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Abstract
A system that is available only once is called a one-shot system. To ensure its high availability, an inspection
is performed regularly because its failure is detected only through it. In this paper, we discuss management
policies in replacement timings of a single-unit one-shot system whose failures are removed by minimal repairs.
We compare the two replacement policies that manages the number of failures and the number of periodic
inspections. Our objective is to compare the two management policies of replacement timings by formulating the
incurred cost rate, which is cost per unit time, and the availability.
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1. Introduction
A system that can be used only once such as a missile or an

air-bag is called one-shot system [1] or dormant system as it
spends almost all its life in repository. Since one-shot system
is mainly used for some critical missions including combat
and life-saving, it is imperatively important to maintain its
high availability.

Systems deteriorate with time even they are in storage,
and it is difficult to judge whether a one-shot system has fault

or not by a simple visual check. Thus, detailed inspections
are performed to detect failures. We want to inspect a system
as frequently as possible to ensure a high reliability, but the
frequent inspection may incur an expensive cost which may be
unacceptable for users. Thus, we should optimize inspection
schedules.

Many researchers have studied the optimal inspection
schedules [2]-[8]. Although they considered that a system
is replaced upon a failure detection, many real systems such
as military missiles are minimally repaired and resume their
operation after the repair. Minimal repair recovers the failed
system without disturbing the distribution or hazard rate of the
repaired system [9]. To take this situation into consideration,
we proposed maintenance models of one-shot system with
minimal repair [10] [11]. When an IFR system is minimally
repaired upon failures, it should be replaced at certain time to
renew the system. We assumed that a system is replaced at
the detection of nth failure.

However, not all real one-shot systems are replaced upon a
failure detection. Periodic replacement has rather advantage in
the preparation for replacement work due to the fixed and pre-
determined time. Unfortunately, the comparison between two
management polices of replacement tinging, a policy based
on the number of failures and a periodic policy had not been
conducted for a one-shot system. For a system whose failure
is detected immediately without inspection and is repaired
minimally, Park [12] showed that number-of-failure-based
policy has advantage in cost when failures occur following
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Weibull distributions. In this paper, we compare the two poli-
cies for a one-shot system. We call the two management
policies the number-of-failure-based (NOFB) policy and the
periodic policy. We assume periodic inspection. The periodic
policy replaces the system at mth inspection, whereas the
NOFB policy does it at nth detection of failure. We define the
optimal solution as the inspection interval and the number of
failures until replacement or the number of inspections until
replacement that minimizes the expected cost rate, which is
incurred cost per unit time, ensuring a certain mean availabil-
ity. Optimal cost rates in two policies given by the optimal
solutions are compared.

Formulating the cost rate of the periodic policy is not easy
due to the vast number of cases that will happen. To deal
with the policy easily, we propose an approximation method
and estimate its accuracy. This approximation is to be shown
useful to know the rough area of optimal solution.

Notations used in the paper and model assumption are
described in section 2 and 3, respectively. In section 4, we
introduce the cost rate and the availability of two policies.
Approximation method for periodic policy is proposed there.
In section 5, we show the comparison results of two policies
and the error of the approximation. Monte Carlo method is
used to compare the two policies. Lastly, we conclude this
paper.

2. Notations
We use the following notations in this paper.

n: number of failures until a replacement in the NOFB policy
(the system is replaced at nth failure detection)

m: number of inspections until a replacement in the periodic
policy (the system is replaced at mth inspection)

T : inspection interval

CI : inspection cost per one time

CR: minimal repair cost

CP: replacement cost, CP >CR

F(l)(x): a failure distribution function of the system after
the (l− 1)th minimal repair, where l = 1 means the
distribution function of new system and we write simply
F(x)

F̄(l)(x): a reliability function of the system after the (l−1)th
minimal repair, 1−F(l)(x), and F̄(x) when l = 1

µ(l): mean time between the (l−1)th minimal repair and the
next failure

H(t): cumulative hazard rate function of the system

h(t): hazard rate function of the system

η : scale parameter of a Weibull distribution

β : shape parameter of a Weibull distribution

C f (n,T ): expected cost rate for (0,∞) in the NOFB policy

C∗f : optimal cost rate in the NOFB policy

Cp(m,T ): expected cost rate for (0,∞) in the periodic policy

C∗p: optimal cost rate in the periodic policy

A f (n,T ): mean availability for (0,∞) in the NOFB policy

Ap(m,T ): mean availability for (0,∞) in the periodic policy

α: required mean availability for the system

3. Model Description
Our model is described as follows:

(1) A one-shot system consists of one unit and its hazard
rate strictly increases with time.

(2) The system is inspected at every T .

(3) A failure is detected perfectly at the next inspection of
the occurrence and is repaired minimally. Hazard rate
of the system does not change by the repair.

(4) In the NOFB policy, a system is replaced and becomes
“as good as new” when nth failure is detected. In peri-
odic policy, the system is replaced and renewed at every
mT . The system is replaced without inspection at mT
in the periodic policy.

(5) All times needed for inspection, minimal repair, and
replacement are negligible.

Figs 1 and 2 show the processes of the system under the NOFB
policy and the periodic one, respectively.

time0
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Failure
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Figure 1. Process of the system under the NOFB policy.
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Figure 2. Process of the system under the periodic policy.

85



Replacement timing for a one-shot system with minimal repair — 86/89

4. Analysis
In this section, we introduce the expected cost rate and

the mean availability for two policies and compare the opti-
mal cost rates analytically for special cases. In the periodic
policy, an approximation method is proposed to simplify the
calculation.

4.1 NOFB Policy
In this policy, we already derived its expected cost rate

and the mean availability as shown in (1) and (2) [10].

C f (n,T ) =
CI

T
+

(n−1)CR +CP

T ∑
n
l=1 ∑

∞
k=0 F̄(l)(kT )

, (4.1)

A f (n,T ) =
∑

n
l=1 µ(l)

T ∑
n
l=1 ∑

∞
k=0 F̄(l)(kT )

(4.2)

where

F̄(l)(x) =
∫

∞

0
F̄(x+ y)

[H(y)]l−2

(l−2)!
h(y)dy (4.3)

and µ(l) =
∫

∞

0 F̄(l)(x)dx.

4.2 Periodic Policy
In this policy, to formulate the cost rate and the availability

is not easy. This is because we must handle myriad number
of scenarios as m increases. For example, let us consider the
case of m = 2. The number of scenarios to be considered is
four; the system does not fail until 2T , the system firstly fails
between T and 2T , the system fails between 0 and T and does
not fails after T , and the system fails twice from 0 to T and
from T and 2T . Apparently, this number accords with 2m and
calculating the probability of each case becomes complicated,
requiring multiple integrals, as m increases. Thus, we propose
an approximation method.

If a failure were detected as soon as it occurs, the occur-
rences of failures would follow non-homogeneous Poisson
process (NHPP). We assume that the time without downtime
follows NHPP. Figure 3 gives a schematic concept of the
assumption.

time
0

Down state

mT

t

Up state

H(t)

NHPP

Figure 3. A schematic concept of assumption that satisfies
NHPP during uptime.

Moreover, we assume that a duration between a failure and
its detection is constantly T/2. This approximation is reason-
able especially when T is small and has been known as good
approximation [13]. This is because the failure distribution be-
tween sequential inspections can be regarded as linear when T

is much small; namely it approaches the uniform distribution
with pdf {F(kT )−F((k−1)T )}/T between (k−1)th and kth
inspection for a positive integer k. Using the two assumptions
explained above, we determine the uptime until replacement
time t, the time excluding downtime, by the solution of the
following equation.

t +T H(t)/2 = mT (4.4)

Since the l.h.s of (4) increases from 0 to infinity with t, (4)
has unique solution. Let t∗ be the solution. Then the expected
number of failures until replacement is expressed as H(t∗).
For the failure occurred between time (m−1)T and time mT ,
not a minimal repair but a replacement is taken. Thus, the
expected number of minimal repairs is less than the expected
number of failures and let us express H(t∗−T ) as the number
of minimal repairs. The resulting cost rate is

Cp(m,T ) =
(m−1)CI +H(t∗−T )CR +CP

mT
(4.5)

Under these assumptions, the mean availability is

Ap(m,T ) = 1− T/2 ·H(t∗)
mT

= 1− H(t∗)
2m

(4.6)

4.3 Comparison for Special Cases
In this section, we compare the two policies in special

cases analytically. Suppose that failures of the system follow a
Weibull distribution with parameters η and β , namely H(t) =
(t/η)β .

4.3.1 β = 1 case
This case means that the system has constant failure rate,

1/η In the NOFB policy, replacements is never performed.
The mean availability is∫ T

0
F̄(t)dt = η

(
1− e−T/η

)
/T (4.7)

and the optimal inspection interval, T ∗, is the unique solution
of the equation setting (7) equals α . The optimal cost rate is

C∗f =C f (∞,T ∗) =
CI

T ∗
+

α

η
CR (4.8)

In the periodic policy, the analytical cost rate is derived as

Cp(m,T ∗)

=
(m−1)CI +(m−1)

(
1−e−T ∗/η

)
CR+CP

mT ∗
(4.9)

where T ∗ is the same with in (8). Its difference with respect
to m is

CP(m+1,T ∗)−Cp(m,T ∗)

=−
Cp−CI−

(
1− e−T ∗/η

)
CR

m(m+1)T ∗
(4.10)
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Thus, if CP >CI+{1−exp(−T ∗/η)}CR =CI+αT ∗CR/η ,
the optimal number of m is infinity. The resulting cost rate is

C∗p =Cp(∞,T ∗) =
CI

T ∗
+

α

η
CR (4.11)

which is exactly same as (8). Otherwise, C∗p = Cp(1,T ∗) =
CP/T ∗ and the ratio of the two optimal cost rates is

C∗f
C∗p

=
ηCI +αCRT ∗

ηCP
> 1. (4.12)

Thus, the periodic policy is better. This is because the policy
does not need inspection at replacement.

4.3.2 β = ∞ case

In this case, a failure occurs exactly at constant time 1/η

and the system does not work again after the failure unless
it is replaced. Thus, the optimal cost rate in two policies are
C∗f = α(CP +CI)/η and C∗p = αCP/η . The ratio is C∗f /C∗p =
1+CI/Cp > 1. The periodic policy is also better in this case.

5. Numerical Experiments

First, we show the accuracy of the approximation method
for the periodic policy. Then, the comparison of optimal cost
rates is shown.

5.1 Approximation Errors

We set parameters α = 0.9,H(t)= (t/3000)2.0,CI = 10,CR =
40 and CP = 400 and compare the optimal cost rate by the
approximation and by Monte Carlo simulation with 10 million
samples. The results are shown in Table 1.

Table 1. Optimal solutions
Method m T C∗p
Approximation 21 325 0.1100
Monte Carlo 21 320 0.1114

We can see that the optimal value of m is same and the
error of the optimal cost rate is −1.4%. Table 2 shows the
detailed errors for fixed m. The error of the number of mini-
mal repairs decreases with m. This is because the optimal T
decreases with m and the approximation becomes more accu-
rate. Although the accuracy of the approximation depends on
the parameters, it is useful to find the rough space of optimal
solution.

Table 2. Optimal solutions and errors
Optimal solution by Errors (%)

m the approximation
T C∗p Number of Optimal cost

minimal repairs rate
6 608 0.1321 -8.50 -0.61
8 527 0.1227 -6.09 -0.59

10 471 0.1174 -4.62 -0.55
12 430 0.1141 -3.70 -0.51
14 398 0.1121 -3.02 -0.47
16 372 0.1110 -2.54 -0.43
18 351 0.1103 -2.13 -0.39
20 333 0.1100 -1.83 -0.36
22 317 0.1101 -1.58 -0.33
24 304 0.1102 -1.36 -0.30
26 292 0.1107 -1.18 -0.27
28 281 0.1113 -1.05 -0.25

5.2 Comparison of Two Policies

We show the results of comparison of the two manage-
ment policies, where we use Monte Carlo simulation with 10
million samples for the periodic policy.

Figures 4 and 5 show the optimal cost rates for fixed
number of n and m as the qualitative comparison, where α =
0.9, H(t) = (t/3000)2.0, CI = 10, CR = 40 and CP = 400.
Each graph is convex.
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Figure 4. Minimal cost rates for fixed numbers of failures
until replacement (n) in the NOFB policy.

Let the hazard rate follow Weibull distributions with scale
parameter 3000. We observe how the ratio of the optimal
cost rates of the two policies changes depending on shape
parameter. Fig. 6 and 7 show results of the cases of CP = 400
and CP = 80 when CI = 10 and CI = 2, where α = 0.9 and
CR = 40.
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Figure 5. Minimal cost rates for fixed numbers of inspection
until replacement (m) in the periodic policy.
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Figure 6. Ratios of optimal cost rates of the two policies with
CI = 10.
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Figure 7. Ratios of optimal cost rates of the two policies with
CI = 2.

We can see that the ratio is less than 1 when shape parame-
ter is relatively small in fig. 6. It means that the NOFB policy
has advantage. When the shape parameter is large, however,

the periodic policy becomes better. Fig. 7 shows the case
that the inspection cost is less expensive than that of fig. 6.
Advantage of the NOBF policy is observed in wider range.
Note that the NOBF policy gets worse than the periodic policy
when b increases infinitely according to Sec. IV, C. As we
mentioned in Sec. I, Park [12] compared the two policies
for a normal system, whose failure is detected immediately
without inspections. He concluded that the ratio was always
less than 1 in the condition. His condition is almost same
with this study if we assume CI = 0 and T = 0. Thus, we can
conclude that the periodic policy is better when the inspection
cost decreases for wide range.

6. Conclusion
We have surveyed two management policies for replace-

ment timings of one-shot system; the NOBF policy and the
periodic policy. To formulate the cost rate of the periodic pol-
icy, we have proposed an approximation method and checked
its accuracy.

By comparing the two polices numerically when failures
of a one-shot system follow Weibull distribution, we have
found that the NOBF policy is better when shape parameter
and the inspection cost is relatively small. This result fol-
lows the previous study [12] that showed the NOBF policy is
always better for a normal system whose failure is detected
immediately without inspection and so makes sense, because
the previous one can be regarded as a special case that in-
spection cost and inspection interval are zero in our one-shot
system.

However, the NOBF policy has disadvantage of uncertain
replacement time. The time to replacement is random variable
so the policy will get worse if preparation time for replacement
required. Thus, the discussion in the paper is limited to the
ideal condition that such the lead time is negligible. We have
to consider quantitatively this uncertainty to determine which
policy should be applied for a one-shot system.
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