1}=\left(V_{1}, S_{1}, T_{1}\right)$ and $G_{2}=\left(V_{2}, S_{2}, T_{2}\right)$ be two isomorphic m-BPFGs. Then if G_{2} is balanced then G_{1} is balanced.

Proof. Since G_{1} and G_{2} are isomorphic, therefore there exists a bijective mapping $\phi: V_{1} \rightarrow V_{2}$ such that $p_{j} \circ \psi_{S_{1}}^{p}(s)=p_{j} \circ$ $\psi_{S_{2}}^{p}(\phi(s)), p_{j} \circ \psi_{S_{1}}^{n}(s)=p_{j} \circ \psi_{S_{2}}^{n}(\phi(s)) \forall s \in V_{1}$ and

$$
\begin{aligned}
p_{j} \circ \psi_{T_{1}}^{p}(s, t)= & p_{j} \circ \psi_{T_{2}}^{p}(\phi(s), \phi(t)), p_{j} \circ \psi_{T_{1}}^{n}(s, t) \\
& =p_{j} \circ \psi_{T_{2}}^{n}(\phi(s), \phi(t))
\end{aligned}
$$

$\forall(s, t) \in \overrightarrow{V_{1}^{2}}, \forall j=1,2, \cdots, m$. Then,
$\sum_{s \in V_{1}} p_{j} \circ \psi_{S_{1}}^{p}(s)=\sum_{\phi(s) \in V_{2}} p_{j} \circ \psi_{S_{2}}^{p}(\phi(s)), \sum_{s \in V_{1}} p_{j} \circ \psi_{S_{1}}^{n}(s)=$ $\sum_{\phi(s) \in V_{2}} p_{j} \circ \psi_{S_{2}}^{n}(\phi(s))$ and

$$
\begin{aligned}
\sum_{s, t \in V_{1}} p_{j} \circ \psi_{T_{1}}^{p}(s, t) & =\sum_{\phi(s), \phi(t) \in V_{2}} p_{j} \circ \psi_{T_{2}}^{p}(\phi(s), \phi(t)) \\
\sum_{s, t \in V_{1}} p_{j} \circ \psi_{T_{1}}^{n}(s, t) & =\sum_{\phi(s), \phi(t) \in V_{2}} p_{j} \circ \psi_{T_{2}}^{n}(\phi(s), \phi(t))
\end{aligned}
$$

Let N_{1} and N_{2} be two non-empty subgraphs of G_{1} and G_{2} respectively. Then, $p_{j} \circ \psi_{S_{1}}^{p}(s)=p_{j} \circ \psi_{S_{2}}^{p}(\phi(s)), p_{j} \circ \psi_{S_{1}}^{n}(s)=$ $p_{j} \circ \psi_{S_{2}}^{n}(\phi(s))$ and $p_{j} \circ \psi_{T_{1}}^{p}(s, t)=p_{j} \circ \psi_{T_{2}}^{p}(\phi(s), \phi(t)), p_{j} \circ$ $\psi_{T_{1}}^{n}(s, t)=p_{j} \circ \psi_{T_{2}}^{n}(\phi(s), \phi(t)), \forall s, t \in V_{1}\left(N_{1}\right), \forall j=1,2, \cdots$, m. Here, $V_{1}\left(N_{1}\right)$ are the vertices of N_{1}. Since G_{2} is balanced, we have for $j=1,2, \cdots, m p_{j} \circ \chi\left(N_{2}\right) \leq p_{j} \circ \chi\left(G_{2}\right)$.

$$
\begin{aligned}
& 2 \sum_{(s, t) \in E_{2}\left(N_{2}\right)} \frac{p_{j} \circ \psi_{T_{2}}^{p}(s, t)}{p_{j} \circ \psi_{S_{2}}^{p}(s) \wedge p_{j} \circ \psi_{S_{2}}^{p}(t)} \\
& \quad \leq 2 \sum_{(s, t) \in E_{2}} \frac{p_{j} \circ \psi_{T_{2}}^{p}(s, t)}{p_{j} \circ \psi_{S_{2}}^{p}(s) \wedge p_{j} \circ \psi_{S_{2}}^{p}(t)} \\
& 2 \sum_{(s, t) \in E_{1}\left(N_{1}\right)} \frac{p_{j} \circ \psi_{T_{1}}^{p}(s, t)}{p_{j} \circ \psi_{S_{1}}^{p}(s) \wedge p_{j} \circ \psi_{S_{1}}^{p}(t)} \\
& \quad \leq 2 \sum_{(s, t) \in E_{1}} \frac{p_{j} \circ \psi_{T_{1}}^{p}(s, t)}{p_{j} \circ \psi_{S_{1}}^{p}(s) \wedge p_{j} \circ \psi_{S_{1}}^{p}(t)}
\end{aligned}
$$

Similarly,

$$
\begin{aligned}
2 \sum_{(s, t) \in E_{1}\left(N_{1}\right)} & \frac{p_{j} \circ \psi_{T_{1}}^{n}(s, t)}{p_{j} \circ \psi_{S_{1}}^{n}(s) \wedge p_{j} \circ \psi_{S_{1}}^{n}(t)} \\
& \leq 2 \sum_{(s, t) \in E_{1}} \frac{p_{j} \circ \psi_{T_{1}}^{n}(s, t)}{p_{j} \circ \psi_{S_{1}}^{n}(s) \wedge p_{j} \circ \psi_{S_{1}}^{n}(t)}
\end{aligned}
$$

i.e. $p_{j} \circ \chi\left(N_{1}\right) \leq p_{j} \circ \chi\left(G_{1}\right)$, i.e. G_{1} is balanced.

Theorem 3.16. Let $G=(V, S, T)$ be a $m-B P F G$ of $G^{*}=$ (V, E). If

$$
\begin{aligned}
& p_{j} \circ \psi_{T}^{p}(s, t)=\frac{1}{2}\left\{p_{j} \circ \psi_{S}^{p}(s) \wedge p_{j} \circ \psi_{S}^{p}(t)\right\}, \\
& p_{j} \circ \psi_{T}^{n}(s, t)=\frac{1}{2}\left\{p_{j} \circ \psi_{S}^{n}(s) \vee p_{j} \circ \psi_{S}^{n}(t)\right\},
\end{aligned}
$$

for all $(s, t) \in \overrightarrow{V^{2}}, j=1,2, \cdots, m$, Then G is self-complementary.

Proof. Suppose that $G=(V, S, T)$ is $a \quad$ m-BPFG of $G^{*}=$ (V, E) satisfying

$$
\begin{aligned}
& p_{j} \circ \psi_{T}^{p}(s, t)=\frac{1}{2}\left\{p_{j} \circ \psi_{S}^{p}(s) \wedge p_{j} \circ \psi_{S}^{p}(t)\right\}, \\
& p_{j} \circ \psi_{T}^{n}(s, t)=\frac{1}{2}\left\{p_{j} \circ \psi_{S}^{n}(s) \vee p_{j} \circ \psi_{S}^{n}(t)\right\}
\end{aligned}
$$

for all $(s, t) \in \overrightarrow{V^{2}}, j=1,2, \cdots, m$, then the identity mapping $I: V \rightarrow V$ is an isomorphism from G to \bar{G}. Clearly, $p_{j} \circ$ $\psi_{S}^{p}(s)=p_{j} \circ \psi_{\bar{s}}^{p}(I(s)), p_{j} \circ \psi_{S}^{n}(s)=p_{j} \circ \psi_{\bar{s}}^{n}(I(s)) \forall s \in V$ and we have for all $j=1,2, \cdots, m$ and $(s, t) \in \overrightarrow{V^{2}}$.

$$
\begin{aligned}
& p_{j} \circ \psi_{\bar{T}}^{p}(I(s), I(t))=p_{j} \circ \psi_{\bar{T}}^{p}(s, t) \\
&=\left\{p_{j} \circ \psi_{S}^{p}(s) \wedge p_{j} \circ \psi_{S}^{p}(t)\right\}-p_{j} \circ \psi_{T}^{p}(s, t) \\
&=\left\{p_{j} \circ \psi_{S}^{p}(s) \wedge p_{j} \circ \psi_{S}^{p}(t)\right\}-\frac{1}{2}\left\{p_{j} \circ \psi_{S}^{p}(s) \wedge p_{j} \circ \psi_{S}^{p}(t)\right\} \\
& \quad=\frac{1}{2}\left\{p_{j} \circ \psi_{S}^{p}(s) \wedge p_{j} \circ \psi_{S}^{p}(t)\right\}=p_{j} \circ \psi_{T}^{p}(s, t)
\end{aligned}
$$

Similarly, $p_{j} \circ \psi_{\bar{T}}^{n}(I(s), I(t))=p_{j} \circ \psi_{T}^{n}(s, t)$
i.e. $p_{j} \circ \psi_{\bar{T}}^{p}(I(s), I(t))=p_{j} \circ \psi_{T}^{p}(s, t), p_{j} \circ \psi_{\bar{T}}^{n}(I(s), I(t))=$ $p_{j} \circ \psi_{T}^{n}(s, t)$ for all $(s, t) \in \overrightarrow{V^{2}}, j=1,2, \cdots, m$.
Therefore $G \cong \bar{G}$. i.e. G is self-complementary.
Theorem 3.17. Let $G=(V, S, T)$ be an $m-B P F G$ such that for each $j=1,2, \cdots, m$ and $(s, t) \in \vec{V}^{2}$,

$$
\begin{aligned}
& p_{j} \circ \psi_{T}^{p}(s, t)=\frac{1}{2}\left\{p_{j} \circ \psi_{S}^{p}(s) \wedge p_{j} \circ \psi_{S}^{p}(t)\right\} \\
& p_{j} \circ \psi_{T}^{n}(s, t)=\frac{1}{2}\left\{p_{j} \circ \psi_{S}^{n}(s) \vee p_{j} \circ \psi_{S}^{n}(t)\right\}
\end{aligned}
$$

Then $\chi(G)=\langle[1,1],[1,1], \cdots,[1,1]\rangle$.
Proof. Let $G=(V, S, T)$ be an m-BPFG such that for each $j=1,2, \cdots, m$ and $(s, t) \in \overrightarrow{V^{2}}$,

$$
\begin{aligned}
& p_{j} \circ \psi_{T}^{p}(s, t)=\frac{1}{2}\left\{p_{j} \circ \psi_{S}^{p}(s) \wedge p_{j} \circ \psi_{S}^{p}(t)\right\} \\
& p_{j} \circ \psi_{T}^{n}(s, t)=\frac{1}{2}\left\{p_{j} \circ \psi_{S}^{n}(s) \vee p_{j} \circ \psi_{S}^{n}(t)\right\}
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
& {\left[\frac{2 \sum_{s, t \in V} p_{j} \circ \psi_{T}^{p}(s, t)}{\sum_{(s, t) \in E}\left\{p_{j} \circ \psi_{S}^{p}(s) \wedge p_{j} \circ \psi_{S}^{p}(t)\right\}}\right.} \\
& \left.\quad \frac{2 \sum_{s, t \in V} p_{j} \circ \psi_{T}^{n}(s, t)}{\sum_{(s, t) \in E}\left\{p_{j} \circ \psi_{S}^{n}(s) \vee p_{j} \circ \psi_{S}^{n}(t)\right\}}\right]=[1,1]
\end{aligned}
$$

it follows that $\chi(G)=\langle[1,1],[1,1], \cdots,[1,1]\rangle$

4. Direct product of two m-bipolar fuzzy graphs

Definition 4.1. Let $G_{1}=\left(V_{1}, S_{1}, T_{1}\right)$ and $G_{2}=\left(V_{2}, S_{2}, T_{2}\right)$ be two m-BPFGs of $G_{1}^{*}=\left(V_{1}, E_{1}\right)$ and $G_{2}^{*}=\left(V_{2}, E_{2}\right)$ respectively such that $V_{1} \cap V_{2}=\phi$. Then the direct product of G_{1} and G_{2} is defined to be the m-BPFG $G_{1} \cap G_{2}=\left(S_{1} \cap S_{2}, T_{1} \cap T_{2}\right)$ of the graph $G^{*}=\left(V_{1} \times V_{2}, E\right)$ where,
$E=\left\{\left(\left(s_{1}, t_{1}\right),\left(s_{2}, t_{2}\right)\right) \mid\left(s_{1}, s_{2}\right) \in E_{1},\left(t_{1}, t_{2}\right) \in E_{2}\right\} \subseteq\left(\overrightarrow{V_{1} \times V_{2}}\right)^{2}$
and for each $j=1,2, \cdots, m$
(i) $p_{j} \circ \psi_{\left(s_{1} \cap s_{2}\right)}^{p}(s, t)=\min \left\{p_{j} \circ \psi_{S_{1}}^{p}(s), p_{j} \circ \psi_{S_{2}}^{p}(t)\right\}$ $p_{j} \circ \psi_{\left(S_{1} \cap s_{2}\right)}^{n}(s, t)=\max \left\{p_{j} \circ \psi_{S_{1}}^{n}(s), p_{j} \circ \psi_{S_{2}}^{n}(t)\right\}$ for all $(s, t) \in V_{1} \times V_{2}$
(ii) $p_{j} \circ \psi_{\left(T_{1} \cap T_{2}\right)}^{p}\left(\left(s_{1}, t_{1}\right),\left(s_{2}, t_{2}\right)\right)$

$$
=\min \left\{p_{j} \circ \psi_{T_{1}}^{p}\left(s_{1}, s_{2}\right), p_{j} \circ \psi_{T_{2}}^{p}\left(t_{1}, t_{2}\right)\right\}
$$

$$
p_{j} \circ \psi_{\left(T, \cap T_{2}\right)}^{n}\left(\left(s_{1}, t_{1}\right),\left(s_{2}, t_{2}\right)\right)
$$

$$
=\max \left\{p_{j} \circ \psi_{T_{1}}^{n}\left(s_{1}, s_{2}\right), p_{j} \circ \psi_{T_{2}}^{n}\left(t_{1}, t_{2}\right)\right\}
$$

for all $\left(s_{1}, s_{2}\right) \in E_{1},\left(t_{1}, t_{2}\right) \in E_{2}$
(iii) $p_{j} \circ \psi_{\left(T_{1} \cap T_{2}\right)}^{p}((p, q),(r, s))=0$,

$$
p_{j} \circ \psi_{\left(T_{1} \cap T_{2}\right)}^{n}((p, q),(r, s))=0
$$

$$
\text { for all }((p, q),(r, s)) \in\left(\left(\overrightarrow{V_{1} \times V_{2}}\right)^{2}-E\right)
$$

Theorem 4.2. The direct product $G_{1} \cap G_{2}$ of two m-BPFGs G_{1} and G_{2} is also an $m-B P F G$.

Proof. Let $\left(\left(s_{1}, t_{1}\right),\left(s_{2}, t_{2}\right)\right) \in E$. Then $\left(s_{1}, s_{2}\right) \in E_{1}$ and $\left(t_{1}, t_{2}\right)$ $\in E_{2}$. Hence for each $j=1,2, \cdots, m$; we have

$$
\begin{aligned}
& p_{j} \circ \psi_{\left(T_{1} \cap T_{2}\right)}^{p}\left(\left(s_{1}, t_{1}\right),\left(s_{2}, t_{2}\right)\right) \\
& \quad=p_{j} \circ \psi_{T_{1}}^{p}\left(s_{1}, s_{2}\right) \wedge p_{j} \circ \psi_{T_{2}}^{p}\left(t_{1}, t_{2}\right) \\
& \quad \leq p_{j} \circ \psi_{S_{1}}^{p}\left(s_{1}\right) \wedge p_{j} \circ \psi_{S_{1}}^{p}\left(s_{2}\right) \wedge p_{j} \circ \psi_{S_{2}}^{p}\left(t_{1}\right) \wedge p_{j} \circ \psi_{S_{2}}^{p}\left(t_{2}\right) \\
& \quad=p_{j} \circ \psi_{\left(S_{1} \cap S_{2}\right)}^{p}\left(s_{1}, t_{1}\right) \wedge p_{j} \circ \psi_{\left(S_{1} \cap s_{2}\right)}^{p}\left(s_{2}, t_{2}\right)
\end{aligned}
$$

Also, for all $((p, q),(r, s)) \in\left(\left(V_{1} \overrightarrow{\times} V_{2}\right)^{2}-E\right), j=1,2, \cdots, m$.

$$
\begin{aligned}
& p_{j} \circ \psi_{\left(T_{1} \cap T_{2}\right)}^{p}((p, q),(r, s)) \\
& \quad=0 \leq p_{j} \circ \psi_{\left(S_{1} \cap S_{2}\right)}^{p}(p, r) \wedge p_{j} \circ \psi_{\left(S_{1} \cap S_{2}\right)}^{p}(q, s)
\end{aligned}
$$

Similarly, $p_{j} \circ \psi_{\left(T_{1} \cap T_{2}\right)}^{n}\left(\left(s_{1}, t_{1}\right),\left(s_{2}, t_{2}\right)\right) \geq p_{j} \circ \psi_{\left(S_{1} \cap S_{2}\right)}^{n}\left(s_{1}, t_{1}\right) \vee$ $p_{j} \circ \psi_{\left(S_{1} \cap S_{2}\right)}^{n}\left(s_{2}, t_{2}\right)$. This shows that, $G_{1} \cap G_{2}$ is an m-BPFG.

Theorem 4.3. Let $G_{1}=\left(V_{1}, S_{1}, T_{1}\right)$ and $G_{2}=\left(V_{2}, S_{2}, T_{2}\right)$ be two $m-$ BPFGs of $G_{1}^{*}=\left(V_{1}, E_{1}\right)$ and $G_{2}^{*}=\left(V_{2}, E_{2}\right) \quad$ respectively. Then $\chi\left(G_{1}\right)=\chi\left(G_{2}\right)=\chi\left(G_{1} \cap G_{2}\right) \quad$ if and only if $\chi\left(G_{1}\right) \leq \chi\left(G_{1} \cap G_{2}\right)$ and $\chi\left(G_{2}\right) \leq \chi\left(G_{1} \cap G_{2}\right)$
Proof. Let $\chi\left(G_{1}\right) \leq \chi\left(G_{1} \cap G_{2}\right)$ and $\chi\left(G_{2}\right) \leq \chi\left(G_{1} \cap G_{2}\right)$. Then for $j=1,2, \cdots, m$

$$
\begin{aligned}
& p_{j} \circ \chi^{p}\left(G_{1}\right) \\
& =\frac{2 \sum_{s_{1}, s_{2} \in V_{1}} p_{j} \circ \psi_{T_{1}}^{p}\left(s_{1}, s_{2}\right)}{\sum_{s_{1}, s_{2} \in V_{1}} p_{j} \circ \psi_{S_{1}}^{p}\left(s_{1}\right) \wedge p_{j} \circ \psi_{S_{1}}^{p}\left(s_{2}\right)} \\
& \geq \frac{2 \sum_{\substack{s_{1}, s_{2} \in V_{1} \\
t_{1}, v_{2} \in V_{2}}} p_{j} \circ \psi_{T_{1}}^{p}\left(s_{1}, s_{2}\right) \wedge p_{j} \circ \psi_{S_{2}}^{p}\left(t_{1}\right) \wedge p_{j} \circ \psi_{S_{2}}^{p}\left(t_{2}\right)}{\sum_{\substack{s_{1}, s_{1}, s_{1} \in V_{1} \\
t_{1}, V_{2}}}^{p_{j} \circ \psi_{S_{1}}^{p}\left(s_{1}\right) \wedge p_{j} \circ \psi_{S_{1}}^{p}\left(s_{2}\right) \wedge p_{j} \circ \psi_{S_{2}}^{p}\left(t_{1}\right) \wedge p_{j} \circ \psi_{S_{2}}^{p}\left(t_{2}\right)}} \\
& =\frac{2 \sum_{\substack{s_{1}, s_{2} \in V_{1} \\
t_{1}, V_{1} \\
p}} p_{j} \circ \psi_{T_{1}}^{p}\left(s_{1}, s_{2}\right) \wedge p_{j} \circ \psi_{T_{2}}^{p}\left(t_{1}, t_{2}\right)}{\sum_{\substack{s_{1}, s_{1} \in \mathcal{S}_{1} \in V_{1} \\
t_{1}, t_{2} \in V_{2}}} p_{j} \circ \psi_{S_{1}}^{p}\left(s_{1}\right) \wedge p_{j} \circ \psi_{S_{1}}^{p}\left(s_{2}\right) \wedge p_{j} \circ \psi_{S_{2}}^{p}\left(t_{1}\right) \wedge p_{j} \circ \psi_{S_{2}}^{p}\left(t_{2}\right)} \\
& =\frac{2 \sum_{\substack{s_{1}, s_{2} \in V_{1} \\
t_{1}, V_{2} \\
V_{2}}} p_{j} \circ \psi_{\left(T_{1} \cap T_{2}\right)}^{p}\left(\left(s_{1}, t_{1}\right),\left(s_{2}, t_{2}\right)\right)}{\sum_{\substack{s_{1}, s_{1}, s_{1} \in V_{1} \\
t_{1}, V_{2}}}^{p_{j} \circ V_{2}} \psi_{\left(S_{1} \cap S_{2}\right)}^{p}\left(s_{1}, t_{1}\right) \wedge p_{j} \circ \psi_{\left(S_{1} \cap S_{2}\right)}^{p}\left(s_{2}, t_{2}\right)} \\
& =p_{j} \circ \chi^{p}\left(G_{1} \cap G_{2}\right) .
\end{aligned}
$$

Similarly, $p_{j} \circ \chi^{n}\left(G_{1}\right) \geq p_{j} \circ \chi^{n}\left(G_{1} \cap G_{2}\right)$ i.e. $\quad \chi\left(G_{1}\right) \geq$ $\chi\left(G_{1} \cap G_{2}\right)$.
Similarly, $\chi\left(G_{2}\right) \geq \chi\left(G_{1} \cap G_{2}\right)$. Therefore, $\chi\left(G_{1}\right)=\chi\left(G_{2}\right)$ $=\chi\left(G_{1} \cap G_{2}\right)$.

Theorem 4.4. Let $G_{1}=\left(V_{1}, S_{1}, T_{1}\right)$ and $G_{2}=\left(V_{2}, S_{2}, T_{2}\right)$ be two balanced $m-B P F G s$. Then $G_{1} \cap G_{2}$ is balanced if and only if $\chi\left(G_{1}\right)=\chi\left(G_{2}\right)=\chi\left(G_{1} \cap G_{2}\right)$
Proof. Let $G_{1} \cap G_{2}$ be balanced. Then $\chi\left(G_{1}\right) \leq \chi\left(G_{1} \cap G_{2}\right)$ and $\chi\left(G_{2}\right) \leq \chi\left(G_{1} \cap G_{2}\right)$. Hence, by Theorem 4.3, we have $\chi\left(G_{1}\right)=\chi\left(G_{2}\right)=\chi\left(G_{1} \cap G_{2}\right)$.

Conversely, assume that $\chi\left(G_{1}\right)=\chi\left(G_{2}\right)=\chi\left(G_{1} \cap G_{2}\right)$ and N is a non-empty subgraph of $G_{1} \cap G_{2}$. Then there exist two subgraphs N_{1} and N_{2} of G_{1} and G_{2} respectively. Let

$$
\begin{aligned}
& \chi\left(G_{1}\right)=\chi\left(G_{2}\right)=\left\langle\left[\frac{l_{j}^{p}}{k_{j}^{p}}, \frac{l_{j}^{n}}{k_{j}^{n}}\right]_{j=1}^{m}\right\rangle \\
& \chi\left(N_{1}\right)=\left\langle\left[\frac{c_{j}^{p}}{d_{j}^{p}}, \frac{c_{j}^{n}}{d_{j}^{n}}\right]_{j=1}^{m}\right\rangle \\
& \chi\left(N_{2}\right)=\left\langle\left[\frac{e_{j}^{p}}{f_{j}^{p}}, \frac{e_{j}^{n}}{f_{j}^{n}}\right]_{j=1}^{m}\right\rangle
\end{aligned}
$$

for $j=1,2, \cdots, m, l_{j}^{p}, l_{j}^{n}, k_{j}^{p}, k_{j}^{n}, c_{j}^{p}, c_{j}^{n}, d_{j}^{p}, d_{j}^{n}, e_{j}^{p}, e_{j}^{n}, f_{j}^{p}, f_{j}^{n} \in$ R.

Since G_{1} and G_{2} are balanced and

$$
\chi\left(G_{1}\right)=\chi\left(G_{2}\right)=\left\langle\left[\frac{l_{j}^{p}}{k_{j}^{p}}, \frac{l_{j}^{n}}{k_{j}^{n}}\right]_{j=1}^{m}\right\rangle
$$

where

$$
\begin{aligned}
& 0 \leq\left\langle\left[\frac{l_{j}^{p}}{k_{j}^{p}}, \frac{l_{j}^{n}}{k_{j}^{n}}\right]_{j=1}^{m}\right\rangle \leq\langle[2,2],[2,2], \cdots,[2,2]\rangle, \\
& \chi\left(N_{1}\right)=\left\langle\left[\frac{c_{j}^{p}}{d_{j}^{p}}, \frac{c_{j}^{n}}{d_{j}^{n}}\right]_{j=1}^{m}\right\rangle \leq\left\langle\left[\frac{l_{j}^{p}}{k_{j}^{p}}, \frac{l_{j}^{n}}{k_{j}^{n}}\right]_{j=1}^{m}\right\rangle \\
& \chi\left(N_{2}\right)=\left\langle\left[\frac{e_{j}^{p}}{f_{j}^{p}}, \frac{e_{j}^{n}}{f_{j}^{n}}\right]_{j=1}^{m}\right\rangle \leq\left\langle\left[\frac{l_{j}^{p}}{k_{j}^{p}}, \frac{l_{j}^{n}}{k_{j}^{n}}\right]_{j=1}^{m}\right\rangle
\end{aligned}
$$

Thus $c_{j}^{p} k_{j}^{p}+e_{j}^{p} k_{j}^{p} \leq d_{j}^{p} l_{j}^{p}+f_{j}^{p} l_{j}^{p}, c_{j}^{n} k_{j}^{n}+e_{j}^{n} k_{j}^{n} \leq d_{j}^{n} l_{j}^{n}+f_{j}^{n} l_{j}^{n}$ for all $j=1,2, \cdots, m$. Hence,

$$
\begin{aligned}
\chi(N) \leq & \left\langle\left[\frac{c_{j}^{p}+e_{j}^{p}}{d_{j}^{p}+f_{j}^{p}}, \frac{c_{j}^{n}+e_{j}^{n}}{d_{j}^{n}+f_{j}^{n}}\right]_{j=1}^{m}\right\rangle \leq\left\langle\left[\frac{l_{j}^{p}}{k_{j}^{p}}, \frac{l_{j}^{n}}{k_{j}^{n}}\right]_{j=1}^{m}\right\rangle \\
& =\chi\left(G_{1} \cap G_{2}\right) .
\end{aligned}
$$

Thus, $\chi(N) \leq \chi\left(G_{1} \cap G_{2}\right)$ for any subgraph N of $G_{1} \cap G_{2}$. Therefore, $G_{1} \cap G_{2}$ is balanced.

5. Conclusion

In this article, density and balanced m-BPFGs are defined. We studied the properties on selfcomplementary and density of an m-BPFG. We will extend our work to study the properties of morphism between two m-BPFGs and m - bipolar fuzzy line and intersection graphs.

References

${ }^{[1]}$ M. Akram, Bipolar fuzzy graphs, Information Science, 181(2011), 5548-5564.
${ }^{\text {[2] S. Bera and M. Pal M, Certain types of m-polar interval- }}$ valued fuzzy graph, Journal of intelligent \& systems.
${ }^{[3]}$ J. Chen, S. Li, S. Ma and X. Wang, m-polar fuzzy sets: an extension of bipolar fuzzy Sets, Hindwai Publishing Corporation, The Scientific World Journal, (2014), 1-8.
${ }^{\text {[4] }}$ G. Ghorai and M. Pal, On some operations and density of m-polar fuzzy graphs, Pac. Sci. Rev. A Nath. Sci. Eng, 17(2015), 14-22.
[5] G. Ghorai and M. Pal, Some operations of m-polar fuzzy graphs, Pac. Sci. Rev. A Nath. Sci. Eng, 18(2016), 38-46.
[6] G. Ghorai and M. Pal, Some isomorphic properties of m-polar fuzzy graphs with Applications, Springer International Publishing, 5(2016), 2104-2125.
${ }^{[7]}$ A. Kaufmann, Introduction to the theory of fuzzy Subsets, Academic Press, New York, 1(1975) 402-403.
[8] A. Rosenfeld, Fuzzy Graphs, Fuzzy sets and their Application, Academic Press, New York, (1975), 77-95.
${ }^{[9]}$ Ch. Ramprasad, P. L. N. Varma, S. Satyanarayana and N. Srinivasarao, Regular product m-polar fuzzy graphs and product m-polar fuzzy line graphs, Ponte, 73(2017), 264-282.
${ }^{[10]}$ H. Rashmanlou, S. Samanta, M. Pal and A. R. Borzooei, Bipolar fuzzy graphs with categorical Properties, International Journal of Computational Intelligence, Systems, 8(2015), 808-818.
${ }^{[11]}$ L. A. Zadeh, Fuzzy sets, Inf. Control, 13(1965), 338-353.
${ }^{[12]}$ W. R. Zhang, Bipolar fuzzy sets and relations: a computational framework for cognitive modeling and multi agent decision analysis, Proceedings of IEEE Conf, (1994), 305-309.
[13] W. R. Zhang, Bipolar fuzzy sets, Proceedings of FUZZYIEEE Conf., (1998), 835-840.

ISSN(P):2319-3786
Malaya Journal of Matematik
ISSN(O):2321-5666

