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Irreducibility criterion for certain trinomials
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Abstract
In this article we study the irreducibility of polynomials of the form xn + ε1xm + pkε2, p being a prime number
and k ≥ 2. We will show that they are irreducible for m = 1. We have also provided the cyclotomic factors and
reducibility criterion for trinomials of the form xn +ε1xm +ε2, where εi ∈ {−1,+1}. This corrects few of the existing
results of W. Ljuggren’s on xn + ε1xm + ε2.

Keywords
Cyclotomic polynomials, irreducible polynomials, reciprocal polynomials.

AMS Subject Classification
11R09, 12D05,12E05.

1,2Department of Mathematics, Shiv Nadar University, Greater Noida-201314, India.
*Corresponding author: 1 bk140@snu.edu.in; 2satyanarayana.reddy@snu.edu.in
Article History: Received 24 March 2019; Accepted 09 May 2019 c©2019 MJM.

Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

2 Factorization of xn + ε1xm + ε2 . . . . . . . . . . . . . . . . . . . . . .117

3 Factorization of xn + ε1xm + pkε2 . . . . . . . . . . . . . . . . . . . 118

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

1. Introduction
E.S.Selmer [7] studied the irreducibility of trinomials of

the form xn±xm±1 over Q. He provided a complete solution
for m = 1. Later Ljunggren [4] extended Selmer’s result for
all m > 1 and proved for quadrimonials as well. A version of
his result for trinomials is the following.

Theorem 1.1. (Ljunggren) Let f (x) = xn + ε1xm + ε2 where
ε j ∈ {−1,+1}. Then f (x) has at most one irreducible non-
reciprocal factor and a reciprocal factor of f (x) if any is the
product cyclotomic polynomials.

Ljunggren provided the possible cyclotomic factors for
trinomials, but they seemed to be incorrect in certain cases.
For example, according to Theorem 3 of Ljunggren [4], the
polynomials x50− x4− 1 and x50 + x22− 1 are divisible by
x4 +x2 +1 but they are divisible by x4−x2 +1. Similarly if d
is even, d1 ≡ 5 (mod 6),d2 ≡ 1 (mod 6) and d3 is odd, then
xdd1 + xd − 1,xdd2 − x2d − 1 and x2d3 d − xd + 1 are divisible
by x2d +xd +1 but they are actually divisible by x2d−xd +1.

Based on the above examples, we revisited Ljunggren’s
work and corrected those errors. For similar studies and re-
lated work, the reader can look into [1, 4, 5, 7, 8].

Immediately the question appears about the reducibility
of polynomials of the form xn + ε1xm + ε2 p, p being a prime.
If p is an odd prime, then the polynomials are irreducible
directly follows from Proposition 1 of [6]. Recently, the
authors[3] have shown that xn + ε1xm +2ε2 has exactly one
irreducible non-reciprocal factor apart from its cyclotomic fac-
tors. The method used there doesn’t apply to the polynomials
xn + ε1xm + pkε2 with k ≥ 2. With a different approach, we
will prove that

Theorem 1.2. Suppose f (x) = xn + ε1x + ε2 pk be a poly-
nomial of degree n ≥ 2 with p being a prime number and
εi ∈ {−1,+1},k ≥ 2. Then f (x) is irreducible.

For arbitrary m there are, indeed, polynomials which are
reducible. For example,

x5− x2 +4 = (x2 + x+2)(x3− x2− x+2);

x5− x4 +9 = (x2−3x+3)(x3 +2x2 +3x+3).

More generally,

x3n + ε1x2n +4ε1 = (xn +2ε1)(x2n− ε1xn +2),

for every n ≥ 1. Although f (x) is reducible for m > 1, we
will show that f (x) cannot have more than k factors. More
precisely,

Theorem 1.3. Suppose p is a prime and f (x) = xn + ε1xm +
ε2 pk with εi ∈ {−1,+1} be a polynomial of degree n and k≥
2. Then f (x) is a product of atmost k distinct non-reciprocal
irreducible polynomials.
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The separability of such polynomials has also been con-
sidered there. Throughout the paper, we will consider the
reducibility over Q (and hence over Z) only. If n is a posi-
tive integer, we define e(n) as the largest even part of n, i.e.
n = 2an1 with n1 odd implies e(n) = 2a.

2. Factorization of xn + ε1xm + ε2

Let f (x)= xn+ε1xm+ε2 be a polynomial of degree n with
εi ∈ {−1,+1}. From Theorem 1.1 f (x) has a cyclotomic fac-
tor whenever it is reducible. To determine the reducibility
criterion of f (x), it is, therefore, sufficient to find the cyclo-
tomic factors of f (x). Before we start, we recall a few basic
properties of cyclotomic polynomials which will be useful
later.

Proposition 2.1. Suppose n is a positive integer and Φn(x)
be the nth cyclotomic polynomial.

(a) Let p be a prime. Then

Φpn(x) =

{
Φn(xp) if p|n
Φn(xp)/Φn(x) if p - n.

(b) Define Dm
n = {d ∈| (m,d) = mn}. Then

Φn(xm) = ∏
d∈Dm

n

Φd(x).

(c) If p is a prime and (p,n) = 1 then

∏
d|pγ n

Φd(x) =
γ

∏
i=0

∏
d|n

Φpid(x).

In particular,

xn +1 = x2n−1/xn−1 = ∏
d|2n,d-n

Φd(x) = ∏
d|n

Φ2d(x).

(d) If n,m are positive integers, then(
∏
d|n

Φd(x),∏
d|m

Φd(x)

)
= ∏

d|(n,m)

Φd(x).

Considering the elementary nature we omit the detailed
proof. One can look into Thangadurai [9] for the same.

The polynomial f (x) = xn + ε1xm + ε2 is reducible if and
only if ε2xn f (x−1) = xn + ε1ε2xn−m + ε2 is reducible. There-
fore, for a given n it is sufficient to consider the reducibility
of polynomials f (x) = xn + ε1xm + ε2 with n≥ 2m. Through-
out the section, we will consider m = 2a · 3b ·M,n− 2m =
2p ·3q ·N as the prime factorization of m and n−2m respec-
tively.

Theorem 2.2. Let f (x) = xn− xm− 1 be reducible. Then
q > b,e(m)> e(n−2m) and f (x) is divisible by Φ6(x(n,m)).

Proof. Since f (x) is reducible, from Theorem 1.1 f (x) has a
reciprocal factor. Consequently, there exits an α ∈ C, where
α 6=±1,0 such that both α and 1

α
are roots of f (x). That is

α
n−α

m−1 = 0 = α
n +α

n−m−1.

In other words, α is a root of the polynomial xn−2m +1. This
evenually implies f (x) is irreducible for n = 2m. So we need
to consider n > 2m for the remaining part. Since α satisfies
xn−2m+1 = 0 and xn−xm−1 = 0, it would satisfy x2m+xm+
1 = 0. In particular, α is a root of g(x) = gcd(xn−2m+1,x2m+
xm +1).

From Proposition 2.1, it can be seen that x2m + xm +1 =

∏
d∈Dm

3

Φd(x), where Dm
3 = {d ∈ |(m,d) = 3m}. If we consider

the prime factorizations of m and n−2m, then we have xn−2m+

1 =
q
∏
i=0

∏
d|N

Φ2p+13id(x) and

Φ3(xm) =
a

∏
i=0

∏
d|M

Φ2i3b+1d(x).

Let n be odd so that n−2m odd or equivalently p = 0. Hence

g(x) =

(
a

∏
i=0

∏
d|M

Φ2i3b+1d(x),
q

∏
i=0

∏
d|N

Φ2.3id(x)

)

=

(
∏
d|M

Φ2.3b+1d(x),
q

∏
i=0

∏
d|N

Φ2.3id(x)

)

=

 ∏
d|d1

φ2.3b+1d(x) , if q > b, where d1 = (N,M)

1 , otherwise.

If q ≥ b+ 1 then n = 2a+13bM + 3qN = 3bu3 where u3 odd
and 3 - u3.
Also, (n− 2m,m) = (n,m) = 3bd1 gives ∏

d|d1

φ2.3b+1d(x) =

∏
d|d1

φ6.3bd(x) = Φ6(x(n,m)).

On the other hand, if n is even then n− 2m is even and
p≥ 1. Then

g(x) =

(
a

∏
i=0

∏
d|M

Φ2i3b+1d(x),
q

∏
i=0

∏
d|N

Φ2p+1.3id(x)

)

=

 ∏
d|d2

Φ2p+1.3b+1d(x) , if a > p,q > b

1 , otherwise,

where d2 =(N,M). If a≥ p+1,q≥ b+1 then n= 2a+13bM+
2p3qN = 2p3bu4 where (u4,6) = 1.

Corollary 2.3. If n = 2a3b with a+b > 0 then xn−xm−1 is
irreducible for every m < n.

Since the proof for the remaining three families are almost
same, instead of duplicating we state them without proof. The
detailed proof can be carried out by using Proposition 2.1 and
Theorem 2.2.
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Theorem 2.4. Let f (x) = xn + ε1xm− ε1 be reducible with
ε1 ∈ {−1,+1}. Then f (x) is divisible by Φ6(x(n,m)) and the
following holds:

(a) ε1 = 1,e(m) = e(n−2m),q > b;

(b) ε1 =−1,e(m)< e(n−2m),q > b.

Theorem 2.5. Let f (x) = xn + xm + 1 be reducible. Then
f (x) is divisible by Φ3(x(n,m)) and either of the following
holds necessarily

(a) n = 2m,M > 1;

(b) n 6= 2m,q > b.

If we summarize all the results of this section, it fits per-
fectly within the below tables.

If n = 2m then xn±xm−1 are irreducible. And xn−xm+1=
Φ6(xm), xn + xm + 1 = Φ3(xm) are reducible or irre-
ducible according to Proposition 2.1(b).

If n 6= 2m then

1. If m is odd then xn− xm−1 is irreducible.

2. If m+n is odd then xn + xm−1 is irreducible.

3. If n is odd then xn− xm +1 is irreducible.

The following tables summarize the irreducibility of all poly-
nomials for n 6= 2m. Suppose m = 2a · 3b ·M, n− 2m = 2p ·
3q ·N. And F is the nontrivial reciprocal factor of xn±xm±1.

m n xn− xm−1 xn + xm−1
even odd reducible if q > b irreducible

F = Φ6(x(n,m))
even even reducible reducible

if q > b,a > p if a = p, q > b
F = Φ6(x(n,m)) F = Φ6(x(n,m))

odd even irreducible irreducible
odd odd irreducible same as

even-even

and

m n xn− xm +1 xn + xm +1
even odd irreducible reducible if q > b

F = Φ3(x(n,m))
even even reducible same as above

if p > a,q > b
F = Φ6(x(n,m))

odd even same as above same as above
odd odd irreducible same as above

3. Factorization of xn + ε1xm + pkε2

Suppose f (x) = xn + ε1xm + pkε2 be a polynomial of de-
gree n with εi ∈ {−1,+1},k ≥ 2. We will first prove the
separability of such polynomials using discriminant. It is
known that

Theorem 3.1. [2] The discriminant of the trinomial xn +
axm +b is

D =(−1)(
n
2)bm−1

[
nn/dbn−m/d

−(−1)n/d(n−m)n−m/dmm/dan/d
]d

where d = (n,m).

Theorem 3.2. Let p be a prime. The polynomial f (x) =
xn + ε1xm + pkε2 is separable over , εi ∈ {−1,+1}.

Proof. By Theorem 3.1, the discriminant of f (x) is

D f =(−1)(
n
2)(pk

ε2)
m−1

[
nn/d(pk

ε2)
n−m/d

−(−ε1)
n/d(n−m)n−m/dmm/d

]d (3.1)

with d = (n,m). Since f (x) is separable over Q if and only if
f (xd) is separable, it is sufficient to consider d = 1. f (x) has
multiple root if and only if D f = 0. Then from (3.1), we have

nn(pk
ε2)

n−m = (−ε1)
n(n−m)n−mmm

which is not possible as d = 1 and p being a prime.

Theorem 3.3. Let p be a prime and f (x) = xn + ε1xm + ε2 pk

be a polynomial of degree n with k ≥ 2. Then f (x) has all its
root on the region |z|> 1.

Proof. Let z1 be a root of f (x) with |z1| ≤ 1. Then f (z1) = 0
gives

pk
ε2 =−(zn

1 + ε1zm
1 ).

Taking modulus on both side gives pk = |zn
1 + ε1zm

1 | ≤ |z1|n +
|z1|m ≤ 2, which contradicts the fact that p is a prime number
and k ≥ 2. Hence all the roots of f (x) lies in the region
|z|> 1.

By using this theorem, we will prove Theorem 1.3.

Proof of Theorem 1.3: Suppose f (x) =
t

∏
i=1

fi(x) be the non-

trivial factorization of f (x), where each fi(x) is irreducible.
Since f (x) is a monic polynomial, we assume that each fi(x)
is monic. From Theorem 3.2 f (x) being separable, fi(x) 6=
f j(x) for i 6= j. By using Theorem 3.3, from | f (0)| = pk =
t

∏
i=1
| fi(0)|, we have | fi(0)| ≥ p. In other words, t ≤ k and

consequently they are non-reciprocal.
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Now we will prove the irreducibility of xn + ε1x+ ε2 pk

for every k ≥ 2.

Proof of Theorem 1.2: If f (x) = x2+ε1x+ pkε2 is reducible
then all of its roots are integers only, by Rational Root theo-
rem. But u(u+ ε1) =−ε2 pk and k ≥ 2 is not possible for any
integer u.

Suppose n≥ 3 and f (x) is reducible. Let f (x)= f1(x) f2(x)
be a non-trivial factorization of f (x) with deg( f1) = s. With-
out loss of generality, we assume that both f1(x), f2(x) are
monic polynomials. From Theorem 3.3 we have | fi(0)| ≥ p.
Since f1(0) f2(0) = pkε2, let | f1(0)|= pv and | f2(0)|= pk−v

for some v≥ 1. We consider the following two polynomials

g(x) = xs f1(x−1) f2(x) =
n

∑
i=0

bixi,say

and g̃(x) =
n
∑

i=0
bn−ixi. The way the polynomials has been

defined, we have f1(0) = bn and f2(0) = b0. Let bn = pvε ′2
with |ε ′2|= 1. Since g(x)g̃(x) = xn f (x) f (x−1), comparing the
coefficients of xn, we get

n−1

∑
i=1

b2
i = p2k− p2(k−v)− p2v +2.

Suppose there are r number of non-zero bi’s, say 0 < jr <
jr−1 < · · · < j1 < n such that b jl 6= 0. Then g(x) = bnxn +
b j1x j1 + · · ·+b jr x

jr +b0 and

g(x)g̃(x) = pk
ε2x2n+bnb jr x

2n− jr +b0b j1xn+ j1 + · · ·+ pk
ε2.

(3.2)

Whereas

f (x)xn f (x−1)= pk
ε2x2n+ε1x2n−1+ pk

ε1ε2xn+1+ · · ·+ pk
ε2.

(3.3)

Since n ≥ 3, the second largest term in (3.3) is x2n−1 and
has coefficient ε1. The second largest term in (3.2) is either
x2n− jr or xn+ j1 or both. That is either jr = 1 or j1 = n−1 or
n = jr + j1 = 1+(n−1) respectively. In all these cases, the
corresponding coefficient is divisible by p which is impossible.
Therefore f (x) has to be irreducible.
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