Fuzzy M^*-open sets in Šostak’s fuzzy topological spaces

B. Vijayalakshmi1, J. Praba2, M. Saraswathi3, and A. Vadivel4

Abstract
The aim of this paper is to define t-fuzzy M^*-open and t-fuzzy M^*-closed sets in Šostak’s fuzzy topological spaces. Also, t-fuzzy M^*-interior, t-fuzzy M^*-closure are introduced and their properties are investigated. Moreover, we investigate the connections between t-fuzzy open, t-fuzzy θ-semiopen, t-fuzzy θ-open, t-fuzzy δ-semiopen, t-fuzzy δ-preopen, t-fuzzy α-open, t-fuzzy ϵ-open and t-fuzzy ϵ^*-open in fuzzy topological spaces in the sense of Šostak.

Keywords
t-fuzzy M^*-open, t-fuzzy M^*-closed, t-fuzzy M^*-interior, t-fuzzy M^*-closure, t-fuzzy M-open, t-fuzzy M-closed, t-fuzzy M-interior, t-fuzzy M-closure, t-fuzzy θ-interior, t-fuzzy θ-closure, t-fuzzy δ-semiopen, t-fuzzy δ-preopen, t-fuzzy α-open, t-fuzzy ϵ-open and t-fuzzy ϵ^*-open.

AMS Subject Classification
54A40, 54C05, 03E72.

1 Department of Mathematics, Government Arts College, Chidambaram -608102, Tamil Nadu, India.
2, 3 Department of Mathematics, Kandaswamy Kandara’s college, P-Velur–638182, Tamil Nadu, India.
4 Department of Mathematics, Annamalai University, Annamalai Nagar -608002, Tamil Nadu, India.
*Corresponding author: avmaths@gmail.com

Article History: Received 24 November 2018; Accepted 09 April 2019

1. Introduction

Chang’s fuzzy topology [4] has been extended by Šostak [28] in fuzzy topology and different level of growths have been made in [13, 14, 26]. Various authors [2, 3, 5, 10, 12, 21, 23] have developed fuzzy continuity between fuzzy topological space in weaker forms also using the idea of fuzzy semi-open sets [2], fuzzy regular open sets [2], fuzzy preopen sets, fuzzy strongly semiopen sets [3], fuzzy γ-open sets [12], fuzzy δ-semiopen sets [1], fuzzy δ-preopen sets [1], fuzzy semi δ-preopen sets [33] and fuzzy ϵ-open sets [27]. In the sense of Chang [4] fits, Ganguly and Saha [11] developed the idea of fuzzy δ-cluster points in fits. In the sense of Šostak’s fuzzy topological space, Kim and Park [15] developed t-δ-cluster points and δ-closure operators. The weaker forms of fuzzy semi-preopen sets was developed by Park et al. [19] than any other from of fuzzy semi-open or fuzzy preopen sets. In 2008, the formations of e-open sets, e^*-open sets and a-open sets in topological spaces are due to Erdal Ekici [8], [9]. Sobana et al. [29] defined t-fuzzy e-open and t-fuzzy e^*-closed sets in a fuzzy topological space in the sense of Šostak. Velicko [30] in 1968 has developed and analyzed a specific variety of θ-open sets and δ-open sets in characerizations of H-closed topological spaces.

This article is a classified analysis of a different class of open set namely t-fuzzy M^*-open set. In this paper, we iden-
tify the idea of \(t \)-fuzzy \(M^* \)-open (resp. \(t \)-fuzzy \(M^* \)-closed) sets in fuzzy topological spaces in the sense of Šostak’s. Also, we defined \(t \)-fuzzy \(M^* \)-interior (resp. \(t \)-fuzzy \(M^* \)-closure) and analysed some of their properties. Also the relationships of \(t \)-fuzzy open, \(t \)-fuzzy \(\theta \)-semiopen, \(t \)-fuzzy \(\theta \)-open, \(t \)-fuzzy \(\delta \)-semiopen, \(t \)-fuzzy \(\delta \)-preopen, \(t \)-fuzzy \(a \)-open, \(t \)-fuzzy \(e \)-open and \(t \)-fuzzy \(e^* \)-open in Šostak’s fuzzy topological spaces are analysed.

2. Preliminaries

Throughout this article, we denote nonempty sets by \(X, Y \) etc., \(I = [0, 1] \) and \(I_0 = (0, 1] \). For \(\alpha \in I, \, \varpi(x) = \alpha, \, \forall x \in X \). A fuzzy point \(x_t \) for \(t \in I_0 \) is an element of \(I^X \) such that
\[
x_t(y) = \begin{cases} t & \text{if } y \text{ is equal to } x \\ 0 & \text{if } y \text{ is not equal to } x. \end{cases}
\]

Let \(Pr(X) \) denote the set of all fuzzy points in \(X \). A fuzzy point \(x_t \in x \) iff \(t < \mu(x) \). \(\mu \in I^X \) is quasi-coincident with \(v \), denoted by \(\mu_q \), \(v \), \(\exists x \in X \) such that \(\mu(x) + v(x) > 0 \). If \(\mu \) is not quasi-coincident with \(v \), we denoted \(\mu qv \). If \(A \) is a subset of \(X \), we define the characteristic function \(\chi_a \) on \(X \) by
\[
\chi_a(x) = \begin{cases} 1 & \text{if } x \in A, \\ 0 & \text{if } x \notin A. \end{cases}
\]
All notations and definitions will be standard in the fuzzy set theory.

Lemma 2.1. [28] Consider \(X \) be a nonempty set and \(\mu, v \in I^X \). Then
(i) \(\mu_qv \) iff there exists \(x_t \in \mu \) such that \(x_tqv \).
(ii) \(\mu_qv \), then \(\mu \wedge v \neq 0 \).
(iii) \(\mu qv \) iff \(\mu \leq \tau - v \).
(iv) \(\mu_qv \) iff \(x_t \in \mu \) implies \(x_t \in v \) iff \(x_tq\mu \) implies \(x_tq\mu \).
(v) \(x_tq \bigvee_{\mu qv} v_t \) iff there exists \(i_0 \in \mu \) such that \(x_tq\nu_{i_0} \).

Definition 2.2. [28] A function \(\tau : I^X \rightarrow I \) is called a fuzzy topology on \(X \) if it satisfies the following conditions:

1. \(\tau(\emptyset) = \tau(\emptyset) = 1 \).
2. \(\tau(\bigvee_{\mu} v) \geq \bigwedge_{\mu} \tau(v) \), for any \(\{v\}_{\mu} \in I^X \).
3. \(\tau(v_1 \wedge v_2) \geq \tau(v_1) \cap \tau(v_2) \), for any \(v_1, v_2 \in I^X \).

The pair \((X, \tau)\) is called a fuzzy topological space or Šostak’s fuzzy topological space or smooth topological space (for short, fts, sfts, sts).

Remark 2.3. [24] Let \((X, \tau)\) be a sfts. Then, for every \(t \in I_0 \), \(\tau = \{v \in I^X : \tau(v) \geq 1 \} \) is a Change’s fuzzy topology on \(X \).

Theorem 2.4. [26] Let \((X, \tau)\) be a sfts. Then for each \(\mu \in I^X \), \(t \in I_0 \), we define an operator \(C_t : I^X \times I_0 \rightarrow I^X \) as follows:
\[
C_t(\mu, t) = \bigwedge \{ v \in I^X : \mu \leq v, \tau(v - v) \geq 1 \}.
\]

Theorem 2.5. [26] Let \((X, \tau)\) be a sfts. Then for each \(t \in I_0 \), we define an operator \(I_t : I^X \times I_0 \rightarrow I^X \) as follows:

1. \(I_t(\emptyset, t) = \emptyset \).
2. \(\mu \leq I_t(\mu, t) \).
3. \(C_t(\mu, t) \wedge C_t(\nu, t) = C_t(\nu \vee t, t) \).
4. \(C_t(\mu, s) \leq C_t(\mu, t) \) if \(t \leq s \).
5. \(C_t(\mu, t) = C_t(\mu, t) \).

Theorem 2.6. [16] Let \((X, \tau)\) be a sfts. Then for each \(\mu \in I^X \), \(x_t \in P_1(X) \) and \(t \in I_0 \), \(v \) is called

1. \(t \)-open \(Q_\tau \)-neighbourhood of \(x_t \) if \(x_tqv \) with \(\tau(v) \geq 1 \).
2. \(t \)-open \(R_\tau \)-neighbourhood of \(x_t \) if \(x_tqv \) with \(v = I_t(\mu, t) \).

We denote \(Q_\tau(x_t, t) = \{ v \in I^X : x_tqv \wedge \tau(v) \geq 1 \}, R_\tau(x_t, t) = \{ v \in I^X : x_tqv = I_t(\mu, t) \} \).

Definition 2.7. [16] Let \((X, \tau)\) be a sfts. Then for each \(\mu \in I^X \), \(x_t \in P_1(X) \) and \(t \in I_0 \), \(x_t \) is called

1. \(t \)-\(\tau \)-cluster point of \(\mu \) if for every \(v \in Q_\tau(x_t, 1) \), we have \(v \mu qv \).
2. \(t \)-\(\delta \)-cluster point of \(\mu \) if for every \(v \in R_\tau(x_t, 1) \), we have \(v \mu qv \).
3. \(\delta \)-closure operator is a mapping \(D_\tau : I^X \times I_0 \rightarrow I^X \) defined as follows: \(D_\tau(\mu, t) \) or \(D_\tau(\mu, t) \) = \(\{ x_t : x_tqv \wedge \tau(v) \geq 1 \} \).

Definition 2.8. Let \((X, \tau)\) be a sfts. For \(\mu, v \in I^X \) and \(t \in I_0 \), \(\mu \) is called an

1. \(t \)-fuzzy \(\delta \)-semiopen (resp. \(t \)-fuzzy \(\delta \)-semiclosed) [29] set if \(\mu \leq C_t(\delta C_t(\delta C_t(\mu, t), t)) \).
2. \(t \)-fuzzy \(\delta \)-preopen (resp. \(t \)-fuzzy \(\delta \)-preclosed) [29] set if \(\mu \leq I_t(\delta C_t(\delta C_t(\mu, t), t)) \).

(iii) The intersection of all t-fuzzy θ-closed, (resp. t-fuzzy θ-semiclosed, t-fuzzy θ-preclosed) sets containing μ is called the t-fuzzy θ-closure (resp. t-fuzzy θ-semiclosure, t-fuzzy θ-preclosure) of μ and is denoted by θC(μ, t) (resp. θSC(μ, t), θPC(μ, t)).

Lemma 2.12. [32] Let (X, τ) be a sfts, μ, ν ∈ τX and t ∈ I0, then

(i) μ is t-fuzzy θ-open if and only if μ = θI(μ, t).

Lemma 2.13. [32] Let (X, τ) be a sfts, μ, ν ∈ τX and t ∈ I0, then

(i) θI(θI(μ, t)) < θI(μ, t).

Lemma 2.14. [32] Let (X, τ) be a sfts. For μ ∈ τX and t ∈ I0, then the following statements hold:

(i) θSC(μ, t) = μ ∨ I(θSC(μ, t), t), θPC(μ, t) = μ ∨ C(θPC(μ, t), t).

Lemma 2.15. [32] Let (X, τ) be a sfts, μ, ν ∈ τX and t ∈ I0, then

(i) pC(δC(μ, t), t) = δC(δC(μ, t), t) and pC(δC(μ, t), t) = δC(δC(μ, t), t).

Definition 2.9. [32] Let (X, τ) be a sfts, μ, ν ∈ τX and t ∈ I0, then

(i) The t-fuzzy θ-interior (resp. θ-closure) of μ is
\[\thetaI(μ, t) = \bigvee \{I(μ, t) : μ ≥ ν, τ(ν - τ) ≥ t \} \]
\[\thetaC(μ, t) = \bigwedge \{C(μ, t) : μ ≥ ν, τ(ν - τ) ≥ t \}. \]

(ii) The t-fuzzy θ-semi-interior (resp. θ-semi-closure) of μ is
\[θS(μ, t) = \bigvee \{S(μ, t) : μ ≥ ν, ν is t-fsc \} \]
\[θC(μ, t) = \bigwedge \{C(μ, t) : μ ≥ ν, ν is t-fsc \}. \]

(iii) The t-fuzzy θ-pre-interior (resp. θ-pre-closure) of μ is
\[θP(μ, t) = \bigvee \{P(μ, t) : μ ≥ ν, ν is t-fpc \} \]
\[θC(μ, t) = \bigwedge \{C(μ, t) : μ ≥ ν, ν is t-fpc \}. \]

Definition 2.10. [32] Let (X, τ) be a sfts. For μ, ν ∈ τX and t ∈ I0, μ is called an

(i) t-fuzzy θ-open (resp. θ-closed) set if μ = θI(μ, t)
\[\text{(resp. μ = θC(μ, t)).} \]

(ii) t-fuzzy θ-semiopen (resp. θ-semiclosed)
set if μ ≤ C(θI(μ, t), t)
\[\text{(resp. } I(θC(μ, t), t) \text{).} \]

(iii) t-fuzzy θ-preopen (resp. θ-preclosed) set if μ ≤ I(θC(μ, t), t)
\[\text{(resp. } C(θI(μ, t), t) \text{).} \]

Definition 2.11. [32] Let (X, τ) be a sfts. Then

(i) The union of all t-fuzzy θ-open, (resp. t-fuzzy θ-semiopen, t-fuzzy θ-preopen) sets contained in μ is called the t-fuzzy θ-interior (resp. t-fuzzy θ-semiinterior, t-fuzzy θ-preinterior) of μ and is denoted by θI(μ, t) (resp. θS(μ, t), θP(μ, t)).
Proof. of a sfts

Proposition 3.3. Hence

(ii) $MC_\tau(\mu, t) = \bigwedge \{ v \in I^X : \mu \leq v, v \text{ is a } t\text{-fM set} \}$ is called the t-fuzzy M-closure of μ.

Proposition 2.16. [32] Let (X, τ) be a sfts, $\mu \in I^X$ and $t \in I_0$, then

(i) Every t-fuzzy θ-semiopen (resp. t-fuzzy δ-preopen) set is t-fuzzy M-open.

(ii) Every t-fuzzy M-open set is t-fuzzy e-open.

3. t-fuzzy M^*-open sets and t-fuzzy M^*-closed sets

Definition 3.1. Let (X, τ) be a sfts. For $\mu \in I^X$ and $t \in I_0$, μ is called an t-fuzzy

(i) M^*-open set if $\mu \leq I_t(C_\tau(\theta I_t(\mu, t), t), t)$.

(ii) M^*-closed set if $\mu \geq C_\tau(I_t(\theta C_\tau(\mu, t), t), t)$.

The collection of all t-fuzzy M^*-open (resp. t-fuzzy M^*-closed) sets will be denoted by $t\text{-fM}_0^*$ (resp. $t\text{-fM}_c^*$) respectively.

Definition 3.2. Let (X, τ) be a sfts, $\mu, v \in I^X$ and $t \in I_0$,

(i) $M^*_I(\mu, t) = \bigvee \{ v \in I^X : \mu \geq v, v \text{ is a } t\text{-fM}_0^* \text{ set} \}$ is called the t-fuzzy M^*-interior of μ.

(ii) $M^*_C(\mu, t) = \bigwedge \{ v \in I^X : \mu \leq v, v \text{ is a } t\text{-fM}_c^* \text{ set} \}$ is called the t-fuzzy M^*-closure of μ.

Remarks. $M^*_C(\mu, t)$ is the smallest t-fM* set which contains μ and $M^*_I(\mu, t)$ is the largest t-fM* set which is contained in μ. Also $M^*_C(\mu, t) = (\mu, t)$ for any t-fM* set μ and $M^*_I(\mu, t) = (\mu, t)$ for any t-fM* set μ.

Proposition 3.3. The following are equivalent for a subset μ of a sfts (X, τ).

(i) Every t-fuzzy θ-open set is an t-fuzzy M^*-open set.

(ii) Every t-fuzzy M^*-open set is an t-fuzzy θ-semiopen set.

(iii) Every t-fuzzy M^*-open set is an t-fuzzy M-open set.

Proof. (i) Let μ be a t-fuzzy θ-open set. Then $\mu = \theta I_t(\mu, t)$ and by Lemma 2.12(iv), $\theta I_t(\mu, t) \leq I_t(\mu, t) \leq \mu$. Hence $\mu = I_t(\mu, t)$. Since $\mu = \theta I_t(\mu, t) \leq C_\tau(\theta I_t(\mu, t), t)$, then $\mu = I_t(\mu, t) \leq I_t(C_\tau(\theta I_t(\mu, t), t), t)$. Thus μ is a t-fM* set.

(ii) Obvious from the definition.

(iii) Let μ be a t-fM* set. Then

\[
\begin{align*}
\mu & \leq I_t(C_\tau(\theta I_t(\mu, t), t), t) \\
& \leq C_\tau(\theta I_t(\mu, t), t) \\
& \leq C_\tau(\theta I_t(\mu, t), t) \vee I_t(\delta C_\tau(\mu, t), t).
\end{align*}
\]

Hence μ is an t-fM* set.

Remark 3.4. From the above Definitions and Proposition 3.3, it is clear that the following implications are true for a subset μ of a sfts X and $t \in I_0$.

Example 3.5. Let μ and v be fuzzy subsets of $X = \{a, b, c\}$ defined as follows:

$\mu(a) = 0.3, \mu(b) = 0.5, \mu(c) = 0.5$;
$v(a) = 0.5, v(b) = 0.5, v(c) = 0.5$.

Then $\tau : I^X \to I_0$ defined as

\[
\tau(\mu) = \begin{cases}
1, & \text{if } \mu = \emptyset \text{ or } \overline{X}, \\
\frac{1}{2}, & \text{if } \mu = \mu, v, \\
0, & \text{otherwise,}
\end{cases}
\]

is a sfts on X. For $t = \frac{1}{2}$, then v is a $\frac{1}{2}$-fM* set and $\frac{1}{2}$-f\emptyset set.

Example 3.6. Let μ, v and ω be fuzzy subsets of $X = \{a, b, c\}$ defined as follows:

$\mu(a) = 0.3, \mu(b) = 0.4, \mu(c) = 0.5$;
$v(a) = 0.6, v(b) = 0.5, v(c) = 0.5$;
$\omega(a) = 0.7, \omega(b) = 0.6, \omega(c) = 0.5$.

Then $\tau : I^X \to I_0$ defined as

\[
\tau(\mu) = \begin{cases}
1, & \text{if } \mu = \emptyset \text{ or } \overline{X}, \\
\frac{1}{2}, & \text{if } \mu = \mu, v, \\
0, & \text{otherwise,}
\end{cases}
\]

is a sfts on X. For $t = \frac{1}{2}$, then ω is a $\frac{1}{2}$-f\emptyset set but ω is not a $\frac{1}{2}$-fM* set.
Example 3.7. Let \(\mu \) and \(\nu \) be fuzzy subsets of \(X = \{a, b, c\} \) as follows:
\[
\begin{align*}
\mu(a) &= 0.1, \mu(b) = 0.1, \mu(c) = 0.1; \\
\nu(a) &= 0.9, \nu(b) = 0.9, \nu(c) = 0.9.
\end{align*}
\]
Then \(\tau : I^X \rightarrow I \) defined as
\[
\tau(\mu) = \begin{cases}
1, & \text{if } \mu = 0 \text{ or } 1, \\
\frac{1}{2}, & \text{if } \mu = \mu, \\
0, & \text{otherwise},
\end{cases}
\]
is a smooth fuzzy topology on \(X \). For \(t = \frac{1}{2} \), then \(\nu \) is \(\frac{1}{2} \)-fMoset but \(\nu \) is not \(\frac{1}{2} \)-fM* o set.

Theorem 3.8. Let \((X, \tau) \) be a sfts and \(t \in I_\sigma \).

(i) Arbitrary union of \(t \)-fM* o sets is an \(t \)-fM* o set.

(ii) Arbitrary intersection of \(t \)-fM* c sets is an \(t \)-fM* c set.

Proof. (i) Let \(\{\mu_\alpha : \alpha \in \Gamma\} \) be a family of \(t \)-fM* o sets. For each \(\alpha \in \Gamma \),
\[
\mu_\alpha \leq I_\tau(C_\tau(\theta I_\tau(\mu_\alpha, t), t), t).
\]
\[
\bigvee_{\alpha \in \Gamma} \mu_\alpha \leq \bigvee_{\alpha \in \Gamma} I_\tau(C_\tau(\theta I_\tau(\mu_\alpha, t), t), t).
\]
\[
\leq I_\tau(C_\tau(\theta I_\tau(\bigvee_{\alpha \in \Gamma} \mu_\alpha, t), t), t).
\]
(ii) Similar to the proof of (i).

Lemma 3.9. For a sfts \((X, \tau) \), the family of all \(t \)-fuzzy \(M^* \)-open sets of \(X \) forms a smooth topology denoted by \(\tau_{M^*} \) for \(X \).

Proof. It is obvious that \(\emptyset \) and \(\top \) are \(fM^* \) sets of \(X \) and from Theorem 3.8, we have arbitrary union of \(t \)-fM* o sets is an \(t \)-fM* o set.

Let \(\mu \) and \(\nu \) be \(t \)-fM* o sets. Then
\[
\mu \leq I_\tau(C_\tau(\theta I_\tau(\mu, t), t), t)
\]
and
\[
\nu \leq I_\tau(C_\tau(\theta I_\tau(\nu, t), t), t).
\]
Hence \(\mu \wedge \nu \)
\[
\leq I_\tau(C_\tau(\theta I_\tau(\mu, t), t) \wedge I_\tau(C_\tau(\theta I_\tau(\nu, t), t), t), t)
\]
\[
\leq I_\tau(C_\tau(\theta I_\tau(\mu, t) \wedge \theta I_\tau(\nu, t), t), t), t)
\]
\[
\leq I_\tau(C_\tau(\theta I_\tau(\nu, t), t), t)
\]
Hence the finite intersection of \(t \)-fM* o sets is \(t \)-fM* o and hence \(\tau_{M^*} \) is a smooth topology for \(X \).

Theorem 3.10. The following hold for a subset \(\mu \) of a sfts \(X \).

(i) \(\mu \) is \(t \)-fM* o \(\iff \) \(\mu = \mu \wedge I_\tau(C_\tau(\theta I_\tau(\mu, t), t), t) \).

(ii) \(\mu \) is \(t \)-fM* c \(\iff \) \(\mu = \mu \vee I_\tau(C_\tau(\theta I_\tau(\mu, t), t), t) \).

(iii) \(M^* I_\tau(\mu, t) = \mu \wedge I_\tau(C_\tau(\theta I_\tau(\mu, t), t), t) \).

(iv) \(M^* C_\tau(\mu, t) = \mu \vee C_\tau(I_\tau(\theta C_\tau(\mu, t), t), t), t) \).

Proof. (i) Let \(\mu \) be \(t \)-fM* o. Then
\[
\mu \leq I_\tau(C_\tau(\theta I_\tau(\mu, t), t), t)
\]
We obtain \(\mu = \mu \wedge I_\tau(C_\tau(\theta I_\tau(\mu, t), t), t) \).
Conversely, let \(\mu = \mu \wedge I_\tau(C_\tau(\theta I_\tau(\mu, t), t), t) \).
We have
\[
\mu = \mu \wedge I_\tau(C_\tau(\theta I_\tau(\mu, t), t), t)
\]
\[
\leq I_\tau(C_\tau(\theta I_\tau(\mu, t), t), t).
\]
Hence \(\mu \) is \(t \)-fM* o.

(ii) Let \(\mu \) be \(t \)-fM* c. Then \(\mu \geq C_\tau(I_\tau(\theta C_\tau(\mu, t), t), t) \).
We obtain \(\mu = \mu \vee C_\tau(I_\tau(\theta C_\tau(\mu, t), t), t) \).
Conversely, let \(\mu = \mu \vee C_\tau(I_\tau(\theta C_\tau(\mu, t), t), t) \).
We have
\[
\mu = \mu \vee C_\tau(I_\tau(\theta C_\tau(\mu, t), t), t)
\]
\[
\geq C_\tau(I_\tau(\theta C_\tau(\mu, t), t), t).
\]
Hence \(\mu \) is \(t \)-fM* c.

(iii) Since \(M^* I_\tau(\mu, t) \) is \(t \)-fM* o, we have,
\[
I_\tau(C_\tau(\theta I_\tau(\mu, t), t), t) \geq I_\tau(C_\tau(\theta I_\tau(M^* I_\tau(\mu, t), t), t), t)
\]
\[
\geq M^* I_\tau(\mu, t).
\]
Hence,
\[
\mu \wedge I_\tau(C_\tau(\theta I_\tau(\mu, t), t), t) \geq M^* I_\tau(\mu, t).
\]
On the other way, since
\[
I_\tau(C_\tau(\theta I_\tau(\mu, t), t), t)
\]
\[
\geq I_\tau(C_\tau(\theta I_\tau(\mu, t) \wedge \theta I_\tau(\theta I_\tau(\mu, t), t), t), t), t)
\]
\[
\geq I_\tau(C_\tau(\theta I_\tau(\mu, t) \wedge \theta I_\tau(\theta I_\tau(\mu, t), t), t), t)
\]
\[
= I_\tau(C_\tau(\theta I_\tau(\mu, t) \wedge \theta I_\tau(\theta I_\tau(\mu, t), t), t), t)
\]
\[
\geq \mu \wedge I_\tau(C_\tau(\theta I_\tau(\mu, t), t), t), t)
\]
Hence, \(\mu \wedge I_\tau(C_\tau(\theta I_\tau(\mu, t), t), t) \) is \(t \)-fM* o contained in \(\mu \). Hence
\[
M^* I_\tau(\mu, t) \geq \mu \wedge I_\tau(C_\tau(\theta I_\tau(\mu, t), t), t).
\]
Thus, we obtain
\[
M^* I_\tau(\mu, t) = \mu \wedge I_\tau(C_\tau(\theta I_\tau(\mu, t), t), t).
\]
(iv) Since \(M^* C_\tau(\mu, t) \) is \(t \)-fM* c, we have, \(C_\tau(I_\tau(\theta C_\tau(\mu, t), t), t) \).
\[
= C_\tau(I_\tau(\theta C_\tau(M^* C_\tau(\mu, t), t), t), t)
\]
\[
\leq M^* C_\tau(\mu, t).
\]
Hence
\[
\mu \vee C_\tau(I_\tau(\theta C_\tau(\mu, t), t), t), t) \leq M^* C_\tau(\mu, t).
\]
On the other way, since
\[
C_\tau(I_\tau(\theta C_\tau(\mu, t) \vee C_\tau(I_\tau(\theta C_\tau(\mu, t), t), t), t), t)
\]
\begin{align*}
\leq C_2(I_2(\theta C_2(\mu, t) \lor \theta C_2(\theta I_2(\theta C_2(\mu, t), t), t), t)) \\
= C_2(I_2(\theta C_2(\mu, t) \lor \theta C_2(\theta I_2(\theta C_2(\mu, t), t), t), t)) \\
= C_2(I_2(\theta C_2(\theta I_2(\theta C_2(\mu, t), t), t), t), t) \\
= C_2(I_2(\theta C_2(\mu, t), t), t) \\
\leq \mu \lor C_2(I_2(\theta C_2(\mu, t), t), t).
\end{align*}

Then

\[\mu \lor C_2(I_2(\theta C_2(\mu, t), t), t) \text{ is } t\text{-fM}^c\text{ containing } \mu. \]

Hence

\[M^c C_2(\mu, t) \leq \mu \lor C_2(I_2(\theta C_2(\mu, t), t), t). \]

Thus, we obtain

\[M^c C_2(\mu, t) = \mu \lor C_2(I_2(\theta C_2(\mu, t), t), t). \]

\[\Box \]

Theorem 3.11. Let \((X, \tau)\) be a fts. Let \(\mu \in \mathcal{P}^X\) and \(t \in I_0.\)

(i) \(\mu\) is t-fM\(^c\) o if \(\mu = M^t I_2(\mu, t).\)

(ii) \(\mu\) is t-fM\(^c\) o if \(\mu = M^c C_2(\mu, t).\)

Proof. (i) Let \(\mu\) be an t-fM\(^c\) o, then

\[M^t I_2(\mu, t) = \{ v : \mu \geq v, v \text{ is a t-fM}^c\} \]

Conversely, let \(\mu = M^t I_2(\mu, t),\) since \(M^t I_2(\mu, t)\) is the arbitrary union of t-fM\(^c\) o then \(\mu\) is t-fM\(^c\) o.

(ii) It is similar to part (i).

\[\Box \]

Theorem 3.12. Let \((X, \tau)\) be a fts. For \(\mu \in \mathcal{P}^X\) and \(t \in I_0\) we have

(i) \(M^t I_2(T - \mu, t) = \overline{T} - M^c C_2(\mu, t).\)

(ii) \(M^c C_2(T - \mu, t) = \overline{T} - M^t I_2(\mu, t).\)

Proof. By Theorem 3.10 and 3.11, we have for all \(\mu \in \mathcal{P}^X\) and \(t \in I_0, (i) M^t I_2(T - \mu, t)

\[= (T - \mu) \lor I_2(\theta C_2(\mu, t), t), t). \]

\[= (T - \mu) \lor (T - C_2(I_2(\theta C_2(\mu, t), t), t)), t). \]

\[= (T - \mu) \lor (T - C_2(I_2(\theta C_2(\mu, t), t)), t)). \]

\[= (T - \mu) \lor (T - C_2(I_2(\theta C_2(\mu, t), t), t)). \]

\[= T - M^c C_2(\mu, t). \]

(ii) \(M^c C_2(T - \mu, t)

\[= (T - \mu) \lor C_2(I_2(\theta C_2(\mu, t), t), t), t). \]

\[= (T - \mu) \lor (T - I_2(\theta C_2(\mu, t), t), t)). \]

\[= (T - \mu) \lor (T - I_2(\theta C_2(\mu, t), t), t)). \]

\[= (T - \mu) \lor (T - I_2(\theta C_2(\mu, t), t), t)). \]

\[= T - M^t I_2(\mu, t). \]

\[\Box \]

Theorem 3.13. Let \((X, \tau)\) be a fts. Let \(\mu \in \mathcal{P}^X\) and \(t \in I_0,\) the following statements hold:

(i) \(M^c C_2(\overline{0}, t) = \overline{0}\) and \(M^t I_2(\overline{T}, t) = \overline{T}.\)

(ii) \(I_2(\mu, t) \leq M^t I_2(\mu, t) \leq \mu \leq M^c C_2(\mu, t) \leq C_2(\mu, t).\)

(iii) \(\mu \leq v \Rightarrow M^t I_2(\mu, t) \leq M^t I_2(v, t) \text{ and } M^c C_2(\mu, t) \leq M^c C_2(v, t).\)

(iv) \(M^t C_2(M^t C_2(\mu, t), t) = M^t C_2(\mu, t) \text{ and } M^t I_2(M^t I_2(\mu, t), t) = M^t I_2(\mu, t).\)

(v) \(M^t C_2(\mu, t) \lor M^t C_2(v, t) \leq M^t C_2(\mu \lor v, t).\)

\[M^t I_2(\mu, t) \lor M^t I_2(v, t) \leq M^t I_2(\mu \lor v, t). \]

(vi) \(M^t C_2(\mu, t) \land M^t C_2(v, t) \geq M^t C_2(\mu \land v, t) \text{ and } M^t I_2(\mu, t) \land M^t I_2(v, t) \geq M^t I_2(\mu \land v, t).\)

Proof. (i), (ii) and (iii) are trivial from the Definitions of \(M^t C_2\) and \(M^t I_2.\)

(iv) By Theorem 3.10 and 3.11, \(M^t C_2(M^t C_2(\mu, t), t) = C_2(I_2(\theta C_2(\mu, t), t), t). \)

But

\[M^t C_2(\mu, t) \leq M^t C_2(M^t C_2(\mu, t), t). \]

Hence

\[M^t C_2(\mu, t) = M^t C_2(M^t C_2(\mu, t), t). \]

\[M^t I_2(\mu, t) = M^t I_2(M^t I_2(\mu, t), t). \]

\[\leq I_2(\theta C_2(\mu, t) \lor I_2(\theta C_2(\mu, t), t), t), t). \]

\[\leq I_2(\theta C_2(\mu, t) \lor I_2(\theta C_2(\mu, t), t), t), t). \]

\[\leq I_2(\theta C_2(\mu, t), t), t). \]

\[\leq M^t I_2(\mu, t). \]

But \(M^t I_2(\mu, t) \geq M^t I_2(M^t I_2(\mu, t), t).\) Hence \(M^t I_2(\mu, t) = M^t I_2(M^t I_2(\mu, t), t).\)

(v) By Theorem 3.10 and 3.11, we have,

\[M^t C_2(\mu, t) \lor M^t C_2(v, t) = [\mu \lor I_2(\theta C_2(\mu, t), t), t) \lor [v \lor I_2(\theta C_2(\mu, t), t), t)] \]

\[= [\mu \lor v) \lor (I_2(\theta C_2(\mu, t), t), t) \lor (I_2(\theta C_2(\mu, t), t), t)] \]

\[\leq M^t C_2(\mu \lor v, t). \]

Hence \(M^t C_2(\mu, t) \lor M^t C_2(v, t) \leq M^t C_2(\mu \lor v, t).\)

\[M^t I_2(\mu, t) \lor M^t I_2(v, t) = [\mu \lor I_2(\theta C_2(\mu, t), t), t) \lor [v \lor I_2(\theta C_2(\mu, t), t), t)] \]

\[= [\mu \lor v) \lor (I_2(\theta C_2(\mu, t), t), t) \lor (I_2(\theta C_2(\mu, t), t), t)] \]

\[\leq M^t I_2(\mu \lor v, t). \]

Hence \(M^t I_2(\mu, t) \lor M^t I_2(v, t) \leq M^t I_2(\mu \lor v, t).\)

(vi) \(M^t C_2(\mu \lor v, t) = [\mu \lor v) \lor C_2(I_2(\theta C_2(\mu \lor v, t), t), t)] \)

\[= [\mu \lor v) \lor C_2(I_2(\theta C_2(\mu \lor v, t), t), t) \]

\[\leq [\mu \lor v) \lor C_2(I_2(\theta C_2(\mu \lor v, t), t), t)] \]

\[= M^t I_2(\mu \lor v, t). \]

Hence \(M^t C_2(\mu, t) \land M^t C_2(v, t) \geq M^t C_2(\mu \land v, t).\)
Theorem 3.15. The following are equivalent for a subset μ of a sfts (X, τ).

(i) μ is an t-M^*o set.

(ii) $\mu \leq \theta sC_\tau(\theta I_\tau(\mu, t), 1)$.

(iii) $\theta sC_\tau(\mu, t) = \theta sC_\tau(\theta I_\tau(\mu, t), t)$.

Proof.
(i) \Rightarrow (ii): Let μ be an t-M^*o set.
Then by Theorem 3.13, $\mu = M^*I_\tau(\mu, 1)$.
By Lemma 3.14,

$$\mu = \mu \land \theta sC_\tau(\theta I_\tau(\mu, t), t) \leq \theta sC_\tau(\theta I_\tau(\mu, t), t).$$

Hence $\mu \leq \theta sC_\tau(\theta I_\tau(\mu, t), t)$.

(ii) \Rightarrow (i): Let $\mu \leq \theta sC_\tau(\theta I_\tau(\mu, t), t)$. This implies that $\mu \leq \mu \land \theta sC_\tau(\theta I_\tau(\mu, t), t) = M^*I_\tau(\mu, 1)$.
Thus $\mu \leq M^*I_\tau(\mu, 1)$ and hence

$$\mu = M^*I_\tau(\mu, 1),$$

therefore μ is t-M^*o.

(ii) \Rightarrow (iii): Let $\mu \leq \theta sC_\tau(\theta I_\tau(\mu, t), t)$. Then
$\theta sC_\tau(\mu, t) \leq \theta sC_\tau(\theta I_\tau(\mu, t), t)$. But $\theta I_\tau(\mu, t) \leq \mu$.
Hence $\theta sC_\tau(\theta I_\tau(\mu, t), t) \leq \theta sC_\tau(\mu, t)$.
Thus $\theta sC_\tau(\mu, t) = \theta sC_\tau(\theta I_\tau(\mu, t), t)$.

(iii) \Rightarrow (ii): Let $\theta sC_\tau(\mu, t) = \theta sC_\tau(\theta I_\tau(\mu, t), t)$. Then $\theta sC_\tau(\mu, t) \leq \theta sC_\tau(\theta I_\tau(\mu, t), t)$.
But $\mu \leq \theta sC_\tau(\mu, t)$ and therefore

$$\mu \leq \theta sC_\tau(\theta I_\tau(\mu, t), t).$$

Theorem 3.16. The following are equivalent for a μ of a sfts (X, τ).

(i) μ is an t-M^*c set.

(ii) $\mu \geq \theta sI_\tau(\theta C_\tau(\mu, t), t)$.

(iii) $\theta sI_\tau(\mu, t) = \theta sI_\tau(\theta C_\tau(\mu, t), t)$.

Proof. (i) \Rightarrow (ii): Let μ be an t-M^*c set. Then by Theorem 3.13, $\mu = M^*C_\tau(\mu, 1)$.
By Lemma 3.14,

$$\mu = \mu \lor \theta sI_\tau(\theta C_\tau(\mu, t), t) \geq \theta sI_\tau(\theta C_\tau(\mu, t), t).$$

Hence $\mu \geq \theta sI_\tau(\theta C_\tau(\mu, t), t)$.

(ii) \Rightarrow (i): Let $\mu \geq \theta sI_\tau(\theta C_\tau(\mu, t), t)$. This implies that

$$\mu \geq \mu \lor \theta sI_\tau(\theta C_\tau(\mu, t), t) = M^*C_\tau(\mu, t).$$

Hence $\mu \geq M^*C_\tau(\mu, t)$ and thus $\mu = M^*C_\tau(\mu, t)$ and therefore μ is t-M^*c.

(iii) \Rightarrow (ii): Let $\mu \geq \theta sI_\tau(\theta C_\tau(\mu, t), t)$.
Then $\theta sI_\tau(\mu, t) \geq \theta sI_\tau(\theta C_\tau(\mu, t), t)$.
But $\theta C_\tau(\mu, t) \geq \mu$.
Hence $\theta sI_\tau(\theta C_\tau(\mu, t), t) \geq \theta sI_\tau(\mu, t)$.
Thus

$$\theta sI_\tau(\mu, t) = \theta sI_\tau(\theta C_\tau(\mu, t), t).$$

(iii) \Rightarrow (iii): Let $\mu \geq \theta sI_\tau(\theta C_\tau(\mu, t), t)$.
Then $\theta sI_\tau(\mu, t) \geq \theta sI_\tau(\theta C_\tau(\mu, t), t)$.
But $\mu \geq \theta sI_\tau(\mu, t)$ and therefore $\mu \geq \theta sI_\tau(\theta C_\tau(\mu, t), t)$.

Theorem 3.17. Let (X, τ) be a sfts. For $\mu, v \in I^X$ and $t \in I_0$, then,

(i) If $\tau(v) \geq t$ where v is a crisp subset and μ is an t-M^*o set, then $\mu \land v$ is an t-M^*o set.

(ii) If $\tau(\overline{v}) \geq t$ where v is a crisp subset and μ is an t-M^*c set, then $\mu \lor v$ is an t-M^*c set.

Proof.
(i) Let μ be t-M^*o and $v \in I^X$ with $\tau(v) \geq t$ which is a crisp subset.
Then

$$\mu \land v \leq I_\tau(C_\tau(\theta I_\tau(\mu, t), t), t) \land v \leq I_\tau(C_\tau(\theta I_\tau(\mu \land v, t), t), t).$$

Hence $\mu \land v$ is t-M^*o.

(ii) Let μ be t-M^*c and $v \in I^X$ with $\tau(\overline{v}) \geq t$ which is a crisp subset.
Then

$$\mu \lor v \geq C_\tau(I_\tau(\theta C_\tau(\mu, t), t), t) \lor v \geq C_\tau(I_\tau(\theta C_\tau(\mu \lor v, t), t), t).$$

Hence $\mu \lor v$ is t-M^*c.

Theorem 3.18. Let (X, τ) be a sfts. For $\mu, v \in I^X$ and $t \in I_0$, then,

$$M^*I_\tau(\mu \land v, t) = (\mu \land v) \land I_\tau(C_\tau(\theta I_\tau(\mu \land v, t), t), t) = (\mu \land v) \land I_\tau(C_\tau(I_\tau(\mu \land v, t), t), t) \leq [\mu \land I_\tau(C_\tau(\theta I_\tau(\mu \land v, t), t), t) \land [\nu \land I_\tau(C_\tau(I_\tau(\mu \land v, t), t), t)] = M^*I_\tau(\mu, t) \land M^*I_\tau(v, t).
Hence $M^*I_\tau(\mu, t) \land M^*I_\tau(v, t) \geq M^*I_\tau(\mu \land v, t)$.

Lemma 3.14. Let (X, τ) be a sfts. Let $\mu \in I^X$ and $t \in I_0$, then

(i) $M^*C_\tau(\mu, t) = \mu \land \theta sI_\tau(\theta C_\tau(\mu, t), t)$.

(ii) $M^*I_\tau(\mu, t) = \mu \land \theta sC_\tau(\theta I_\tau(\mu, t), t)$.

Proof.
(i) From Lemma 2.14(4),

$$\mu \land \theta sI_\tau(\theta C_\tau(\mu, t), t) = \mu \land (I_\tau(C_\tau(\theta C_\tau(\mu, t), t), t)) = M^*C_\tau(\mu, t).$$

(ii) From Lemma 2.14(3),

$$\mu \land \theta sC_\tau(\theta I_\tau(\mu, t), t) = \mu \land (I_\tau(C_\tau(\theta I_\tau(\mu, t), t), t)) = M^*I_\tau(\mu, t).$$
(i) μ is t-fM^o iff $1 - \mu$ is t-fM^c.

(ii) If $\tau(\mu) \geq t$, then μ is t-fM^o set.

(iii) $I_C(\mu, t)$ is an t-fM^o set.

(iv) $C_\tau(\mu, t)$ is an t-fM^c set.

Proof. (i) and (ii) are trivial.

(iii) From the Definition of I_C of Theorem 2.5 and Definition 2.2, since $\tau(I_C(\mu, t)) \geq t$, by (ii) $I_C(\mu, t)$ is an t-fM^o set.

(iv) Since $\overline{1 - C_\tau(\mu, t)} = I_C(\overline{1 - \mu}, t)$ from Theorem 2.5, hence we have $\tau(\overline{1 - C_\tau(\mu, t)}) \geq t$. Hence by (ii), we have $\overline{1 - C_\tau(\mu, t)}$ is t-fM^o. By (i) $C_\tau(\mu, t)$ is an t-fM^c set.

Theorem 3.19. Let (X, τ) be a sfts, $\mu \in P^X$ and $t \in I_0$. Then

(i) If μ is t-fM^o with $\tau(\overline{1 - \mu}) \geq t$, then μ is t-fM^o set.

(ii) If μ is t-fM^c with $\tau(\mu) \geq t$, then μ is t-fM^o set.

(iii) If μ is t-$f\theta$ set with $\tau(\mu) \geq t$, then μ is t-fM^o set.

(iv) If μ is t-$f\theta$ set with $\tau(\overline{1 - \mu}) \geq t$, then μ is t-fM^c set.

Proof. We prove (i) and (iii). Other results have similar proofs.

(i) Let μ be an t-fM^o set and $\tau(\overline{1 - \mu}) \geq t$. Then $\delta C_\tau(\mu, t) = \mu$.

$\mu \leq C_\tau(\theta I_C(\mu, t), t) \lor I_C(\delta C_\tau(\mu, t), t)$

$= C_\tau(\theta I_C(\mu, t), t) \lor I_C(\mu, t)$

$\leq C_\tau(\theta I_C(\mu, t), t)$

$\leq I_C(\theta I_C(\mu, t), t)$.

Hence μ is a t-$fuzzy M^o$-open set.

(iii) Let μ be an t-$f\theta$ set and $\tau(\mu) \geq t$.

$\mu \leq C_\tau(\theta I_C(\mu, t), t)$

$\leq I_C(\theta I_C(\mu, t), t)$

Thus μ is a t-$fuzzy M^o$-open set.

4. Conclusion

In this paper, we introduce the idea of t-$fuzzy M^o$-open (resp. t-$fuzzy M^o$-closed) sets in fuzzy topological spaces in the sense of Šostak’s. Also, we introduce t-$fuzzy M^c$-interior (resp. t-$fuzzy M^c$-closure) and investigate some of their properties. Moreover, we investigate the relationships between t-$fuzzy open$, t-$fuzzy \theta$-semiopen, t-$fuzzy \theta$-open, t-$fuzzy \delta$-semiopen, t-$fuzzy \delta$-preopen, t-$fuzzy a$-open, t-$fuzzy e$-open and t-$fuzzy e^*$-open in Šostak’s fuzzy topological spaces.

References

[8] Erdal Ekici, A Note on a-open sets and e^*-open sets, Faculty of Sciences and Mathematics University of Nis, Serbia, Filomat 22 : 1 (2008), 89-96.

[19] Jin Han Park and Bu Young Lee, Fuzzy semi-preopen...

ISSN(P):2319 – 3786
Malaya Journal of Matematik
ISSN(O):2321 – 5666
