

https://doi.org/10.26637/MJM0901/0115

©2021 MJM.

On fuzzy γ^* continuity with compare other forms of continuity in fuzzy topological space

M. Rajesh¹*

Abstract

The aim the paper is investigated the relationships between fuzzy γ^* continuity and other forms of continuity of fuzzy functions.

Keywords

Fuzzy γ open set, γ closed set, γ continuity, γ^* open set, γ^* closed set, fuzzy strong and normal space.

¹ P.G. and Research Department of Mathematics, Marudupandiyar College(Affiliated to Bharathidasan University, Tiruchirappalli), Thanjavur, Tamil Nadu, India.

***Corresponding author**: ¹ rajeshmathi91@gmail.com;

Article History: Received 14 January 2021; Accepted 28 February 2021

Contents

1	Introduction
2	Preliminaries
3	Relationships between the fuzzy γ^* continuous functions and other continuous functions
4	Conclusion
	References 664

1. Introduction

Joseph and Kwack [7] introduced (θ, s) - continuous functions in order to investigate *S*-closed due to Thompson [13]. A function *f* is called (θ, s) - continuous if the inverse image of each regular open set is closed.

Chang in [1] introduced fuzzy *S*-closed spaces in 1968. Fuzzy continuity is one of the main topics in fuzzy topology. Various authors introduce various types of fuzzy continuity. One of them is fuzzy γ -continuity. In 1999, Hanafy in [7] introduced the concept of fuzzy γ - continuity.

2. Preliminaries

A fuzzy set X is a function with domain X and values in I. That is an element of I^X . Let $A \in I^X$. The subset of X in which A assumes non-zero values is known as the support of A for every $x \in X$, A(x) is called the grade of membership of x in A.

Definition 2.1. A family $\tau \subseteq I^X$ of fuzzy sets is called a fuzzy topology for X if it satisfies the following three axioms.

 $\textit{1.} \ \bar{0}, \bar{1} \in \tau$

2. $\forall A, B \in \tau \Rightarrow A \land B \in \tau$

3. $\forall (A_j)_{j \in I} \in \tau \Rightarrow \lor_{j \in J} A_j \in \tau$

The pair (X, τ) is called a fuzzy topological space (or) fts for short. The elements of τ are called fuzzy open sets.

Definition 2.2. A fuzzy set A in a space X is called

- 1. Fuzzy γ -open if $A \leq (int (cl(A))) \lor (cl (intA))$ & fuzzy γ -closed if $(cl (intA)) \land (int (cl(A))) \leq A$.
- 2. Let (X, τ) be a fuzzy topological space then a fuzzy subset A of a fuzzy topological space (X, τ) is fuzzy γ^* open set if $A \leq cl$ (γ intA).
- 3. Fuzzy γ^* semi open if $int(A) \leq cl(\gamma int(A))$ and fuzzy γ^* semi closed if $cl(A) \geq int(\gamma cl(A))$.

3. Relationships between the fuzzy γ^* continuous functions and other continuous functions

Definition 3.1. A function $f : X \to Y$ is called fuzzy γ^* continuous if for each $x \in X$ and each fuzzy irregular closed set η of γ containing $f(x_{\varepsilon})$. There exists a fuzzy γ^* open set μ in X containing x_{ε} such that $int(f(\mu)) \leq \eta$.

Definition 3.2. A function $\mathscr{F} : X \to Y$ is called fuzzy (γ^*, S) open if the image of each fuzzy γ^* open set is fuzzy semi-open.

Theorem 3.3. If a function $f : X \to Y$ is fuzzy weakly γ^* continuous and fuzzy (γ^*, S) open then f is fuzzy almost γ^* continuous.

Proof. Let $x \in X$ and η be a fuzzy regular closed set containing $f(x_{\varepsilon})$. Since f is fuzzy weakly γ^* continuous. There exist a fuzzy γ^* open set μ in X containing x_{ε} such that $int(f(\mu)) \leq \eta$. Since f is fuzzy (γ^*, S) open $f(\mu)$ is a semi open set in Y and $f(\mu) \leq cl (int (f(\mu))) \leq \eta$. This shows that f is fuzzy almost γ^* continuous.

Definition 3.4. *Let X and Y be fuzzy topological spaces. A fuzzy function* $f : X \rightarrow Y$ *is said to be*

- 1. Fuzzy almost precontinuous [5] if the inverse image of each fuzzy regular open set in Y is fuzzy pre closed in X.
- 2. Fuzzy almost contra semi continuous [5] if the inverse image of each fuzzy regular open set in Y is fuzzy semiclosed in X.
- 3. Fuzzy almost continuous [5] if the inverse image of each regular open set in Y is fuzzy closed in X.
- 4. Fuzzy almost α-continuous [5] if the inverse image of each fuzzy regular open set in Y is fuzzy α-closed in X.
- 5. Fuzzy β -continuous [5] if the inverse image of each fuzzy regular open set in Y is fuzzy β -closed in X.

Example 3.5. Fuzzy almost α -continuity not be a fuzzy almost continuity.

Proof. Let *X* be non empty set and $C_{\alpha} : X \to [0,1]$ be defined as $C_{\alpha}(x) = a, \forall x \in X$, and $a \in [0,1]$. Then $\tau_1 = \{C_0, C_{6/10}, C_1\}$, $\tau_2 = \{C_0, C_{3/10}, C_1\}$ are fuzzy topologies and $(X, \tau_1), (X, \tau_2)$ are fuzzy topological space. The identity function $f : (X, \tau_1) \to (X, \tau_2)$ is fuzzy almost α -continuous but not fuzzy almost continuous. \Box

Definition 3.6. A fuzzy space is said to be fuzzy P_{Σ} if for any fuzzy open set μ on X and each $x_{\varepsilon} \in \mu$ there exists fuzzy regular closed set τ containing x_{ε} such that $x_{\varepsilon} \in \tau \leq \mu$.

Definition 3.7. A fuzzy function $f : X \to Y$ is said to be fuzzy γ^* continuous $f^{-1}(\alpha)$ is fuzzy γ^* - open in X for every fuzzy open set (α) in Y.

Theorem 3.8. Let $f : X \to Y$ be a fuzzy function. Then if f is fuzzy almost γ^* continuous and Y is fuzzy P_{Σ} , then f is fuzzy γ^* - continuous.

Proof. Let α be any fuzzy open set in *Y*. Since *Y* is fuzzy P_{Σ} , there exists a family ψ whose members are fuzzy irregular closed sets of *Y* such that $\alpha = V\{\tau : \tau \in \psi\}$. Since *f* is fuzzy almost γ^* continuous. $f^{-1}(\tau)$ is fuzzy γ^* - open in *X*, for each $\tau \in \psi$ and $f^{-1}(\alpha)$ is fuzzy open in *X*. Therefore, f^{-1} is almost γ^* continuous.

Definition 3.9. A Space is said to be fuzzy weakly P_{Σ} if any fuzzy regular open set α and each $x_{\varepsilon} \in \alpha$. There exists a fuzzy regular closed set τ containing x_{ε} such that $x_{\varepsilon} \in \tau \leq \mu$

Definition 3.10. A fuzzy function $f : X \to Y$ is said to be fuzzy almost γ^* continuous at $x_{\varepsilon} \in X$ if for each fuzzy open set η containing $f(x_{\varepsilon})$, there exists a fuzzy γ^* open set α containing x_{ε} such that $f(\alpha) \leq int (cl(\eta))$.

Theorem 3.11. Let $f: X \to Y$ be a fuzzy almost γ^* continuous function. If Y is fuzzy weakly P_{Σ} then f is fuzzy almost γ^* continuous.

Proof. Let μ be any fuzzy regular open set of *Y*. Since *Y* is fuzzy weakly P_{Σ} , there exists a family ψ whose are fuzzy irregular closed sets of *Y* such that $\mu \forall \{\tau : \tau \in \psi\}$. Since *f* is fuzzy almost γ^* continuous, $f^{-1}(\tau)$ is fuzzy γ^* - open in *X*, for each $\tau \in \psi$ and $f^{-1}(\mu)$ is fuzzy γ^* open in *X*. Here, *f* is fuzzy almost γ^* continuous.

Theorem 3.12. Let X, Y, Z be fuzzy topological spaces. Let $f: X \to Y$ and $g: Y \to Z$ be fuzzy functions. If f is fuzzy γ^* - irreducible and g is fuzzy almost γ^* continuous, $g \circ f: X \to Z$ is a fuzzy almost contra γ^* continuous function.

Proof. Let $\mu \leq Z$ be any fuzzy regular closed set. Since g is fuzzy almost γ^* continuous, $g^{-1}(\mu)$ is fuzzy γ^* open in Y. But f is fuzzy γ^* -irresolute. $\Rightarrow f^{-1}(g^{-1}(\mu))$ is fuzzy γ^* open in X. Thus $(g \circ f)^{-1}(mu) = f^{-1}(g^{-1}(\mu))$ is fuzzy γ^* open in X and this proves that $g \circ f$ is a fuzzy almost γ^* continuous function.

Definition 3.13. A function $f : X \to Y$ is called always fuzzy γ^* open if the image of each fuzzy γ^* open set is fuzzy γ^* open.

Theorem 3.14. If $f : X \to Y$ is a surjective always fuzzy γ^* open function and $g : Y \to Z$ is a fuzzy function such that $g \circ f : X \to Z$ is fuzzy almost γ^* continuous, then g is fuzzy γ^* continuous.

Proof. Let $\mu \leq Z$ be any fuzzy regular closed set. Since $g \circ f$ is fuzzy γ^* continuous, $(g \circ f)^{-1}(\mu)$ is fuzzy γ^* open in *X*. Therefore $f^{-1}(g^{-1}(\mu)) = (g \circ f)^{-1}(mu)$ is fuzzy γ^* open in *X*. *f* is always fuzzy γ^* open surjection implies $f(f^{-1}(g^{-1}(\mu))) = g^{-1}(\mu)$ is fuzzy γ^* open in *Y*. Thus *g* is fuzzy γ^* continuous.

Definition 3.15. A space X is said to be fuzzy γ^* compact if every γ^* open cover of X has a finite subcover.

Theorem 3.16. The fuzzy γ^* continuous image of a fuzzy γ^* compact space is fuzzy *S*-closed.

Proof. Suppose $f: X \to Y$ is a fuzzy γ^* continuous surjection. Let $\{\eta_i : i \in I\}$ be any fuzzy regular closed cover of *Y*. Since *f* is fuzzy γ^* continuous $\{f^{-1}(\eta_i) : i \in I\}$ is a fuzzy γ^* open cover of *X* and *X* being fuzzy γ^* compact. There exists a finite subset I_0 of *I* such that $X = \lor \{f^{-1}(\eta_i) : i \in I_0\}$ Since *f* is surjection, we have $Y = \lor \{(\eta_i) : i \in I_0\}$ and thus *Y* is fuzzy *S*-closed.

4. Conclusion

In general fuzzy topology Fuzzy - closed and - open sets are major role. Since its inception several weak forms of fuzzy γ^* - closed sets and γ^* - open sets have been introduced in general fuzzy topology. The present paper investigated in Relationships between the fuzzy γ^* continuous functions and other continuous functions. Some basic properties and examples are given.

References

- [1] C.L. Chang, Fuzzy topological spaces, J. Math. Anal. Appl., 24(1968), 182–190.
- E. Ekici, On the forms of continuity for fuzzy functions, Ann. Univ. Craiova. Math. Comp. Sci., 34(1) (2007), 58– 65.
- [3] E. Ekici, Generalization of some fuzzy functions, *Bull. Inst. Math. Acad. Sci.*, 33(3) (2005), 277–289.
- [4] A.S. Bin Shahna, On fuzzy strongly semicontinuity and fuzzy precontinuity, *Fuzzy sets and Systems*, 44(1991), 303–308.
- [5] K.K. Azad, On fuzzy semicontinuity, fuzzy almost continuity and fuzzy weakly continuity, *J.Math. Anal. Appl.*, 82(1981), 14–32.
- ^[6] I.M. Hanafy, Fuzzy γ -open sets and fuzzy γ -contiuity, *J*. *Fuzzy Math.*, 7(2) (1999), 419–430.
- [7] J.E. Joseph and M.H. Kwack, On S-closed spaces, Proc. Amer. Math.Soc., 80(1980), 341–348.
- [8] A.S. Mashhour, M.H. Ghaim and M.A. Fath Alla, On fuzzy non-continuous mappings, *Bull. Cal. Math. Soc.*, 78(1986), 57–69.
- [9] A. Mukherjee, On fuzzy almost completely semicontinuous functions, *Indian J. Pure Appl. Math.*, 31(5) (2000), 541–544.
- ^[10] M. Vijaya and M. Rajesh, γ^* semi open set and γ^* semi closed set in fuzzy topological spaces, *Journal of IJPAM*, 117(2017), 99–107.
- ^[11] M. Vijaya and M. Rajesh, γ^* semi interior and γ^* semi closure, *Aryabhatta journal of Mathematics and informatics*, 10(1) (2018), 147–150.
- ^[12] R. Usha Parameswari and K. Bageerathi, On fuzzy γ semi open sets and γ semi closed sets in fuzzy topological space, *International organisation of scientific and Research*, 7(1) (2003), 63–70.
- [13] T. Thompson, S-closed spaces, Proc. Amer. Math. Soc., 60(1976), 335–338.

********* ISSN(P):2319 – 3786 Malaya Journal of Matematik ISSN(O):2321 – 5666 ********

