

https://doi.org/10.26637/MJM0S01/0072

Group S₃ cordial prime labeling of graphs

B. Chandra^{1*} and R. Kala²

Abstract

Let G = (V(G), E(G)) be a graph. Consider the group S_3 . If $u \in S_3$, we denote by o(u) the order of u in S_3 . Define a function $g: V(G) \to S_3$ in such a way that $xy \in E(G) \Leftrightarrow (o(g(x)), o(g(y)) = 1$. Let $n_j(g)$ denote the number of vertices of G having label j under g. Now g is called a group S_3 cordial prime labeling if $|n_i(g) - n_j(g)| \le 1$ for every $i, j \in S_3, i \ne j$. A graph which admits a group S_3 cordial prime labeling is called a group S_3 cordial prime graph. In this paper, we prove that all paths, cycles, Gear graphs, Ladder and fan are group S_3 cordial prime. We further characterize wheels that are group S_3 cordial prime.

Keywords

Cordial labeling, prime labeling, group S_3 cordial prime labeling.

AMS Subject Classification 05C78.

^{1,2} Department of Mathematics, Manonmaniam Sundaranar University, Tirunelveli -627012, Tamil Nadu, India.
*Corresponding author: ¹ chandravijay4507@gmail.com; ²karthipyi91@yahoo.co.in
Article History: Received 24 November 2018; Accepted 09 April 2019

©2019 MJM.

Contents

1	Introduction40)3
2	Preliminaries 40)3
3	Main Results 40)4
	References 40)7

1. Introduction

Graphs considered here are finite, undirected and simple. Let *A* be a group. The order of $a \in A$ is the least positive integer *n* such that $a^n = e$. We denote the order of *a* by o(a).

Cahit [1] introduced the concept of cordial labeling.

2. Preliminaries

Definition 2.1. Consider any function $f : V(G) \rightarrow \{0,1\}$. Assign the label |f(x) - f(y)| for each edge xy. f is called a cordial labeling if the difference between the number of vertices labeled 0 and the number of vertices labeled 1 is at most 1. Also the difference between the number of edges labeled 0 and the number of edges labeled 1 is at most 1.

The concept of prime labeling was introduced by Entringer. This was later studied by Tout et al.[4]

Definition 2.2. A prime labeling of a graph G of order n is an injective function $f: V \rightarrow \{1, 2, ..., n\}$ such that for every

pair of adjacent vertices u and v $gcd{f(u), f(v)} = 1$.

Motivated by these two definitions, we introduce group S_3 cordial prime labeling of graphs. Terms not defined here are used in the sense of Harary [3] and Gallian [2].

The greatest common divisor of two integers *m* and *n* is denoted by (m,n) and *m* and *n* are said to be relatively prime if (m,n) = 1. For any real number *x*, we denoted by $\lfloor x \rfloor$, the greatest integer smaller than or equal to *x* and by $\lceil x \rceil$, we mean the smallest integer greater than or equal to *x*.

A path is an alternating sequence of vertices and edges,

 $v_1, e_1, v_2, e_2, ..., v_{n-1}, e_{n-1}, v_n$ which are distinct, such that e_i is an edge joining v_i and v_{i+1} for $1 \le i \le n-1$. A path on *n* vertices is denoted by P_n . A path $v_1, e_1, v_2, e_2, ..., e_{n-1}, v_n, e_n, v_1$ is called a cycle and a cycle on *n* vertices is denoted by C_n . Given two graphs *G* and *H*, *G*+*H* is the graph with vertex set $V(G) \cup V(H)$ and edge set $E(G) \cup E(H) \cup \{uv | u \in V(G), v \in$ $V(H)\}$. A wheel W_n is defined as $C_n + K_1$. The graph $P_n + K_1$ is called a fan graph F_n . The Gear graph G_n is obtained from the wheel W_n by adding a vertex between every pair of adjacent vertices of the cycle C_n .

Given two graphs *G* and *H*, $G \times H$ is the graph with vertex set $V(G) \times V(H)$ and edge set $E(G) \times E(H)$. Two vertices (u_1, v_1) and (u_2, v_2) are adjacent in $G \times H$ if $u_1 = u_2$ and $v_1v_2 \in E(H)$ or $u_1u_2 \in E(G)$ and $v_1 = v_2$. $P_n \times P_2$ is called the ladder graph L_n .

3. Main Results

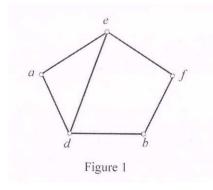
Definition 3.1. Let $g: V(G) \to S_3$ be a function defined in such a way that $xy \in E(G) \Leftrightarrow (o(g(x)), o(g(y)) = 1$.Let $n_j(g)$ denote the number of vertices of G having label j under g. Now g is called a group S_3 cordial prime labeling if $|n_i(g) - n_j(g)| \le 1$ for every $i, j \in S_3, i \ne j$. A graph which admits a group S_3 cordial prime labeling is called a group S_3 cordial prime graph.

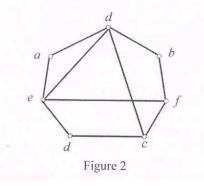
Definition 3.2. Consider the symmetric group S_3 . Let the elements of S_3 be $\{e, a, b, c, d, f\}$ where

$$e = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}; a = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix}; b = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix}; c = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix}; d = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}; f = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix};$$

Now o(e) = 1 o(a) = o(b) = o(c) = 2o(d) = o(f) = 3

Example 3.3. A group S_3 cordial prime labeling of two graphs is given in Figure 1 and Figure 2.

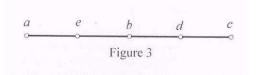




Theorem 3.4. All paths $P_n(n \ge 1)$ are group S_3 cordial prime.

Proof. Let $v_1, v_2, ..., v_n$ denote the vertices of P_n . Define a function $g: V(P_n) \to S_3$ as follows. For $k \ge 0$, $g(v_{6k+1}) = a$ $g(v_{6k+2}) = e$ $g(v_{6k+3}) = b$ $g(v_{6k+4}) = d$ $g(v_{6k+5}) = c$ For $k \ge 1$, $g(v_{6k}) = f$ Clearly *g* is a group *S*₃ cordial prime labeling, Hence all paths *P_n* are group *S*₃ cordial prime.

Illustration of the labeling for P_5 is given in Figure 3.



Theorem 3.5. All cycles C_n are group S_3 cordial prime.

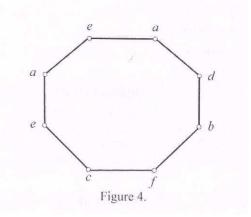
Proof. Let the vertices of C_n be denoted by $v_1, v_2, ..., v_n$. Define a function $g: V(C_n) \rightarrow S_3$ as follows.

$$g(v_i) = \begin{cases} e, & \text{if } k \equiv 1 \pmod{6} \\ a, & \text{if } k \equiv 2 \pmod{6} \\ d, & \text{if } k \equiv 3 \pmod{6} \\ b, & \text{if } k \equiv 4 \pmod{6} \\ f, & \text{if } k \equiv 5 \pmod{6} \\ c, & \text{if } k \equiv 0 \pmod{6} \end{cases}$$

Clearly g is a group S2 cordial prime

Clearly g is a group S_3 cordial prime labeling.

Illustration of the labeling for C_8 is given in Figure 4.



Theorem 3.6. All Gear graphs G_n are group S_3 cordial prime.

1

Proof. Lew *w* be the center vertex and $u_1, u_2, ..., u_{2n}$ be the vertices on the cycle C_n .

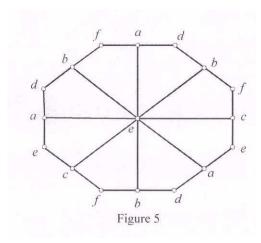
Then w should be labelled as e. Suppose if, w is labelled with a (or b or c). Then alternate vertices of the cycle should be labelled as *e* which is not possible by definition.

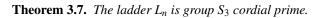
Similar case arises if w is labelled as d(or f). Define $g: V(G_n) \to S_3$ as follows. g(w) = e

$$g(u_i) = \begin{cases} a, & i \equiv 1 \pmod{6} \\ d, & i \equiv 2 \pmod{6} \\ b, & i \equiv 3 \pmod{6} \\ f, & i \equiv 4 \pmod{6} \\ c, & i \equiv 5 \pmod{6} \\ e, & i \equiv 0 \pmod{6} \end{cases}$$

Clearly g is group S_3 cordial prime.

Illustration of the labelings for the Gear graph G_8 is given in Figue 5.





Proof. Let the vertices of L_n be $\{u_1, u_2, ..., u_n, v_1, v_2, ..., v_n\}$ and

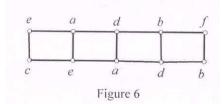
$$E(L_n) = \begin{cases} u_i v_i, & i = 1 \text{ to } n \\ u_i u_{i+1}, & i = 1 \text{ to } n-1 \\ v_i v_{i+1}, & i = 1 \text{ to } n-1 \end{cases}$$

Then define $g: V(L_n) \to S_3$ as follows.
$$g(u_i) = \begin{cases} e, & \text{if } i \equiv 1 (mod \ 6) \\ a, & \text{if } i \equiv 2 (mod \ 6) \\ d, & \text{if } i \equiv 3 (mod \ 6) \\ b, & \text{if } i \equiv 4 (mod \ 6) \\ f, & \text{if } i \equiv 5 (mod \ 6) \\ c, & \text{if } i \equiv 0 (mod \ 6) \end{cases}$$

The labels of vertices $v_i (1 \le i \le n)$ depend on the label of u_n .

$$If g(u_n) = a, define
g(v_i) = \begin{cases}
d, & if i \equiv 2(mod 6) \\
b, & if i \equiv 3(mod 6) \\
f, & if i \equiv 1(mod 6) \\
c, & if i \equiv 0(mod 6) \\
a, & if i \equiv 1(mod 6) \\
f, & if i \equiv 2(mod 6) \\
c, & if i \equiv 3(mod 6) \\
e, & if i \equiv 1(mod 6) \\
d, & if i \equiv 0(mod 6) \\
b, & if i \equiv 1(mod 6) \\
ff g(u_n) = c, define
g(v_i) = \begin{cases}
e, & if i \equiv 2(mod 6) \\
a, & if i \equiv 3(mod 6) \\
d, & if i \equiv 3(mod 6) \\
d, & if i \equiv 3(mod 6) \\
d, & if i \equiv 1(mod 6) \\
b, & if i \equiv 1(mod 6) \\
f, & if i \equiv 1(mod 6) \\
g(v_i) = \begin{cases}
b, & if i \equiv 1(mod 6) \\
f, & if i \equiv 1(mod 6) \\
c, & if i \equiv 1(mod 6) \\
e, & if i \equiv 1(mod 6) \\
d, & if i \equiv 2(mod 6) \\
e, & if i \equiv 1(mod 6) \\
d, & if i \equiv 2(mod 6) \\
d, & if i \equiv 1(mod 6) \\
f, & if i \equiv 1(mod 6) \\
g(v_i) = \begin{cases}
c, & if i \equiv 1(mod 6) \\
e, & if i \equiv 1(mod 6) \\
f, & if i \equiv 1(mod 6) \\
e, & if i \equiv 1(mod 6)$$

Illustration of the labeling for the Ladder graph L_5 is given in Figue 6.

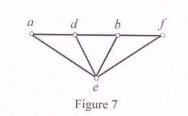


Theorem 3.8. Fan graph F_n is group S_3 cordial prime.

Proof. Let $F_n = P_n + K_1$. Let the *n* vertices of P_n be denoted by $v_1, v_2, ..., v_n$ and the single vertex of K_1 is denoted by *w*. Define $g: V(F_n) \rightarrow S_3$ as follows.

Note that *w* should be labelled as *e*. Suppose if g(w) = a (or *b* or *c*), then no label from $\{a, b, c, \}$ can be used to label v_i . If g(w) = d (or *f*) similar case arises which is not possible by definition. Let g(w) = e. Then the *n* vertices of P_n can be labelled as a, d, b, f, c, e in order. Clearly *g* is group S_3 cordial prime.

Illustration of the labeling for the fan graph F_4 is given in Figure 7.



Theorem 3.9. Wheel graphs $W_n (n \ge 4)$ are group S_3 cordial prime iff $n \not\equiv 5 \pmod{6}$.

Proof. Let W_n be the wheel $C_n + K_1$. Let $v_1, v_2, ..., v_n$ be the vertices on the cycle C_n and w be the center of the wheel. Suppose n = 3. Suppose the center vertex w is labelled as e. Now only one of v_1, v_2, v_3 can be labelled with a label of $\{a, b, c\}$. Another one can be labelled with a label of $\{d, f\}$. Hence it is not possible to label the third vertex. Similarly if w is labelled with a label of $\{a, b, c\}$, it is not possible to label the other three vertices. Same is the case if w is labelled with a label of $\{d, f\}$. Thus $n \ge 4$.

The center vertex *w* is labelled as *e*. Otherwise, if we label *w* as *a* (or *b* or *c*) then we have to label alternate vertices of C_n by d, e, f, ... Then *e* appears $\lceil n/2 \rceil$ times which is not possible by definition. Similar contradiction arises if we label *w* by *d* (or *f*).

Case 1: *n* is even. Now $n \equiv 0$ or 2 or 4(mod 6). Define $g: V(w_n) \rightarrow S_3$ as follows. g(w) = e

For
$$k \ge 0$$
, $g(v_i) = \begin{cases} a, & i = 6k + 1 \\ d, & i = 6k + 2 \\ b, & i = 6k + 3 \\ f, & i = 6k + 4 \\ c, & i = 6k + 5 \end{cases}$
For $k \ge 1$, $g(v_i) = e$ for $i = 6k$

From Table 1, g is group S_3 cordial prime labeling.

Case 2: *n* is odd.

Case (a): $n \equiv 1 \pmod{6}$ Let $n = 6k + 1, k \ge 1$ Define $g: V(W_n) \to S_3$ as follows g(w) = e $\begin{cases}
a, & \text{for } i = 1, 7, \dots, 6k - 5 \\
d, & \text{for } i = 2, 8, \dots, 6k - 4 \\
b, & \text{for } i = 3, 9, \dots, 6k - 3 \\
f, & \text{for } i = 4, 10, \dots, 6k - 2 \\
c, & \text{for } i = 5, 11, \dots, 6k - 1 \\
e, & \text{for } i = 6, 12, \dots, 6k \\
d, & \text{for } i = 6k + 1
\end{cases}$

From Table 1, gis group S_3 cordial prime labeling.

Case (b): Suppose $n \equiv 3mod(6)$ Let $n = 6k + 3, k \ge 1$ Define $g: V(W_n) \to S_3$ as follows g(w) = e

For
$$k \ge 1$$
, $g(v_i) = \begin{cases} a, & \text{for } i = 1, 7, \dots, 6k - 5 \\ d, & \text{for } i = 2, 8, \dots, 6k - 4 \\ b, & \text{for } i = 3, 9, \dots, 6k - 3 \\ f, & \text{for } i = 4, 10, \dots, 6k - 2 \\ c, & \text{for } i = 5, 11, \dots, 6k - 1 \\ e, & \text{for } i = 6, 12, \dots, 6k - 6 \\ d, & \text{for } i = 6k \\ a, & \text{for } i = 6k + 1 \\ f, & \text{for } i = 6k + 2 \\ e, & \text{for } i = 6k + 3 \end{cases}$

Case (c): $n \equiv 5 \pmod{6}$

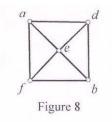
Let $n = 6k + 5, k \ge 0$. Let *w* be labelled as *e*. To maintain the condition of the labeling the vertices $v_1, v_2, ..., v_{6k}$ have to be labelled using the labels a, b, c, d, e, f equal number of times in an acceptable pattern. Now the vertices $v_{6k+1}, v_{6k+2}, ..., v_{6k+5}$ have to be labelled using a, b, c, d, e, f. If some $v_i(6k+1 \le i \le 6k+5)$ is labelled with *e*, then one of $\{a, b, c, d, f\}$ would be left out say *x*. Then $|n_x(v) - n_e(v)| = 2$ which is a contradiction. So no v_i can be labelled with *e*. It can be easily observed that the vertices $v_i(6k+1 \le i \le 6k+5)$ cannot be labelled using $\{a, b, c, d, f\}$ and satisfying group cordial prime condition. Hence W_n are group S_3 cordial prime if $n \ne 5 \pmod{6}$.

nature of n	$n_a(g)$	$n_b(g)$	$n_c(g)$	$n_d(g)$	$n_f(g)$	$n_e(g)$			
n = 6k + 1	k	k	k	k+1	k	k+1			
n = 6k + 2	k+1	k	k	k+1	k	k+1			
n = 6k + 3	k+1	k	k	k+1	k+1	k+1			
n = 6k + 4	k+1	k + 1	k	k+1	k+1	k+1			
n = 6k	k	k	k	k	k	k+1			

Table 1

From Table 1, it is clear that g is a group S_3 cordial prime labeling.

Illustration of the labelings for W_4 is given in Figure 8.



References

- ^[1] Cahit, I., Cordial graphs: a weaker version of graceful and harmonious graphs, *Ars Combin.* 23(1987) 201-207
- [2] Gallian, J. A, A Dynamic survey of Graph Labeling, *The Electronic Journal of Combinatories Dec*7(2015), *No.*D56.
- [3] Harary, F., Graph Theory, Addison Wesley, Reading Mass, 1972.
- Tout, A, Dabboucy, A. N and Howalla, K,
 Prime labeling of graphs, *Nat. Acad. Sci letters*,
 11, pp 365-368, 1982.

********* ISSN(P):2319 – 3786 Malaya Journal of Matematik ISSN(O):2321 – 5666 ********

