

https://doi.org/10.26637/MJM0901/0102

On (5, k_1)–regular and totally (5, k_1) regular fuzzy grid

M. Vijaya^{1*} and S. Anitha²

Abstract

In 1965, Loft A. Zadeh led the helm of a fuzzy set of a crew as a skill for signifying the marvels of insecurity in genuine realm state of doings. Nagoor Gani and Radha hosted fixed fuzzy grids, total degree and totally fixed fuzzy grids. Alison Northup willful some stuffs on $(5, k_1)$ – regular graphs in her free view. They lead $(r, 5, k_1)$ – regular graphs and willful some stuffs on $(r, 5, k_1)$ – regular graphs. Throughout this broadsheet, we have a trend to shape d_5 – degree and total degree of a peak in fuzzy grids. Any we have a trend to study $(5, k_1)$ – regularity of fuzzy grids and also the relation between $(5, k_1)$ – regularity and totally (5, 1) – regularity. Conjointly we have a trend to learning $(5, k_1)$ – regularity on trial on six peaks and cycle $c_n (n \ge 5$ with some exact association tasks.

Keywords

 d_5 – degree and total d_5 - degree of a vertex in fuzzy grids, (5, k_1) – regular fuzzy grids, totally (5, k_1) – regular fuzzy grids.

^{1,2} Department of Mathematics, Marudupandiyar College[Affiliated to Bharathidasan University, Tiruchirappalli-620024, Tamil Nadu, India.], Thanjavur-613403, Tamil Nadu, India.

*Corresponding author: ¹ mathvijaya23@gmail.com; ² anithasathish8691@gmail.com

Article History: Received 24 November 2020; Accepted 09 January 2021

©2021 MJM.

Contents

1	Introduction
2	Preliminaries
3	d ₅ -degree of a vertex in fuzzy graphs 599
4	$(5, k_1)$ - regular and totally $(5, k_1)$ – regular graphs600
5	5, k ₁)-regular fuzzy graphs on a path on 6 vertices with some specific membership Functions601
6	(5, k ₁) Regularity on a cycle with some specific mem- bership functions
7	Conclusion
	References

1. Introduction

In 1965, Loft A. Zadeh led the helm of a fuzzy set of a crew as a skill for signifying the marvels of insecurity in genuine realm state of doings. Nagoor Gani and Radha hosted fixed fuzzy grids, total degree and totally fixed fuzzy grids. Alison Northup willful some stuffs on $(5, k_1)$ – regular graphs in her free view. They lead $(r, 5, k_1)$ – regular graphs and willful some stuffs on $(r, 5, k_1)$ – regular graphs. Throughout this broadsheet, we have a trend to shape d_5 – degree and total degree of a peak in fuzzy grids. Any we have a trend to study $(5, k_1)$ – predictability and totally $(5, k_1)$ – regularity of fuzzy grids and also the relation between $(5, k_1)$ – regularity and totally $(5, k_1)$ – regularity. Conjointly we have a trend to learning $(5, k_1)$ – regularity on trial on six peaks and c_n with some exact association tasks.

2. Preliminaries

Definition 2.1. Grid G_1 , the d_5 -degree of a peak V in G_1 , meant by $d_5(V)$ means number of peaks at a space five rapt as of V.

Definition 2.2. A drid G_1 is alleged to be $(5,k_1)$ regular $(d_5$ -regular) if $d_5(V) = k_1$, for all V in G_1 . We obverse that $(5,k_1)$ regular graph and semi-regular graphs and d_5 -regular graphs are the identical.

Definition 2.3. *The gift of connectedness between two peaks u and v is*

$$\mu^{\infty}(uv) = \sup \{\mu^{k_1}(uv) | k = 1, 2, ... \}$$

$$\mu(uv) = \sup \{\mu(uu_1) \land \mu(u_1u_2) \land ... \land \mu(u_{k_1-1}v) |$$

$$u, u_1, u_2, ..., u_{k_1-1} \in V$$

may be a path connecting u and v of length k_1 }

Definition 2.4. Let $G: (\sigma, \mu)$ be a fuzzy grid on $G_1^*: (V, E)$. If $d(v) = k_1$ for all $v \in V$, then G_1 is alleged to be regular fuzzy graph of degree k_1 . **Definition 2.5.** Let $G_1 : (\sigma, \mu)$ be a fuzzy grid on $G_1^* : (V, E)$. The total degree of a vertex u is defined as

$$td(u) = \Sigma \mu(uv) + \sigma(u)$$

= $d(u) + \sigma(u), u, v \in E$

If each vertex of G_1 has the same total degree k_1 , then G_1 is said to be totally regular fuzzy graph of degree k_1 or k_1 -totally regular fuzzy graph.

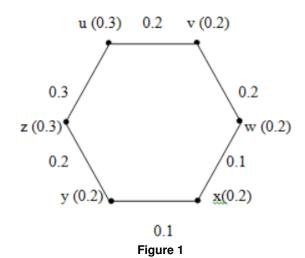
3. d₅-degree of a vertex in fuzzy graphs

Definition 3.1. Let $G_1 : (\sigma, \mu)$ be a fuzzy grid. The d_5 -degree of a vertex u in G_1 is $d_5(u) = \Sigma \mu^5(uv)$, where $\sup\{\mu(uu_1) \land \mu(u_1u_2) \land \mu(u_2u_3) \land \mu(u_3u_4) \land \mu(u_4u_5)\}$ Also $\mu(uv) = 0$ for u, v not in E.

The min d_5 -degree of G is $\delta_5(G1) = \land \{d_5(v) : v \in V\}$ The max d_5 -degree of G is $\Delta_5(G1) = \lor \{d_5(v) : v \in V\}$

Example 3.2. Consider G_1^* : (V, E) where $V = \{u, v, w, x, y, z\}$ and $E = \{uv, vw, wx, xy, yz, zu\}$ Define G_1 : (σ, μ) by

 $\sigma(u) = 0.3, \ \sigma(v) = 0.2, \ \sigma(w) = 0.2, \ \sigma(x) = 0.2, \ \sigma(y) = 0.2, \ \sigma(z) = 0.3, \ \mu(uv) = 0.2, \ \mu(vw) = 0.2, \ \mu(wx) = 0.1, \ \mu(xy) = 0.1, \ \mu(yz) = 0.2, \ \mu(zu) = 0.3$



$$\begin{split} d_5(u) = & \{0.2 \land 0.2 \land 0.1 \land 0.1 \land 0.2\} \\ &+ \{0.3 \land 0.2 \land 0.1 \land 0.1 \land 0.2\} \\ = & \{0.1 + 0.1\} = 0.2 \end{split}$$

$$d_5(v) = & \{0.2 \land 0.1 \land 0.1 \land 0.2 \land 0.3\} \\ &+ \{0.2 \land 0.3 \land 0.2 \land 0.1 \land 0.1\} \\ = & \{0.1 + 0.1\} = 0.2 \end{split}$$

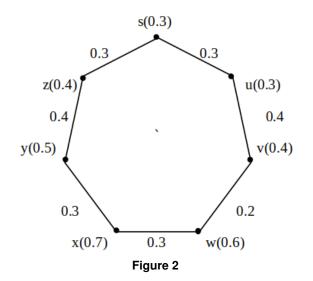
$$d_5(w) = & \{0.1 \land 0.1 \land 0.2 \land 0.3 \land 0.2\} \\ &+ \{0.2 \land 0.2 \land 0.3 \land 0.2 \land 0.1\} \\ = & \{0.1 + 0.1\} = 0.2 \end{split}$$

$$d_5(x) = \{0.1 \land 0.2 \land 0.3 \land 0.2 \land 0.2\} \\ + \{0.1 \land 0.2 \land 0.2 \land 0.3 \land 0.2\} \\ = \{0.1 + 0.1\} = 0.2$$

$$d_5(y) = \{0.2 \land 0.3 \land 0.2 \land 0.2 \land 0.1\} \\ + \{0.1 \land 0.1 \land 0.2 \land 0.2 \land 0.3\} \\ = \{0.1 + 0.1\} = 0.2$$

$$d_5(z) = \{0.3 \land 0.2 \land 0.2 \land 0.1 \land 0.1\} \\ + \{0.2 \land 0.1 \land 0.1 \land 0.2 \land 0.2\} \\ = \{0.1 + 0.1\} = 0.2$$

Example 3.3. Consider G_1^* : (V, E) where $V = \{s, u, v, w, x, y, z\}$ and $E = \{su, uv, vw, wx, xy, yz, zs\}$ Define $G_1 : (\sigma, \mu)$ by $\sigma(s) = 0.3, \sigma(u) = 0.3, \sigma(v) = 0.4, \sigma(w) = 0.6, \sigma(x) =$ 0.7, $\sigma(y) = 0.5, \sigma(z) = 0.4, \mu(su) = 0.3, \mu(uv) = 0.4, \mu(vw) =$ 0.2, $\mu(wx) = 0.3, \mu(xy) = 0.3, \mu(yz) = 0.4, \mu(zs) = 0.3$



 $d_5(s) = sup\{0.3 \land 0.4 \land 0.2 \land 0.3 \land 0.3, \\ 0.3 \land 0.4 \land 0.3 \land 0.3 \land 0.2\} \\ = sup\{0.2, 0.2\} = 0.2$

$$d_5(u) = sup\{0.4 \land 0.2 \land 0.3 \land 0.3 \land 0.4, \\ 0.3 \land 0.3 \land 0.4 \land 0.3 \land 0.3 \}$$
$$= sup\{0.2, 0.3\} = 0.3$$

 $d_5(v) = sup\{0.2 \land 0.3 \land 0.3 \land 0.4 \land 0.3, \\ 0.4 \land 0.3 \land 0.3 \land 0.4 \land 0.3\} \\ = sup\{0.2, 0.3\} = 0.3$

$$d_5(w) = sup\{0.3 \land 0.3 \land 0.4 \land 0.3 \land 0.3, \\ 0.2 \land 0.4 \land 0.3 \land 0.3 \land 0.4\} \\ = sup\{0.3, 0.2\} = 0.3$$

$$d_5(x) = sup\{0.3 \land 0.4 \land 0.3 \land 0.3 \land 0.4 \land 0.3 \land 0.4 \land 0.3 \land 0.4 \land 0.3 \land 0.3 \land 0.4 \land 0.3 \land 0.3 \}$$
$$= sup\{0.3, 0.2\} = 0.3$$

$$d_5(y) = sup\{0.4 \land 0.3 \land 0.3 \land 0.4 \land 0.2, \\ 0.3 \land 0.3 \land 0.2 \land 0.4 \land 0.3\} \\ = sup\{0.2, 0.2\} = 0.2$$

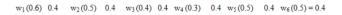
$$d_5(z) = sup\{0.3 \land 0.3 \land 0.4 \land 0.2 \land 0.3$$
$$0.4 \land 0.3 \land 0.3 \land 0.2 \land 0.4\}$$
$$= sup\{0.2, 0.2\} = 0.2$$

4. (5, k₁) - regular and totally (5, k₁) – regular graphs

Definition 4.1. Let $G: (\sigma, \mu)$ be a fuzzy grid on $G_1^*: (V, E)$. If $d_5 = k_1$ for all $v \in V$, then G is so-called to be $(5, k_1)$ – regular fuzzy graph.

Example 4.2. Reflect G_1^* : (V, E) anywhere $V = \{w_1, w_2, w_3, w_4, w_5, w_6\}$ and $E = \{w_1w_2, w_2w_3, w_3w_4, w_4w_5, w_5w_6\}$. Define $G_1: (\sigma, \mu)$ by

 $\sigma(w_1) = 0.6, \ \sigma(w_2) = 0.5, \ \sigma(w_3) = 0.4, \ \sigma(w_4) = 0.3,$ $\sigma(w_5) = 0.5, \ \sigma(w_6) = 0.6 \ and \ \mu(w_1w_2) = 0.4, \ \mu(w_2w_3) = 0.4, \ \mu(w_3w_4) = 0.4, \ \mu(w_4w_5) = 0.4, \ \mu(w_5w_6) = 0.4.$



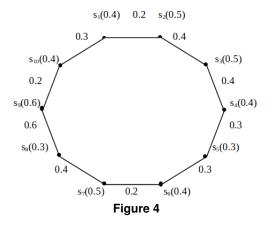
Here $d_5(w_1) = 0.4$, $d_5(w_2) = 0.4$, $d_5(w_3) = 0.4$, $d_5(w_4) = 0.4$, $d_5(w_5) = 0.4$ and $d_5(w_6) = 0.4$. This graph could be a (5, 0.4) - regular fuzzy graph.

Definition 4.3. Let $G : (\sigma, \mu)$ be a fuzzy grid on $G_1^* : (V, E)$. The entire d_5 degree of a vertex $u \in V$ is defined as

$$d_5(u) = \Sigma \mu^5(uv) + \sigma(u)$$
$$= d_5(u) + \sigma(u)$$

Definition 4.4. If all peak of G_1 has the same total d_5 -degree k_1 , then G_1 is sued to be totally $(5,k_1)$ - regular fuzzy grid.

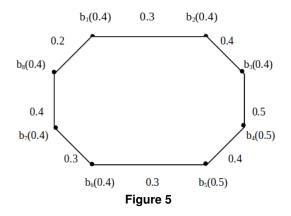
Example 4.5. A $(5,k_1)$ – regular fuzzy grid needn't be a $(5,k_1)$ – totally regular fuzzy graph. Reflect $G_1^* : (V,E)$ anywhere $V = \{s_1, s_2, s_3, s_4, s_5, s_6, s_7, s_8, s_9, s_{10}\}$ and $E = \{s_1s_2, s_2s_3, s_3s_4, s_4s_5, s_5s_6, s_6s_7, s_7s_8, s_8s_9, s_9s_10, s_{10}s_1\}$.



Here, $d_5(s_1) = 0.4$, $d_5(s_2) = 0.4$, $d_5(s_3) = 0.4$, $d_5(s_4) = 0.4$, $d_5(s_5) = 0.4$, $d_5(s_6) = 0.4$, $d_5(s_7) = 0.4$, $d_5(s_8) = 0.4$, $d_5(s_9) = 0.4$, $d_5(s_{10}) = 0.4$ and $td_5(s_1) = 0.8$, $td_5(s_2) = 0.9$, $td_5(s_3) = 0.9$, $td_5(s_4) = 0.8$, $td_5(s_5) = 0.7$, $td_5(s_6) = 0.8$, $td_5(s_7) = 0.9$, $td_5(s_8) = 0.7$, $td_5(s_9) = 1.0$, $td_5(s_{10}) = 0.8$

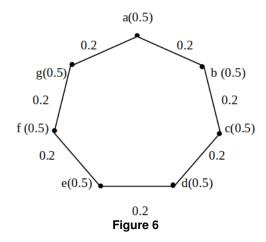
Each vertex has same d_5 -degree 0.4. So G_1 is (5, 0.4) regular fuzzy grid. But G_1 isn't a totally $(5,k_1)$ regular fuzzy grid.

Example 4.6. An exact $(5,k_1)$ regular fuzzy grid needn't be a $(5,k_1)$ regular fuzzy grid. Reflect $G_1^* : (V,E)$ anywhere $V = \{b_1, b_2, b_3, b_4, b_5, b_6, b_7, b_8\}$ and $E = \{b_1b_2, b_2b_3, b_3b_4, b_4b_5, b_5b_6, b_6b_7, b_7b_8, b_8b_1\}.$



Here $d_5(b_1) = 0.5$, $d_5(b_2) = 0.5$, $d_5(b_3) = 0.5$, $d_5(b_4) = 0.4$, $d_5(b_5) = 0.4$, $d_5(b_6) = 0.5$, $d_5(b_7) = 0.5$, $d_5(b_8) = 0.5$ and $td_5(b_1) = 0.9$, $td_5(b_2) = 0.9$, $td_5(b_3) = 0.9$, $td_5(b_4) = 0.9$, $td_5(b_5) = 0.9$, $td_5(b_6) = 0.9$, $td_5(b_7) = 0.9$, $td_5(b_8) = 0.9$. Each vertex has the identical totally d_5 - degree 0.9. So G_1 is totally (5, 0.9) – regular fuzzy grid. But G_1 is not $(5, k_1)$ regular fuzzy grid.

Example 4.7. $A(5,k_1)$ – regular fuzzy grid which is totally $(5,k_1)$ regular fuzzy grid. Reflect G_1^* : (V,E) anywhere $V = \{a,b,c,d,e,f,g\}$ and $E = \{ab,bc,cd,de,ef,fg,ga\}$.



Here $d_5(a) = 0.2$, $d_5(b) = 0.2$, $d_5(c) = 0.2$, $d_5(d) = 0.2$, $d_5(e) = 0.2$, $d_5(f) = 0.2$, $d_5(g) = 0.2$ and $td_5(a) = 0.7$, $td_5(b) = 0.7$, $td_5(c) = 0.7$, $td_5(d) = 0.7$, $td_5(e) = 0.7$, $td_5(f) = 0.7$, $td_5(g) = 0.7$.

Each vertex has the identical d_5 – degree 0.2. So G_1 may be a (5, 0.2) regular fuzzy graph. Each vertex has the identical total d_5 – degree 0.8. So G_1 could be a totally (5, 0.7) regular fuzzy graph.

Theorem 4.8. Let $G : (\sigma, \mu)$ be a fuzzy grid on $G_1^* : (V, E)$. Then $\sigma(u) = c_1$, for all $u \in V$ if and as long as the later after illnesses are the same.

- 1. $G_1: (\sigma, \mu)$ is a $(5, k_1)$ regular fuzzy grid.
- 2. $G_1: (\sigma, \mu)$ may be a totally $(5, k_1 + c_1)$ regular fuzzy grid.

Proof. Expect that $\sigma(u) = c_1$, for all $u \in V$. Adopt that G_1 : (σ, μ) is a $(5, k_1)$ – regular fuzzy grid. Then $d_5(u) = k_1$, for all $u \in V$. Hence, $td_5(u) = d_5(u) + \sigma(u)$ for all $u \in V$. Therefore, $td_5(u) = k_1 + c_1$ for all $u \in V$. Therefore, $G_1 : (\sigma, \mu)$ could be a totally $(5, k_1 + c_1)$ – regular fuzzy grid. Thus $1 \Rightarrow 2$ is proved.

Suppose G_1 : (σ, μ) is a totally $(5, k_1 + c_1)$ – regular fuzzy grid.

 $\Rightarrow td_5(u) = k_1 + c_1 \text{ for all } u \in V$ $\Rightarrow d_5(u) + \sigma(u) = k_1 + c_1 \text{ for all } u \in V$ $\Rightarrow d_5(u) + c_1 = k_1 + c_1 \text{ for all } u \in V$ $\Rightarrow d_5(u) = k_1 \text{ for all } u \in V$

Therefore, $G_1: (\sigma, \mu)$ could be a $(5, k_1)$ – regular fuzzy grids. Thus $2 \Rightarrow 1$ is proved. Hence (1) & (2) are equivalent. Equally adopt that (1) & (2) are same. Let $G_1: (\sigma, \mu)$ could be a totally $(5, k_1 + c_1)$ – regular fuzzy grid and $(5, k_1)$ – regular fuzzy grid.

$$\Rightarrow td_5(u) = k_1 + c_1 \text{ and } d_5(u) = k_1 \text{ for all } u \in V$$

$$\Rightarrow d_5(u) + \sigma(u) = k_1 + c_1 \text{ and } d_5(u) = k_1 \text{ for all } u \in V$$

$$\Rightarrow k_1 + \sigma(u) = k_1 + c_1 \text{ for all } u \in V$$

$$\Rightarrow \sigma(u) = c_1 \text{ for all } u \in V$$

Hence, $\sigma(u) = c_1$ for all $u \in V$

5. 5, k₁)-regular fuzzy graphs on a path on 6 vertices with some specific membership Functions

Throughout this segment $(5, k_1)$ – regularity and totally $(5, k_1)$ – regularity on fuzzy graph whose underlying crisp graph may be a path on 6 apexes is planned with some exact affiliation tasks.

Theorem 5.1. Tenancy $G: (\sigma, \mu)$ be a fuzzy grid stated $G_1^*: (V, E)$ could be a trail on six apexes. Then, $G: (\sigma, \mu)$ is a $(5, k_1)$ - regular fuzzy grid if $\mu(uv) = k_1$ for all $uv \in V$.

Proof. Suppose that could be a constant function say $\mu(uv) = k_1$ for all $uv \in V$, then $d_5(v) = k_1$, for all $v \in V$. Hence, G_1 is a $(5,k_1)$ regular fuzzy graph.

Example 5.2. Cogitate a fuzzy grid $G : (\sigma, \mu)$ such that $G_1^* : (V, E)$ may be a trail on six peaks.

Here $d_5(a_1) = 0.4$, $d_5(a_2) = 0.4$, $d_5(a_3) = 0.4$, $d_5(a_4) = 0.4$, $d_5(a_5) = 0.4$ and $d_5(a_6) = 0.4$. So G_1 is (5, 0.4) – regular. But μ isn't a relentless task.

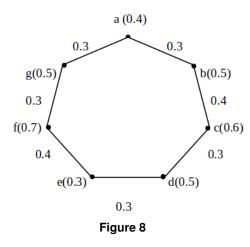
6. (5, k₁) Regularity on a cycle with some specific membership functions

During this section, $(5,k_1)$ - regularity on cycle C_n is studied with some specific membership functions.

Theorem 6.1. Let $G_1 : (\sigma, \mu)$ be a fuzzy graph such $G_1 : (V, E)$ is phase of size ≥ 6 . If μ could be a perpetual task, then G_1 could be a $(5, k_1)$ – regular fuzzy grid where $k_1 = 2\mu(uv)$.

Proof. Expect that, μ is perpetual task say $\mu(uv) = c_1$ for all $uv \in E$, then $d_5(v) = 2c_1$. Hence G_1 stands $(5, 2c_1)$ - regular fuzzy grid.

Remark 6.2. As a model muse $G_1 : (\sigma, \mu)$ a fuzzy grid listed $G_1 : (V, E)$ is an odd set of size seven. Anywhere $V = \{a, b, c, d, e, f, g\}$ and $E = \{ab, bc, cd, de, ef, fg, ga\}$. Define $G_1 : (\sigma, \mu)$ by $\sigma(a) = 0.5, \sigma(b) = 0.5, \sigma(c) = 0.6, \sigma(d) = 0.5, \sigma(e) =$ $0.3, \sigma(f) = 0.7, \sigma(g) = 0.5, \mu(ab) = 0.3, \mu(bc) = 0.4, \mu(cd) =$ $0.3, \mu(de) = 0.3, \mu(ef) = 0.4, \mu(fg) = 0.3, \mu(ga) = 0.3$



Here, $d_5(a) = 0.6$, $d_5(b) = 0.6$, $d_5(c) = 0.6$, $d_5(d) = 0.6$, $d_5(e) = 0.6$, $d_5(f) = 0.6$ and $d_5(g) = 0.6$. So G_1 could be a (5, 0.6) - regular fuzzy grid. But μ isn't a harsh task.

Theorem 6.3. Let $G_1 : (\sigma, \mu)$ a fuzzy grid listed $G_1 : (V, E)$ is a superb phase. If the limits have the same affiliation prices, then G may be a $(5, k_1)$ – regular fuzzy grid.

Proof. If the alternate edges have the identical membership values, then

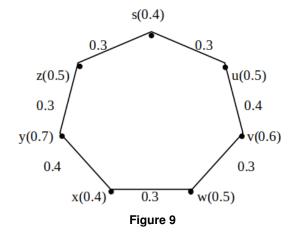
$$\mu(e_i) = \begin{cases} c_1 & \text{if } i \text{ is odd} \\ c_2 & \text{if } i \text{ is even} \end{cases}$$

If $c_1 = c_2$, then μ could be a continual task. So G_1 could be a $(5, 2c_1)$ – regular fuzzy grid.

If $c_1 < c_2$, then $d_5(v) = 2c_1$ for all $v \in V$. So G_1 could be a $(5, 2c_1)$ – regular fuzzy grid.

If $c_1 > c_2$, then $d_5(v) = 2c_2$ for all $v \in V$. So G_1 may be a $(5, 2c_1)$ – regular fuzzy grid.

Example 6.4. Reflect $G_1 : (\sigma, \mu)$ a fuzzy grid specified $G_1 : (V, E)$ is offbeat set of size



Here $d_5(s) = 0.6$, $d_5(u) = 0.6$, $d_5(v) = 0.6$, $d_5(w) = 0.6$, $d_5(x) = 0.6$, $d_5(y) = 0.6$ and $d_5(z) = 0.6$. So G_1 is (5, 0.6) – regular grid.

Theorem 6.5. Let $G1: (\sigma, \mu)$ be a fuzzy grid such $G_1^*: (V, E)$ is cycle of length ≥ 6 . Tenancy

$$\mu(e_i) = \begin{cases} c_1 & \text{if i is odd} \\ c_2 \ge c_1 & \text{if i is even} \end{cases}$$

Then G_1 *may be a* $(5, k_1)$ – *regular fuzzy graph.*

Proof. Tenancy

$$\mu(e_i) = \begin{cases} c_1 & \text{if } i \text{ is odd} \\ c_2 \ge c_1 & \text{if } i \text{ is even} \end{cases}$$

Case (i):

Tenancy $G1: (\sigma, \mu)$ be a fuzzy grid such $G_1^*: (V, E)$ is a fair phase of size ≤ 6 .

$$d_5(v_i) = \{c_1 \land c_2\} + \{c_2 \land c_1\} = c_1 + c_1 = 2c_1$$

for all $v_i \in V$. So G_1 capability is a $(5, 2c_1)$ – regular fuzzy grid.

Case (ii):

Let $G1: (\sigma, \mu)$ be a fuzzy grid such $G_1^*: (V, E)$ is an odd cycle of length ≥ 7 .

Let $e_1, e_2, e_3, \ldots, e_{2n+1}$ be perimeters of an odd cycle of G_1^* in this order.

$$d_{5}(v_{1}) = \{\mu(e_{1}) \land \mu(e_{2})\} + \{\mu(e_{2n}) \land \mu(e_{2n+1})\}$$

= { $c_{1} \land c_{2}$ } + { $c_{2} \land c_{1}$ } = $c_{1} + c_{1} = 2c_{1}$
 $d_{5}(v_{2}) = \{\mu(e_{1}) \land \mu(e_{2n+1})\} + \{\mu(e_{2}) \land \mu(e_{3})\}$
= { $c_{1} \land c_{2}$ } + { $c_{2} \land c_{1}$ } = $c_{1} + c_{1} = 2c_{1}$

for i = 3, 4, ..., 2n

$$d_{5}(v_{i}) = \{\mu(e_{i-1}) \land \mu(e_{i-2})\} + \{\mu(e_{i+1}) \land \mu(e_{i+2})\}$$

= { $c_{1} \land c_{2}$ } + { $c_{2} \land c_{1}$ } = $c_{1} + c_{1} = 2c_{1}$
 $d_{5}(v_{2n}) = \{\mu(e_{1}) \land \mu(e_{2n+1})\} + \{\mu(e_{2n}) \land \mu(e_{2n-1})\}$
= { $c_{1} \land c_{2}$ } + { $c_{2} \land c_{1}$ } = $c_{1} + c_{1} = 2c_{1}$
 $\therefore d_{5}(v_{i}) = 2c_{1}$ for all $v_{i} \in V$

So
$$G_1$$
 may be a $(5, 2c1)$ – regular fuzzy grid.

Remark 6.6. Tenancy $G1 : (\sigma, \mu)$ be a fuzzy grid such $G_1^* : (V, E)$ could be a phase of size ≥ 6 . Even if

$$\mu(e_i) = \begin{cases} c_1 & \text{if } i \text{ is odd} \\ c_2 \ge c_1 & \text{if } i \text{ is even} \end{cases}$$

 G_1 needn't be a very $(5,k_1)$ – regular fuzzy grid. Since if σ isn't a permanent task then G_1 exists not an exact $(5,k_1)$ – regular fuzzy grid.

7. Conclusion

In this paper, $(5,k_1)$ – regular fuzzy graphs and totally $(5,k_1)$ regular fuzzy graphs are compared through various examples. A necessary and sufficient condition under which they are equivalent is provided. Also we provide $(5,k_1)$ regular fuzzy graphs and totally $(5,k_1)$ – regular fuzzy graphs in which underlying crisp graphs are a path on six vertices, and a cycle of length ≥ 5 is studied with some specific membership function. The results discussed may be used to study about various fuzzy graphs.

References

- ^[1] A. Alison Northup, *Study of Semi-Regular Graphs*, Bachelors Thesis, Stetson University (2002).
- [2] G.S. Bloom, J.K. Kennedy and L.V. Quintas, Distance degree regular graphs, *The Theory and Applications of Graphs*, (1981), 95–108.
- ^[3] J.A. Bondy and U.S.R. Murty, *Graph Theory with Applications, MacMillan* London (1979).
- [4] P. Bhattachara, Some Remarks on Fuzzy Graphs, *Pattern Recognition Lett.*, 6(1987), 297–302.
- [5] A. Nagoor Gani and K. Radha, On Regular Fuzzy Graphs, *Journal of Physical* 12(2008), 33–40.
- [6] N.R. Santhi Maheswari and C. Sekar, (r,2,r(r-1))- regular graphs, *International Journal of Mathematics and Soft Computing* 2(2) (2012), 25–33.
- [7] N.R. Santhi Maheswari and C. Sekar, (r,2,r(r-1)(r-1))regular graphs, *International Journal of Mathematics and Combinatories* 4(2012), 25–33.
- [8] N.R. Santhi Maheswari and C. Sekar, On d₅ of a vertex in product of Graphs, *ICODIMA* Periyar Maniammai University, Thanjavur, (2013).
- [9] C. Sekar and N.R. Santhi Maheswari, On (2,k) regular and totally (2,k) – regular fuzzy Graphs, *International Journal of Mathematics and Soft Computing*, 4(2)(2014), 59–69.

********* ISSN(P):2319 – 3786 Malaya Journal of Matematik ISSN(O):2321 – 5666 *******

