Injective chromatic number of lexicographic product of two graphs

Bhanupriya C K 1* and Sunitha M S 2

Abstract
The injective chromatic number of a graph G, denoted by $i(G)$, is the minimum number of colors needed to color the vertices of G such that two vertices with a common neighbor are assigned distinct colors. In this paper $i(G[H])$ are determined, where $G[H]$ is the composition (or lexicographic product) of G (P_n, C_n and K_n) with any arbitrary graph H.

Keywords
injective chromatic number, lexicographic product.

AMS Subject Classification
05C15, 05C76.

1. Introduction
The basic definitions of graph theory are taken from [2]. The concepts of injective coloring and injective chromatic number $i(G)$ of a graph G are introduced by G. Hahn et al [1]. The authors established some upper and lower bounds for injective chromatic number $i(G)$ and are obtained the injective chromatic number of the hypercubes also. In [5] B. Luzar et al obtained some results on injective coloring of planar graphs with large girth and few colors. Seog-Jin kim et al [3] proved that injective chromatic number of G is at least half of the chromatic number of G^2, the square of G. The injective chromatic sum $\sum_i(G)$ and injective strength $s_i(G)$ are introduced by A. Kishore and M.S. Sunitha [4]. The authors obtained the injective chromatic sum of some classes of graphs, suggested bounds for injective chromatic sum and established injective chromatic sum of graph complements, join, union, product and corona. The concept of injective chromatic polynomial is also introduced in this paper. J. Song and J. Yue. [6] obtained some sharp bounds (or exact values) of injective chromatic number of Cartesian product, direct product, lexicographic product, union, join, and disjunction of graphs.

In this paper $i(G[H])$ are determined, where $G[H]$ is the composition (or lexicographic product) of G (P_n, C_n and K_n) with any arbitrary graph H.

2. Preliminaries
The concepts of injective coloring and injective chromatic number are introduced in 2002 by G. Hahn et al. and it is defined as follows:

Definition 2.1. [1] An injective coloring of a graph $G = (V, E)$ is a coloring of the vertices of G that assigns different colors to any pair of vertices that have a common neighbor.

Definition 2.2. [1] The injective chromatic number $i_i(G)$ of a graph $G = (V, E)$ is the minimum number of colors needed to color the vertices of G such that two vertices with a common neighbor are assigned distinct colors.

Definition 2.3. [2] The composition (or lexicographic product) $G = G_1[G_2]$ of two graphs $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ has $V = V_1 \times V_2$ as its vertex set, and $u = (u_1, u_2)$ is adjacent with $v = (v_1, v_2)$ whenever u_1 adjacent v_1 or $u_1 = v_1$ and u_2 adjacent v_2.
3. Main Results

In this section the injective chromatic number of lexicographic products are obtained. For any two arbitrary graphs G and H, the injective chromatic number of $K_n[G]$ is bounded, it is established in [6].

Remark 3.1. [6] Let G and H be graphs. Then $\chi_i(G[H]) \leq (\Delta + 1)\chi_i(H)$ and the bound is sharp.

The following theorem shows that the injective chromatic number of $K_n[G]$ is the total number of vertices of $K_n[G]$.

Theorem 3.2. For any connected graph G with at least two vertices,

$$\chi_i(K_n[G]) = n|V(G)|, \quad n \geq 2.$$

Proof. Let v_1, v_2, \ldots, v_n be the vertices of K_n and u_1, u_2, \ldots, u_m be the vertices of G. The vertex set of $K_n[G]$ is $V = \{(v_1, u_1), (v_1, u_2), \ldots, (v_1, u_m), (v_2, u_1), (v_2, u_2), \ldots, (v_2, u_m), \ldots, (v_n, u_1), (v_n, u_2), \ldots, (v_n, u_m)\} = V_1 \cup V_2 \cup \ldots \cup V_n$. Note that any vertex (v_i, u_j), $1 \leq i \leq n$ is a common neighbor of any two vertices in V_i, $1 \leq i, j \leq n$, $i \neq j$ and thus m distinct colors are needed for the vertices in V_i. Since G is a connected graph, $N(u_i) \neq \emptyset$, $1 \leq i \leq m$ and let $u_j \in N(u_i)$. Then there is a path $(v_i, u_j)(v_i, u_j)(v_i, u_j)$, $1 \leq i, j \leq n$, $i \neq j$ cannot have vertices with same colors. Thus each set V_i, $1 \leq i \leq n$ need distinct m colors and hence $\chi_i(K_n[G]) = nm = n|V(G)|$. □

The injective chromatic number of lexicographic product of P_n with any arbitrary connected graph G is obtained as follows.

Theorem 3.3. For any connected graph G with at least two vertices,

$$\chi_i(P_n[G]) = \begin{cases} 2|V(G)| & \text{for } n = 2, \\ 3|V(G)| & \text{otherwise}. \end{cases}$$

Proof. Let v_1, v_2, \ldots, v_n be the vertices of P_n and u_1, u_2, \ldots, u_m be the vertices of G. The vertex set of $P_n[G]$ is $V = \{(v_1, u_1), (v_1, u_2), \ldots, (v_1, u_m), (v_2, u_1), (v_2, u_2), \ldots, (v_2, u_m), \ldots, (v_n, u_1), (v_n, u_2), \ldots, (v_n, u_m)\} = V_1 \cup V_2 \cup \ldots \cup V_n$. Any vertex in V_2 is a common neighbor for the vertices in V_1, then m distinct colors are needed to color the vertices in V_1. Let i be the color of the vertices (v_1, u_i), $1 \leq i \leq m$. Now consider the vertices in V_2. Since G is a connected graph, $N(u_i) \neq \emptyset$ and let $u_j \in N(u_i)$, then $(v_2, u_j)(v_2, u_j)(v_2, u_j)$, $1 \leq i, k \leq m$ form a path of length 2. Thus any color of (v_1, u_j) cannot be the color of vertices in V_2. Thus a new set of m colors are needed to color the vertices in V_2. Let $m+i$ be the color of (v_2, u_j) $1 \leq i \leq m$. Now consider the vertices in V_3. Here $(v_3, u_i)(v_3, u_j)(v_3, u_k)$, $1 \leq i, k \leq m$ form a path of length 2. Thus any color of V_2 cannot be the color of the vertices in V_3. Also $(v_3, u_j)(v_3, u_k)(v_1, u_k)$, $1 \leq i, j, k \leq m$ form a
total of $5n$ colors are needed for an injective coloring of $C_{3k+2}[G]$.

Conclusion

In this paper $\chi_i(G[H])$ are determined, where $G[H]$ is the composition (or lexicographic product) of two graphs G and H. Where G is P_n, C_n or K_n and H is any arbitrary graph.

References

