An \((\iota, \kappa)\)-fuzzy \(M\) closed and \((\iota, \kappa)\)-generalized fuzzy \(M\) closed sets in double fuzzy topological spaces

J. Sathiyanaraj\(^{1}\) *, A. Vadivel\(^{2}\) and O. Uma Maheshwari\(^{3}\)

Abstract
In double fuzzy topological spaces, \((\iota, \kappa)\)-fuzzy \(\theta\)-closed, \((\iota, \kappa)\)-fuzzy \(M\)-closed sets and \((\iota, \kappa)\)-generalized fuzzy \(M\)-closed sets are introduced. Also we study some of their properties.

Keywords
\((\iota, \kappa)\)-fuzzy \(\theta\)-closed, \((\iota, \kappa)\)-fuzzy \(M\)-closed sets, \((\iota, \kappa)\)-generalized fuzzy \(M\)-closed sets, \((\iota, \kappa)\)-generalized fuzzy \(M\)-interior, \((\iota, \kappa)\)-generalized fuzzy \(M\)-closure.

AMS Subject Classification
54A40, 45D05, 03E72.

1 Post Graduate and Research Department of Mathematics, Government Arts College (Autonomous), Karur - 639005, Tamil Nadu, India.
2 Post Graduate and Research Department of Mathematics, J. J. College of Arts and Science (Autonomous), Pudukkottai - 622422, Tamil Nadu, India.
3 Post Graduate and Research Department of Mathematics, J. J. College of Arts and Science (Autonomous), Pudukkottai - 622422, Tamil Nadu, India.

*Corresponding author: sjsathiyaa@gmail.com; avmaths@gmail.com; ard Uma@yahoo.com.sg.

Article History: Received 22 November 2018; Accepted 09 May 2019

Contents
1 Introduction and Preliminaries 284
2 An \((\iota, \kappa)\)-fuzzy \(M\) closed sets 285
3 An \((\iota, \kappa)\)-generalized fuzzy \(M\) closed sets 287

References .. 288

1. Introduction and Preliminaries

“Intuitionistic fuzzy sets and Intuitionistic fuzzy topological space” were initiated by Atanassov [1] in 1993 and Coker [2] in 1997 respectively. In 2005, Garcia and Rodabaugh [7] coined the term “double” instead of “intuitionistic”. In the past two decades many researchers [9–11, 16] did more applications on double fuzzy topological spaces. From 2011, El-Maghrabi and Al-Johany [3–6] introduced and studied some properties on \(M\)-open sets and maps in topological spaces. Recently these kind of sets were studied in Šostak’s Fuzzy topological spaces [14]. In this paper we introduce \((\iota, \kappa)\)-fuzzy \(\theta\)-closed, \((\iota, \kappa)\)-fuzzy \(M\)-closed sets, \((\iota, \kappa)\)-generalized fuzzy \(M\)-closed sets and study some of their properties in double fuzzy topological spaces.

\(X\) denotes a non-empty set, \(I = [0, 1], \ I_0 = (0, 1], \ I_1 = [0, 1), \ \emptyset(X) = 0, \ \emptyset(X) = 1, \ i \in I_0 \ & \ k \in I_1 \ \text{and always} \ t + k \leq 1, \ I^X \ \text{is a family of all fuzzy sets on} \ X. \ \text{In 200} \ \text{Samanta and Mondal[13] defined the double fuzzy topological space (briefly, dfts) denoted by} \ (X, \eta, \eta^*)\), also defined \((\iota, \kappa)\)-fuzzy open (resp. \((\iota, \kappa)\)-fuzzy closed) (briefly \((\iota, \kappa)\)-fo (resp. \((\iota, \kappa)\)-fc)) set if \(\eta(\gamma) \geq t \ \text{and} \ \eta^*(\gamma) \leq k, \ \text{(resp.} \ 1 - \gamma \ \text{is an} \ ((\iota, \kappa)\)-fo set.) The double fuzzy interior and double fuzzy closure operators [8] are defined from \(I^X \times I_0 \times I_1 \rightarrow I^X\) as follows

\[
I_{\eta, \eta^*}(\gamma, t, \kappa) = \bigvee \{v \in I^X | v \leq \gamma, \eta(v) \geq t, \eta^*(v) \leq k\},
\]

\[
C_{\eta, \eta^*}(\gamma, t, \kappa) = \bigwedge \{v \in I^X | v \geq \gamma, \eta(1 - v) \geq t, \eta^*(1 - v) \leq k\},
\]

\(\gamma \in I^X\), is called \((\iota, \kappa)\)-fuzzy regular open [12] (resp. \((\iota, \kappa)\)-fuzzy regular closed)(briefly \((\iota, \kappa)\)-fro (resp. \((\iota, \kappa)\)-frc)) set if \(\gamma = I_{\eta, \eta^*}(C_{\eta, \eta^*}(\gamma, t, \kappa), t, \kappa)\) (resp. \(1 - \gamma \ \text{is} \ ((\iota, \kappa)\)-fro set.) The operators \(\delta \theta \eta, \eta^*\) and \(\delta f \eta, \eta^*, \ \text{I}_0 \times I_0 \times I_1 \rightarrow I^X\) [11] as follows

\[
\delta I_{\eta, \eta^*}(\gamma, t, \kappa) = \bigvee \{v \in I^X | v \leq \gamma, v \ \text{is an} \ ((\iota, \kappa)\)-frf\},
\]

\[
\delta C_{\eta, \eta^*}(\gamma, t, \kappa) = \bigwedge \{v \in I^X | v \geq \gamma, v \ \text{is an} \ ((\iota, \kappa)\)-frf\}.
\]

A fuzzy set \(\gamma \in I^X\), is called \((\iota, \kappa)\)-fuzzy \(\delta\) pre open (resp. \((\iota, \kappa)\)-fuzzy \(e\) open, \((\iota, \kappa)\)-fuzzy \(\delta\) pre closed and \((\iota, \kappa)\)-fuzzy \(e\) closed) (briefly \((\iota, \kappa)\)-fpo (resp. \((\iota, \kappa)\)-feo, \((\iota, \kappa)\)-fpc and \((\iota, \kappa)\)-feo)) [11] set if \(\gamma \leq I_{\eta, \eta^*}(\delta \theta \eta, \eta^*, \gamma, t, \kappa)\) (resp. \(\gamma \leq C_{\eta, \eta^*}(\delta f \theta \eta, \eta^*, \gamma, t, \kappa)\) \(\text{and} \ 1 - \gamma \ \text{is} \ ((\iota, \kappa)\)-feo). The operators \(\delta PC_{\eta, \eta^*}, \delta P \theta \eta, \eta^*, \ e \theta \eta, \eta^*\) and \(\delta I_{\eta, \eta^*}\):
In $I^X \times I_0 \times I_1 \rightarrow I^X$ [11] defined as
\[\delta Pl_{\eta} \gamma t, k = \sqrt{\{ v \in I^X | v \leq \gamma, v \text{ is an } (t, k)-f \delta po \} } \]
\[\delta PC_{\eta} \gamma t, k = \sqrt{\{ v \in I^X | v \geq \gamma, v \text{ is an } (t, k)-f \delta pc \} } \]
el_{\eta} \gamma t, k = \sqrt{\{ v \in I^X | v \geq \gamma, v \text{ is an } (t, k)-f eo \} }
e_{\eta} \gamma t, k = \sqrt{\{ v \in I^X | v \geq \gamma, v \text{ is an } (t, k)-f ec \} }.
All other notations are from fuzzy set theory, which is given by Zadeh [15] and his followers.

2. An (t, k)-fuzzy M closed sets

Definition 2.1. Let (X, η, η^*) be a dfts, $\forall \gamma, v \in I^X$, the operators (t, k)-fuzzy θ interior and (t, k)-fuzzy θ closure denoted by $(t, k)-\theta I \eta, \eta^*$ and $(t, k)-\theta C \eta, \eta^*$: $I^X \times I_0 \times I_1 \rightarrow I^X$ are defined as
\[\theta I_{\eta, \eta} \gamma t, k = \sqrt{\{ v \in I_{\eta, \eta} \gamma t, k | v \leq \gamma, \eta (1 - v) \geq t & \eta^* (1 - v) \leq k \} } \]
and
\[\theta C_{\eta, \eta} \gamma t, k = \sqrt{\{ v \in I_{\eta, \eta} \gamma t, k | v \geq \gamma, \eta (v) \geq t & \eta^* (v) \leq k \} } \]

Definition 2.2. In a dfts (X, η, η^*), $\gamma \in I^X$ is called an
1. (t, k)-fuzzy θ open (resp. (t, k)-fuzzy θ semi open) (briefly (t, k)-f θo (resp. (t, k)-f θso)) set if $\gamma = \theta I_{\eta, \eta} \gamma t, k.$ (resp. $\gamma \leq \theta I_{\eta, \eta} \gamma t, k.$)
2. (t, k)-fuzzy θ closed (resp. (t, k)-fuzzy θ semi closed) (briefly (t, k)-f θc (resp. (t, k)-f θco)) set if $1 - \gamma = (t, k)-f \theta o$ (resp. $(t, k)-f \theta so$) set.

Definition 2.3. In a dfts (X, η, η^*), $\gamma \in I^X$ is called an
1. (t, k)-fuzzy M closed (briefly (t, k)-f $M c$) set if $\gamma \geq I_{\eta, \eta} \gamma t, k \cap C_{\eta, \eta} \gamma t, k$.
2. (t, k)-fuzzy M open (briefly (t, k)-f $M o$) set if $1 - \gamma$ is an (t, k)-f $M c$ set.

Definition 2.4. Let (X, η, η^*) be a dfts, then the
1. union of all (t, k)-f $M o$ (resp. (t, k)-f θo and (t, k)-f θso) set contained in γ is called the (t, k)-fuzzy M (resp. (t, k)-fuzzy θ and (t, k)-fuzzy θ semi) interior of γ and is denoted by $\theta I_{\eta, \eta} \gamma t, k.$ (resp. $\theta I_{\eta, \eta} \gamma t, k.$ and $\theta s I_{\eta, \eta} \gamma t, k.$).
2. intersection of all (t, k)-f $M c$ (resp. (t, k)-f θc and (t, k)-f θco) sets containing γ is called the (t, k)-fuzzy M (resp. (t, k)-fuzzy θ and (t, k)-fuzzy θ semi) closure of γ and is denoted by $\theta C_{\eta, \eta} \gamma t, k.$ (resp. $\theta C_{\eta, \eta} \gamma t, k.$ and $\theta s C_{\eta, \eta} \gamma t, k.$).

Proposition 2.5. In a dfts (X, η, η^*), $\forall \gamma, v \in I^X$,
(a) $M I_{\eta, \eta} \gamma t, k = 0$ and $M I_{\eta, \eta} \gamma t, k = 1$.
(b) $M C_{\eta, \eta} \gamma t, k = 0$ and $M C_{\eta, \eta} \gamma t, k = 1$.
(c) $M I_{\eta, \eta} \gamma t, k = M C_{\eta, \eta} \gamma t, k = M C_{\eta, \eta} \gamma t, k.$
(d) $M C_{\eta, \eta} \gamma t, k = M C_{\eta, \eta} \gamma t, k.$
(e) If $\gamma < v$ then $M I_{\eta, \eta} \gamma t, k < M I_{\eta, \eta} \gamma t, k.$
(f) If $\gamma \leq v$ then $M C_{\eta, \eta} \gamma t, k \leq M C_{\eta, \eta} \gamma t, k.$
(g) $M I_{\eta, \eta} \gamma t, k \leq \gamma \leq M C_{\eta, \eta} \gamma t, k.$
(h) $M C_{\eta, \eta} \gamma t, k \geq M C_{\eta, \eta} \gamma t, k.$
(i) $M C_{\eta, \eta} \gamma t, k \cap M C_{\eta, \eta} \gamma t, k.$
(j) $M C_{\eta, \eta} \gamma t, k \cap M C_{\eta, \eta} \gamma t, k.$
(k) $M C_{\eta, \eta} \gamma t, k \gamma t, k.$
(l) $M C_{\eta, \eta} \gamma t, k \gamma t, k.$
(m) $M C_{\eta, \eta} \gamma t, k \gamma t, k.$
(n) $M C_{\eta, \eta} \gamma t, k \gamma t, k.$
(o) $M C_{\eta, \eta} \gamma t, k \gamma t, k.$
(p) $M C_{\eta, \eta} \gamma t, k \gamma t, k.$
(q) $\gamma \leq \gamma \gamma t, k \leq \gamma \gamma t, k.$
(r) $\gamma \gamma t, k \leq \gamma \gamma t, k \leq \gamma \gamma t, k.$

Theorem 2.6. In any dfts (X, η, η^*), Every
1. (t, k)-f θsc (resp. (t, k)-f θpc) set is an (t, k)-f $M c$ set.
2. (t, k)-f θc set is an (t, k)-f θsc set.
3. (t, k)-f θc set is an (t, k)-f c set.
4. (t, k)-f c set is an (t, k)-f $\delta p c$ set.
5. (t, k)-f $M c$ set is an (t, k)-f c set.

Remark 2.7. The converse of the above theorem, in general, need not be true. It can be verified from the following examples.

Example 2.8. Consider the dfts (X, η, η^*) with $X = \{a, b, c\}$ and
\[\eta(\gamma) = \begin{cases} 1, & \text{if } \gamma \in \{0, 1\}, \\ \frac{1}{2}, & \text{if } \gamma = 0 \frac{1}{2}, \\ 0, & \text{otherwise}. \end{cases} \]
\[\eta^*(\gamma) = \begin{cases} 0, & \text{if } \gamma \in \{0, 1\}, \\ \frac{1}{2}, & \text{if } \gamma = 0 \frac{1}{2}, \\ 1, & \text{otherwise}. \end{cases} \]
Then the fuzzy set 0.1 is an $(\frac{1}{2}, 0.1)$-f $M c$ set but not an $(\frac{1}{2}, 0.1)$-f $\delta p c$ set.
Example 2.9. Consider the dfts \((X, \eta, \eta^*)\) with \(X = \{a, b, c\}\) and
\[
\eta(\gamma) = \begin{cases}
1, & \text{if } \gamma \in \{0, 1\}, \\
\frac{4}{5}, & \text{if } \gamma = \gamma_1, \\
\frac{1}{5}, & \text{if } \gamma = \gamma_2, \\
0, & \text{Otherwise.}
\end{cases}
\eta^*(\gamma) = \begin{cases}
0, & \text{if } \gamma \in \{0, 1\}, \\
\frac{4}{5}, & \text{if } \gamma = \gamma_1, \\
\frac{1}{5}, & \text{if } \gamma = \gamma_2, \\
1, & \text{Otherwise.}
\end{cases}
\]
where \(\gamma_1(a) = 0.3, \gamma_1(b) = 0.4, \gamma_1(c) = 0.5, \gamma_2(a) = 0.6, \gamma_2(b) = 0.9, \gamma_2(c) = 0.5, \gamma_3(a) = 0.3, \gamma_3(b) = 0\) and \(\gamma_3(c) = 0.5\). Then the fuzzy set \(\gamma\) is an \((\frac{3}{4}, \frac{3}{4})\)-fMo set but not an \((\frac{3}{4}, \frac{3}{4})\)-fMc set.

Example 2.10. Consider the dfts \((X, \eta, \eta^*)\) with \(X = \{a, b, c\}\) and
\[
\eta(\gamma) = \begin{cases}
1, & \text{if } \gamma \in \{0, 1\}, \\
\frac{4}{5}, & \text{if } \gamma = \gamma_1, \\
\frac{1}{5}, & \text{if } \gamma = \gamma_2, \\
0, & \text{Otherwise.}
\end{cases}
\eta^*(\gamma) = \begin{cases}
0, & \text{if } \gamma \in \{0, 1\}, \\
\frac{4}{5}, & \text{if } \gamma = \gamma_1, \\
\frac{1}{5}, & \text{if } \gamma = \gamma_2, \\
1, & \text{Otherwise.}
\end{cases}
\]
where \(\gamma_1(a) = 0.3, \gamma_1(b) = 0.4, \gamma_1(c) = 0.5, \gamma_2(a) = 0.6, \gamma_2(b) = 0.5, \gamma_2(c) = 0.5\). Then the fuzzy set \(\gamma\) is an \((\frac{3}{4}, \frac{3}{4})\)-fMc set but not an \((\frac{3}{4}, \frac{3}{4})\)-fThc set.

Example 2.11. Consider the dfts \((X, \eta, \eta^*)\) with \(X = \{a, b, c\}\) and
\[
\eta(\gamma) = \begin{cases}
1, & \text{if } \gamma \in \{0, 1\}, \\
\frac{4}{5}, & \text{if } \gamma = \gamma_1, \\
\frac{1}{5}, & \text{if } \gamma = \gamma_2, \\
0, & \text{Otherwise.}
\end{cases}
\eta^*(\gamma) = \begin{cases}
0, & \text{if } \gamma \in \{0, 1\}, \\
\frac{4}{5}, & \text{if } \gamma = \gamma_1, \\
\frac{1}{5}, & \text{if } \gamma = \gamma_2, \\
1, & \text{Otherwise.}
\end{cases}
\]
where \(\gamma_1(a) = 0.3, \gamma_1(b) = 0.5, \gamma_1(c) = 0.5\), then the fuzzy set \(1 - \gamma\) is an \((\frac{1}{5}, \frac{1}{5})\)-fc set but not an \((\frac{1}{5}, \frac{1}{5})\)-fMc set.

Example 2.12. Consider the dfts \((X, \eta, \eta^*)\) with \(X = \{a, b, c\}\) and
\[
\eta(\gamma) = \begin{cases}
1, & \text{if } \gamma \in \{0, 1\}, \\
\frac{4}{5}, & \text{if } \gamma = \gamma_1, \\
\frac{1}{5}, & \text{if } \gamma = \gamma_2, \\
0, & \text{Otherwise.}
\end{cases}
\eta^*(\gamma) = \begin{cases}
0, & \text{if } \gamma \in \{0, 1\}, \\
\frac{4}{5}, & \text{if } \gamma = \gamma_1, \\
\frac{1}{5}, & \text{if } \gamma = \gamma_2, \\
1, & \text{Otherwise.}
\end{cases}
\]
where \(\gamma_1(a) = 0.5, \gamma_1(b) = 0.3, \gamma_1(c) = 0.2, \gamma_2(a) = 0.5, \gamma_2(b) = 0.6\) and \(\gamma_2(c) = 0.6\), then the fuzzy set \(\gamma_2\) is an \((\frac{3}{6}, \frac{3}{6})\)-fc set but not an \((\frac{3}{6}, \frac{3}{6})\)-fMo set.

From the above theorem, examples and by [11], the following implications are hold.

Theorem 2.13. Let \((X, \eta, \eta^*)\) be a dfts,

(i) \(\bigvee_{i \in \mathbb{N}} \gamma_i\) is an \((i, \kappa)\)-fMo set if \(\forall i \in \mathbb{N}, \gamma_i\) be an \((i, \kappa)\)-fMo set.

(ii) \(\bigwedge_{i \in \mathbb{N}} \gamma_i\) is an \((i, \kappa)\)-fMc set if \(\forall i \in \mathbb{N}, \gamma_i\) be an \((i, \kappa)\)-fMc set.

Proof: (i) Let \(\gamma_i\) be an \((i, \kappa)\)-fMo set, \(\forall i \in \mathbb{N}\) then
\[
\gamma_i \subseteq C_{\eta, \eta^*}(\Theta_{\eta, \eta^*}(\gamma_{i, \kappa}, \kappa), t, \kappa) \quad \forall i \in \mathbb{N},
\]
\[
\Rightarrow \bigvee_{i \in \mathbb{N}} \gamma_i \subseteq \bigvee_{i \in \mathbb{N}} (C_{\eta, \eta^*}(\Theta_{\eta, \eta^*}(\gamma_{i, \kappa}, \kappa), t, \kappa)) \quad \forall i \in \mathbb{N},
\]
\[
\subseteq C_{\eta, \eta^*}(\Theta_{\eta, \eta^*}(\bigvee_{i \in \mathbb{N}} \gamma_{i, \kappa}, \kappa), t, \kappa).
\]
Thus \(\bigvee_{i \in \mathbb{N}} \gamma_i\) is an \((i, \kappa)\)-fMo set.

(ii) Similar to the proof of (i).

Theorem 2.14. In dfts \((X, \eta, \eta^*)\), let \(\gamma, v \in f^X\)

(i) \(\gamma \land v\) is an \((i, \kappa)\)-fMo set if \(\gamma\) is an \((i, \kappa)\)-fMo set and \(\eta(v) \geq t, \eta^*(v) \leq \kappa\).

(ii) \(\gamma \lor v\) is an \((i, \kappa)\)-fMc set if \(\gamma\) is an \((i, \kappa)\)-fMc set and \(\eta(1 - v) \geq t, \eta^*(1 - v) \leq \kappa\).

Proof: (i) Let \(\gamma\) is an \((i, \kappa)\)-fMo set, and a crisp set \(v \in f^X\)
An (t, κ)-fuzzy M closed and (t, κ) - generalized fuzzy M closed sets in double fuzzy topological spaces — 287/289

with $\eta(v) \geq t$, $\eta^*(v) \leq \kappa$, then

$$\gamma \land v \leq (C_{\eta, \eta^*}(\Theta_{I, \eta}^-(\gamma, t, \kappa), I, \kappa)) \land v$$

$$= (C_{\eta, \eta^*}(\Theta_{I, \eta}^-(\gamma, t, \kappa), I, \kappa) \land v)$$

$$\leq (C_{\eta, \eta^*}(\Theta_{I, \eta}^-(\gamma \land v, t, \kappa), I, \kappa) \land v)$$

$$\leq (C_{\eta, \eta^*}(\Theta_{I, \eta}^-(\gamma \land v, t, \kappa), I, \kappa)) \land v$$

Hence $\gamma \land v$ is an (t, κ)-fMo set.

(ii) Similar to the proof of (i).

\section*{Theorem 2.15}

If $\gamma \in I^X$ is both (t, κ)-fMo and (t, κ)-fc set in (X, η, η^*), then γ is an (t, κ)-fMo set.

\textbf{Proof:} Let γ be an (t, κ)-fMo set then

$$\gamma \leq C_{\eta, \eta^*}(\Theta_{I, \eta}^-(\nu, t, \kappa), I, \kappa)$$

$$= C_{\eta, \eta^*}(\Theta_{I, \eta}^-(\nu, t, \kappa), I, \kappa) \land v$$

$$\leq (C_{\eta, \eta^*}(\Theta_{I, \eta}^-(\nu \land v, t, \kappa), I, \kappa)) \land v$$

$$\leq (C_{\eta, \eta^*}(\Theta_{I, \eta}^-(\nu \land v, t, \kappa), I, \kappa)) \land v$$

Hence γ is an (t, κ)-fMo set.

\section*{Theorem 2.16}

If $\gamma \in I^X$ is both (t, κ)-fMo and (t, κ)-fc set in (X, η, η^*), then γ is an (t, κ)-fMo set.

\textbf{Proof:} Follows from theorem 2.15.

\section*{Theorem 2.17}

In a dfts (X, η, η^*), $\forall \gamma \in I^X$,

1. If $\eta(\gamma) \geq t$ and $\eta^*(\gamma) \leq \kappa$ then γ is an (t, κ)-fMo set.

2. $I_{\eta, \eta^*}(\gamma, t, \kappa)$ is an (t, κ)-fMo set.

3. $C_{\eta, \eta^*}(\gamma, t, \kappa)$ is an (t, κ)-fMo set.

\section*{3. An (t, κ)-generalized fuzzy M closed sets}

\textbf{Definition 3.1.} In a (X, η, η^*) be a dfts, $\gamma, v \in I^X$, a fuzzy set γ is called an (t, κ)-generalized fuzzy M closed (resp. (t, κ)-generalized fuzzy M open) (briefly (t, κ)-gMo (resp. (t, κ)-gMo)) set if $MC_{\eta, \eta^*}(\gamma, t, \kappa) \leq v$ whenever $\gamma \leq v$ and $\eta(\gamma) \geq t$ and $\eta^*(\gamma) \leq \kappa$ (resp. $\gamma \leq \kappa$ is an (t, κ)-gMo set).

\textbf{Theorem 3.2.} In a dfts (X, η, η^*), $\gamma \in I^X$ is (t, κ)-gMo set iff $v \leq MI_{\eta, \eta^*}(\gamma, t, \kappa)$ whenever $\gamma \leq v$, $\eta(1 - v) \geq t$ and $\eta^*(1 - v) \leq \kappa$.

\textbf{Definition 3.3.} In a dfts (X, η, η^*), $\forall \gamma \in I^X$, an (t, κ)-generalized fuzzy M closure operator denoted as (t, κ)-GMC$_{\eta, \eta^*}$: $I^X \times I_0 \times I_1 \rightarrow I^X$ defined as

$$GMC_{\eta, \eta^*}(\gamma, t, \kappa) = \bigwedge \{v \in I^X | \gamma \leq v \land v \text{ is } (t, \kappa)-gMo\}.

\textbf{Theorem 3.4.} In a dfts (X, η, η^*), $\forall \gamma, v \in I^X$, then the operator (t, κ)-GMC$_{\eta, \eta^*}$ satisfies the following statements

1. $GMC_{\eta, \eta^*}(0, t, \kappa) = 0$ and $GMC_{\eta, \eta^*}(1, t, \kappa) = 1$.

2. $\gamma \leq GMC_{\eta, \eta^*}(\gamma, t, \kappa)$.

3. $GMC_{\eta, \eta^*}(\gamma \lor v, t, \kappa) \geq GMC_{\eta, \eta^*}(\gamma, \gamma) \lor GMC_{\eta, \eta^*}(v, \kappa)$.

4. $GMC_{\eta, \eta^*}(\gamma, t, \kappa) = GMC_{\eta, \eta^*}(\gamma, \kappa)$.

5. If ν is (t, κ)-gMo set then $GMC_{\eta, \eta^*}(\nu, \kappa) = \nu$.

6. $GMC_{\eta, \eta^*}(\gamma, \gamma, \kappa) \leq MC_{\eta, \eta^*}(\gamma, \kappa) \leq \kappa$.

\textbf{Theorem 3.5.} In a dfts (X, η, η^*), $\forall \gamma \in I^X$, an (t, κ)-generalized fuzzy M interior operator denoted as (t, κ)-GMI$_{\eta, \eta^*}$: $I^X \times I_0 \times I_1 \rightarrow I^X$ given by

$$GMI_{\eta, \eta^*}(\gamma, t, \kappa) = \bigcap \{v \in I^X | \gamma \geq v \land v \text{ is } (t, \kappa)-gMo\},$$

and

$$GMI_{\eta, \eta^*}(\gamma, t, \kappa) = 1 - GMC_{\eta, \eta^*}(\gamma, t, \kappa).$$

\textbf{Proposition 3.6.} In a dfts (X, η, η^*), let an (t, κ)-gMo set $\gamma \in I^X$ and

1. if ν is (t, κ)-gMo set then γ is an (t, κ)-gMo set.

2. if γ is an (t, κ)-gMo set then $\gamma \land \nu$ is an (t, κ)-gMo set whenever $\nu \leq MC_{\eta, \eta^*}(\gamma, t, \kappa)$.

\textbf{Proof:} (1) Let γ be an (t, κ)-gMo set and an (t, κ)-gMo set such that $\gamma \leq \gamma$.

$$\Rightarrow MC_{\eta, \eta^*}(\gamma, t, \kappa) \leq \gamma.$$ Since $\gamma \leq MC_{\eta, \eta^*}(\gamma, t, \kappa)$.

$$\Rightarrow \gamma = MC_{\eta, \eta^*}(\gamma, t, \kappa).$$ Therefore γ is an (t, κ)-gMo set.

(2) Let γ be an (t, κ)-gMo set and an (t, κ)-gMo set, then

$$MC_{\eta, \eta^*}(\gamma, t, \kappa) \leq \gamma \Rightarrow \gamma \text{ is an (t, k)-gMo set}$$

$$\Rightarrow \gamma \land \nu \text{ is an (t, k)-gMo set}$$

$$\Rightarrow \gamma \land \nu \text{ is an (t, k)-gMo set}.$$
An (t, κ)-fuzzy M closed and (t, κ) - generalized fuzzy M closed sets in double fuzzy topological spaces — 288/289

Hence, $v \leq M_{\eta, \eta} (\gamma, t, \kappa)$.

Conversely, let $v \leq M_{\eta, \eta} (\gamma, t, \kappa)$ whenever $v \leq \gamma$ and v is an (t, κ)-gfMc set, now, $1 - M_{\eta, \eta} (\gamma, t, \kappa) \leq 1 - v$.

Thus $MC_{\eta, \eta} (1 - \gamma, t, \kappa) \leq 1 - v$. Therefore $1 - \gamma$ is an (t, κ)-gfMc set. Hence γ is an (t, κ)-gfMo set.

Proposition 3.9. In a dfts (X, η, η^*), $\gamma \wedge v$ is an (t, κ)-gfMc set if γ and v are (t, κ)-gfMc sets.

Proof: Assume γ and v are (t, κ)-gfMc sets, $\gamma \wedge v \leq v$, $\forall (t, \kappa)$-gfMc set v, $MC_{\eta, \eta} (\gamma, t, \kappa) \leq v$, and since γ is an (t, κ)-gfMc set $MC_{\eta, \eta} (\gamma, t, \kappa) \leq u \forall (t, \kappa)$-g$fMc$ set $u \in I^X$ and $\gamma \leq u$. Also v is an (t, κ)-gfMc set $MC_{\eta, \eta} (v, t, \kappa) \leq v \forall (t, \kappa)$-g$fMc$ set $v \in I^X$, and $\gamma \leq v$. Therefore

$$MC_{\eta, \eta} (\gamma, t, \kappa) \wedge MC_{\eta, \eta} (v, t, \kappa) \leq u$$

whenever $\gamma \wedge v \leq v$. Hence $\gamma \wedge v$ is an (t, κ)-gfMc sets in I^X.

Proposition 3.10. In a dfts (X, η, η^*), $\gamma \wedge v$ is an (t, κ)-gfMc set if γ is an (t, κ)-gfMc set and $\eta (v) \geq t, \eta^* (v) \leq \kappa$.

Proof: Since every (t, κ)-gfMc set is an (t, κ)-gfMc set and from the proposition 3.9 we have the proof.

Proposition 3.11. In a dfts (X, η, η^*), γ is an (t, κ)-gfMc set and

1. if γ is an (t, κ)-gfMo set then γ is an (t, κ)-gfMc set.

2. if $\gamma \leq v \leq MC_{\eta, \eta} (\gamma, t, \kappa)$ then γ is an (t, κ)-gfMc set.

Proof: (1) Suppose that γ is both (t, κ)-gfMo and (t, κ)-gfMc set in I^X. Since γ is an (t, κ)-gfMo set, $MC_{\eta, \eta} (\gamma, t, \kappa) \leq \gamma$, since γ is an (t, κ)-gfMc set $\gamma \leq MC_{\eta, \eta} (\gamma, t, \kappa)$. Therefore $\gamma = MC_{\eta, \eta} (\gamma, t, \kappa)$.

(2) Suppose that γ is an (t, κ)-gfMc set and v is an (t, κ)-gfMo set in I^X, $\gamma \leq v \leq v$ and let $\gamma \leq MC_{\eta, \eta} (\gamma, t, \kappa)$. This implies that

$$MC_{\eta, \eta} (v, t, \kappa) \leq MC_{\eta, \eta} (MC_{\eta, \eta} (\gamma, t, \kappa), t, \kappa) = MC_{\eta, \eta} (\gamma, t, \kappa).$$

Since γ is an (t, κ)-gfMc set, γ is an (t, κ)-gfMo set and $\gamma \leq v$ we can say that $MC_{\eta, \eta} (\gamma, t, \kappa) v$, this implies that

$$MC_{\eta, \eta} (v, t, \kappa) \leq u.$$

Therefore γ is an (t, κ)-gfMc set.

Theorem 3.12. Let (X, η_1, η_1^*) and (Y, η_2, η_2^*) be dfts’s. If $\gamma \leq 1_Y \leq 1_X$, $\forall \gamma$ is (t, κ)-gfMc set in I^X, then γ is an (t, κ)-gfMc set relative to Y.

Proof: Suppose that $\gamma \leq 1_Y \leq 1_X$ and $\gamma = (t, \kappa)$-gfMc set. And let $\gamma \leq 1_Y \wedge v \forall v \in I^X$ is an (t, κ)-gfMo set.

Since $\gamma \in I^X$ is (t, κ)-gfMc set $\gamma \leq v \Rightarrow MC_{\eta, \eta} (\gamma, t, \kappa) \leq v$. So that $1_Y \wedge MC_{\eta, \eta} (\gamma, t, \kappa) \leq 1_Y \wedge v$. Therefore γ is an (t, κ)-gfMc set relative to Y.

Theorem 3.13. In a dfts (X, η, η^*), $\forall v \leq \gamma$, if v is (t, κ)-gfMc set relative to $\gamma \Rightarrow \gamma$ is both (t, κ)-gfMo and (t, κ)-gfMc set of I^X then v is an (t, κ)-gfMc set relative to X.

Proof: Let v is an (r, s)-gfMc set and $\eta (u) \geq t$ and $\eta^* (u) \leq \kappa \& v \leq u$. But we have, $v \leq \gamma \leq 1$ and so $v \leq \gamma \leq u$, hence $v \leq \gamma \wedge u$. Therefore, v is an (t, κ)-gfMc set relative to γ, i.e. $\gamma \wedge MC_{\eta, \eta} (v, t, \kappa) \leq \gamma \wedge u \Rightarrow \gamma \wedge MC_{\eta, \eta} (v, t, \kappa) \leq u$.

Thus $(\gamma \wedge MC_{\eta, \eta} (v, t, \kappa)) \wedge (1 - MC_{\eta, \eta} (v, t, \kappa)) \leq u \wedge (1 - MC_{\eta, \eta} (v, t, \kappa)).$

This implies that

$$\gamma \wedge (1 - MC_{\eta, \eta} (v, t, \kappa)) \leq u \wedge (1 - MC_{\eta, \eta} (v, t, \kappa)).$$

Because γ is an (t, κ)-gfMc set, $MC_{\eta, \eta} (\gamma, t, \kappa) \leq u \wedge (1 - \gamma)$. And so $v \leq \gamma \Rightarrow MC_{\eta, \eta} (v, t, \kappa) \leq MC_{\eta, \eta} (\gamma, t, \kappa)$.

Therefore

$$MC_{\eta, \eta} (v, t, \kappa) \leq MC_{\eta, \eta} (\gamma, t, \kappa) \leq u \wedge (1 - MC_{\eta, \eta} (v, t, \kappa)).$$

Thus $MC_{\eta, \eta} (\gamma, t, \kappa) \leq u$, $\forall u \in (1 - MC_{\eta, \eta} (v, t, \kappa))$. i.e. v is an (t, κ)-gfMc relative to X.

Acknowledgment

The authors thank the referees to give their valuable suggestions to make this as valuable.

References

An (t, κ)-fuzzy M closed and (t, κ)-generalized fuzzy M closed sets in double fuzzy topological spaces

References

