Partial differentiability on graphs

M. Regees1 and T. Sajitha Kumari2*

Abstract
Operations play a vital role in the field of Mathematics. There are many operations by which new graphs are obtained from the old ones. In this paper we try to form a new graph from the old one through a new operation, partial differentiability. Let G be a graph of order n. Consider an arbitrary vertex v in G. We remove all edges which are adjacent to the vertex v. The resultant graph is denoted by $G_v^{(1)}$. This is called the partial differentiation of G with respect to the vertex v. Now we consider another vertex u in $G_v^{(1)}$ and remove all edges which are adjacent to u. The resultant graph is denoted by $G_u^{(2)}$. This is the partial derivative of $G_v^{(1)}$ with respect to u. The minimum of r such that $G^{(r)} \cong mK_1$, is called the order of partial differentiation, denoted by $r(G)$, where m is a positive integer. In this paper we introduced the partial differentiability of graphs.

Keywords
Graph, Differentiation, Partial differentiation.

AMS Subject Classification
05C78.

Contents

1. Introduction ... 99
2. Main Results ... 99
References .. 100

1. Introduction

Partial derivatives can be used to describe a wide variety of phenomena such as sound, heat, electrostatics, electrodynamics, fluid dynamics, elasticity, quantum mechanics etc. There has been a considerable effort to study differentiation on graphs. In \cite{1} introduced the differentiability of graphs. This motivated to study partial differentiation and its properties on graphs.

2. Main Results

Definition 2.1. Let G be a graph of order n. Consider an arbitrary vertex v in G. Remove all edges which are adjacent to the vertex v. The resultant graph is denoted by $G_v^{(1)}$. This is called the partial derivative of G with respect to v. Now consider another vertex u in $G_v^{(1)}$ and remove all edges which are adjacent to u. The resultant graph is denoted by $G_u^{(2)}$. This is the partial derivative of $G_v^{(1)}$ with respect to u.

The minimum of r such that $G^{(r)} \cong mK_1$, is called the order of partial differentiation; where m is a positive integer and it is denoted by $r(G)$.

Remark 2.2. 1. If G is an empty graph, then $r(G) = 0$.

2. All graphs are partial differentiable.

Example 2.3.
Definition 2.4. The adjacency matrix of a graph G with n vertices and no parallel edges is an n by n symmetric binary matrix $X = [x_{ij}]$, defined over the ring of integers such that

$$x_{ij} = \begin{cases} 1, & \text{if there is an edge between } i^{th} \text{ and } j^{th} \text{ vertices} \\ 0, & \text{if there is no edges between them} \end{cases}$$

Finding order of partial differentiation by adjacency matrix

Algorithm:

1. Start
2. Read an adjacency matrix, A and initialize $count = 0$
3. Find the row / column which has maximum number of entries 1.
4. If the maximum entries 1 in two or more column / row are same choose any one arbitrarily.
5. Remove that column and row
6. Set $count = count + 1$
7. Repeat steps 2, 3, 4 and 5 until we get matrix, A with all entries zero.
8. Order of partial differentiation is $count$.
9. Stop.

Example 2.5.

Theorem 2.6. For a complete graph, $K_n, n \geq 2$, $G^{(n-1)} \cong K_1$.

Proof. We prove this theorem by mathematical induction.
First we prove the theorem is true for $n = 2$.
If $n = 2$, there are two vertices say v_1 and v_2.
Differentiate G partially with respect to v_1 (or v_2). Then it remains v_2 (or v_1) only.

The theorem is true for $n = 2$.
By assumption, that the theorem is true for $n = m$.
Hence, for $K_m, G^{(m-1)} \cong K_1$
Now we prove the theorem is true for $n = m + 1$
Here G contains $m + 1$ vertices.
Let $v_1, v_2, v_3, \ldots, v_{m+1}$ be the vertices.
Differentiate G partially with respect to an arbitrary vertex v_i.
The resultant graph is K_m.
We know that, for $K_m, G^{(m-1)} \cong K_1$
Hence for $K_{m+1}, G^{(m+1-1)} \cong K_1$
i.e., $G^{(m)} \cong K_1$
i.e., $G^{(n-1)} \cong K_1$ (\because $n = m + 1$).

Proposition 2.7. For a connected graph G with n vertices, $1 \leq r(G) \leq n - 1$.

Proof. Let G be a connected graph with n vertices $v_1, v_2, v_3, \ldots, v_n$.
Let v_i be an arbitrary vertex which is adjacent all other vertices and there exist no other edges between the remaining vertices.
If we differentiate G partially with respect to v_i, we get $r(G) = 1$.
Again let each vertex of G be adjacent to all other vertices in G. Then by theorem $r(G) = n - 1$.
Hence we get $1 \leq r(G) \leq n - 1$.

100
References

ISSN(P):2319 – 3786
Malaya Journal of Matematik
ISSN(O):2321 – 5666
