Convergence of fixed points for closed graph operator satisfies Zamfirescu conditions

M. Joseph Jawahar Peppy1*, and A. Anthony Eldred2

Abstract
In this article we establish a unique fixed point of a well known contraction mapping known as Kannan and Chatterjea mapping having a closed graph in a complete metric space. For such mappings, we consider an increasing sequence of subsets of a complete metric space into itself, so that a contraction condition is satisfied.

Keywords
Contraction mapping, closed graph, fixed point.

AMS Subject Classification

1Department of Mathematics, Manonmaniam Sundaranar University College, Govindaperi, Tirunelveli-627 414, Tamil Nadu, India.
2PG and Research Department of Mathematics, St. Joseph’s College, Affiliated to Bharathidasan University, Trichy-620002, Tamil Nadu, India.

*Corresponding author: jawaharpeppy@gmail.com

Article History: Received 01 February 2020; Accepted 29 March 2020

https://doi.org/10.26637/MJM0S20/0052

1. Introduction

A mapping \(T : (M, d) \to (M, d) \) from a metric space \((M, d)\) into itself is said to have a closed graph if whenever \(x_n \to x_0 \) and \(T x_n \to y_0 \) for some sequence \((x_n)\) in \(M \) and some \(y_0, y_0 \) in \(M \), we have \(y_0 = T x_0 \). C.Ganesa Moorthy and P.Xavier Raj [1] presented results for contraction mappings with variations in Domain. In this paper, we extend the Kannan and Chatterjea techniques to some contraction mapping of a closed graph to establish some fixed point theorems.

Definition 1.1. Zamfirescu [4] introduced the Banach fixed point theorem by combining Banach, Kannan and Chatterjea. i.e., For a mapping \(T : E \to E \), there exist real numbers \(\alpha, \beta, \gamma \) satisfying \(0 < \alpha < 1, 0 < \beta, \gamma < \frac{1}{2} \) such that for each \(x, y \in E \) at least one of the following is true

1. \(d(Tx, Ty) \leq \alpha d(x, y) \)
2. \(d(Tx, Ty) \leq \beta [d(x, Tx) + d(y, Ty)] \)
3. \(d(Tx, Ty) \leq \gamma [d(x, Ty) + d(y, Tx)] \)

Theorem 1.2 ([1], Theorem 2.1). Let \((M, d)\) be a complete metric space. \(T : M \to M \) has a closed graph. Let \(M_1 \subseteq M_2 \subseteq M_3 \subseteq \ldots \) be subsets of \(M \) such that \(T(M_i) \subseteq M_{i+1} \), \(\forall i, M = \bigcup_{j=1}^{\infty} M_j \) and \(d(Tx, Ty) \leq k_i d(x, y) \) \(\forall x, y \in M_i \), where \(k_i \in (0, 1) \) are constants such that \(\sum_{i=1}^{\infty} k_i^2 \ldots k_n < \infty \). Then \(T \) has a unique fixed point in \(M \).

Theorem 1.3 ([1], Theorem 2.6). Let \(T : M \to M \) be a mapping on a complete metric space \((M, d)\) with a closed graph. Let \(k_i \in (0, 1) \) \(\forall i \) such that \(nk_i k_2 \ldots k_n \to 0 \) as \(n \to \infty \) and \(k_n^m \) does not converge to 1 as \(n \to \infty \). Suppose \(M_1 \subseteq M_2 \subseteq M_3 \subseteq \ldots \) be subsets of \(M \) such that for every \(i, T(M_i) \subseteq M_{i+1} \) and \(d(Tx, Ty) \leq k_i d(x, y) \) \(\forall x \in M_i, \forall y \in M \). Let \(x_1 \in \bigcup_{j=1}^{\infty} M_j \). Then the sequence \((T^n x_1)\) converges to a fixed point of \(T \) in \(M \). If \(M = \bigcup_{j=1}^{\infty} M_j \), then \(T \) has a unique fixed point in \(M \).

2. Main Results

Theorem 2.1. Let \((M, d)\) be a complete metric space. \(T : M \to M \) has a closed graph. Let \(M_1 \subseteq M_2 \subseteq M_3 \subseteq \ldots \) be subsets of \(M \) such that \(T(M_i) \subseteq M_{i+1} \), \(\forall i, M = \bigcup_{j=1}^{\infty} M_j \) and \(d(Tx, Ty) \leq k_i [d(x, Tx) + d(y, Ty)] \) \(\forall x, y \in M_i \) where \(k_i \in (0, \frac{1}{2}) \) such that \(\sum_{i=1}^{\infty} \frac{k_1}{1-k_1} \frac{k_2}{1-k_2} \ldots \frac{k_n}{1-k_n} \to 0 \). Then \(T \) has a unique fixed point in \(M \).

Proof. Fix \(x_1 \in M_1 \). Define \(x_{n+1} = T x_n = T^n x_1 \) \(\forall n = 1, 2, \ldots \) Then \(d(x_2, x_1) = d(Tx_1, x_1) \).
Now,
\[d(x_1, x_2) = d(Tx_2, Tx_1) \leq k_1 [d(x_2, x_1) + d(x_1, T x_1)] = k_1 [d(x_2, x_1) + d(x_1, x_2)] \]

Similarly,
\[d(T^2 x_1, Tx_1) \leq \frac{k_1}{1 - k_1} d(x_1, Tx_1) \]

In general, we get,
\[d(T^{n+1} x_1, T^n x_1) \leq \frac{k_n}{1 - k_0} \frac{k_{n-1}}{1 - k_1} \cdots \frac{k_1}{1 - k_1} d(x_1, Tx_1) \]

For \(n > m \geq 1 \), we have
\[
\begin{align*}
\sum_{i=m}^{n-1} & k_1 \frac{k_2}{1 - k_1} \frac{k_3}{1 - k_2} \cdots \frac{k_i}{1 - k_{i-1}} d(x_1, T x_1) \\
& \leq \frac{n-1}{1 - k_0} \frac{1}{1 - k_1} \frac{1}{1 - k_2} \cdots \frac{1}{1 - k_{n-1}} d(x_1, T x_1)
\end{align*}
\]
\(\therefore \ (T^n x_1)_{n=1}^{\infty} \) is a Cauchy sequence in \(M \). Let it converges to \(x^* \) in \(M \). Then \((T^n x_1)_{n=1}^{\infty} \) is also Cauchy and it converges to \(x^* \) in \(M \). Since \(T \) has a closed graph in \(M \). We should have \(T x^* = x^* \) then \(x^* \) is a fixed point of \(T \). If \(y^* \) is a fixed point of \(T \). Then \(x^*, y^* \in M \), so that,
\[0 \leq d(x^*, y^*) = d(Tx^*, Ty^*) \leq k_1 [d(x^*, T x^*) + d(y^*, T y^*)] = 0 \]
\[0 \leq d(x^*, y^*) \leq 0 \]

Which implies that \(x^* = y^* \). This proves the uniqueness of the fixed point.

Example 2.2. Let \(k_n = \frac{1}{3^n}, n = 1, 2, 3, \ldots \). Then
\[\sum_{n=1}^{\infty} \frac{k_1}{1 - k_1} \frac{k_2}{1 - k_2} \cdots \frac{k_n}{1 - k_n} < \infty. \]

Let \(M = \left\{ 1, \frac{1}{3}, \frac{1}{3^2}, \frac{1}{3^3}, \ldots \right\} \) and \(d \) be the usual metric on \(M \). Let us define \(M_n = \left\{ 1, \frac{1}{3}, \frac{1}{3^2}, \ldots, \frac{1}{3^{2n+1}} \right\} \) for each \(n = 1, 2, 3, \ldots \). Define \(T : M \to M \) by

\[T(x) = \begin{cases} 0, & x = 0 \\ \frac{1}{3^{n+2}}, & x = \frac{1}{3^n} \text{ for } n = 1, 2, 3, \ldots \end{cases} \]

For \(n > m \), we have
\[
\begin{align*}
|T\left(\frac{1}{m}\right) - T\left(\frac{1}{n}\right)| &= \frac{1}{3^{m+2}} - \frac{1}{3^{n+2}} \\
&= \frac{1}{3^{m+2}} - \frac{1}{3^{n+1}} + \frac{1}{3^{n+1}} - \frac{1}{3^{n+2}} \\
&\leq \frac{1}{3} \left\{ \frac{1}{3^{m+1}} - \frac{1}{3^n} + \frac{1}{3^n} - \frac{1}{3^{n+1}} \right\} \\
&< \frac{1}{3} \left\{ \frac{1}{3^{m+1}} + \frac{1}{3^n} - \frac{1}{3^{n+1}} \right\} \\
&< \frac{1}{3} \left\{ \frac{1}{3^{m+1}} + \frac{1}{3^n} - \frac{1}{3^{n+2}} \right\}
\end{align*}
\]

This verifies the conditions of the theorem 2.1 and the fixed point is 0.

Theorem 2.3. Let \((M,d) \) be a complete metric space. \(T : M \to M \) have a closed graph. Let \(M_1 \subseteq M_2 \subseteq M_3 \subseteq \cdots \) be subsets of \(M \) such that \(T(M_i) \subseteq M_{i+1} \), \(\forall i \). Let \(M = \bigcup_{i=1}^{\infty} M_i \) and \(d(Tx, Ty) \leq k_i [d(x, Ty) + d(y, Tx)] \). \(\forall x, y \in M_i \) where \(k_i \in (0, \frac{1}{2}) \). such that \(\sum_{i=1}^{\infty} \frac{k_1}{1 - k_1} \frac{k_2}{1 - k_2} \cdots \frac{k_n}{1 - k_n} < \infty \). Then \(T \) has a unique fixed point in \(M \).

Proof. Fix \(x_1 \in M_i \). Define \(x_{n+1} = T x_n \) \(\forall n = 1, 2, \ldots \). Then \(d(x_2, x_1) = d(Tx_1, x_1) \).

\[d(x_3, x_2) = d(Tx_2, T x_1) \leq k_1 [d(x_2, T x_1) + d(x_1, T x_2)] = k_1 [d(x_2, x_1) + d(x_1, x_2)] \leq k_1 [d(x_1, T x_1)] \]

\[d(T^2 x_1, T x_1) \leq \frac{k_1}{1 - k_1} d(x_1, T x_1) \]

Similarly,
\[d(T^3 x_1, T^2 x_1) \leq \frac{k_2}{1 - k_2} \frac{k_1}{1 - k_1} d(x_1, T x_1) \]

In general, we get,
\[d(T^{n+1} x_1, T^n x_1) \leq \frac{k_n}{1 - k_n} \frac{k_{n-1}}{1 - k_{n-1}} \cdots \frac{k_1}{1 - k_1} d(x_1, T x_1) \]
For \(n > m \geq 1 \), we have
\[
\begin{align*}
d(T^n x_1, T^n x_1) & \leq d(T^{m+1} x_1, T^{m+2} x_1) + \cdots + d(T^{n-1} x_1, T^n x_1) \\
& \leq \frac{k_m}{1-k_m} \frac{k_{m-1}}{1-k_{m-1}} \cdots \frac{k_1}{1-k_1} d(x_1, T x_1) \\
& \quad + \cdots + \frac{k_{n-1}}{1-k_{n-1}} \frac{k_{n-2}}{1-k_{n-2}} \cdots \frac{k_1}{1-k_1} d(x_1, T x_1) \\
& \leq \sum_{i=m}^{n-1} \frac{k_i}{1-k_1} \frac{k_i}{1-k_2} \cdots \frac{k_i}{1-k_i} d(x_1, T x_1)
\end{align*}
\]
\(: (T^n x_1)_{n=1}^{\infty} \) is a Cauchy sequence in \(M \).

Let it converges to \(x' \in M \). Then \((T^n x_1)_{n=1}^{\infty} \) is also Cauchy and it converges to \(x' \in M \).

Since \(T \) has a closed graph in \(M \). We should have \(T x' = x' \)
then \(x' \) is a fixed point of \(T \).

If \(y' \) is a fixed point of \(T \). Then \(x', y' \in M \), so that,
\[
0 \leq d(x', y') = d(T x', T y')
\leq k_1 [d(x', T y') + d(y', T x')]
= k_1 [d(x', y') + d(y', x')]
= 2k_1 d(x', y')
(1 - 2k_1) d(x', y') \leq 0
\]
This implies \(d(x', y') = 0 \) as \(1 - 2k_1 > 0 \). Hence \(x' \) is a unique fixed point of \(T \).

\[\square\]

Theorem 2.4. Let \(T : M \to M \) be a mapping on a complete metric space \((M, d)\) with a closed graph. Let \(k_i \in \left(0, \frac{1}{2}\right)\)
\(\forall i \) such that \(n \frac{k_1}{1-k_1} \frac{k_2}{1-k_2} \cdots \frac{k_n}{1-k_n} \to 0 \) as \(n \to \infty \) and \((\frac{k_n}{1-k_n})^n\) does not converge to 1 as \(n \to \infty \). Suppose \(M_1 \subseteq M_2 \subseteq \ldots \) be subsets of \(M \) such that for every \(i \), \(T(M_i) \subseteq M_{i+1} \) and \(d(Tx, Ty) \leq k_i [d(x, Tx) + d(y, Ty)] \) \(\forall x \in M_i, \forall y \in M \).

Let \(x_1 \in \bigcup_{j=1}^{\infty} M_j \). Then the sequence \((T^n x_1)_{n=1}^{\infty}\) converges to a fixed point of \(T \) in \(M \). If \(M = \bigcup_{j=1}^{\infty} M_j \), then \(T \) has a unique fixed point in \(M \).

Proof. Let \(x_1 \in M_1 \). Let us write \(x_{n+1} = T x_n = T^n x_1 \) \(\forall n = 1, 2, \ldots \)
Then \(d(T^{n+1} x_1, T^n x_1) \leq \frac{k_1}{1-k_1} \frac{k_2}{1-k_2} \cdots \frac{k_n}{1-k_n} d(Tx_1, x_1) \)
for each \(n \).

Hence \(d(x_{m+1}, x_m) \to 0 \) as \(m \to \infty \).

\[\square\]

For \(n > m \geq 1 \),
\[
\begin{align*}
d(x_n, x_m) & \leq d(x_n, x_{n+1}) + d(x_{n+1}, x_{m+1}) + d(x_m, x_{m+1}) \\
& = d(T^{m+1} x_1, T^{m+2} x_1) + d(T^{m+1} x_1, T^{m+2} x_1) \\
& \quad + d(T^{m+1} x_1, T^n x_1) \\
& \leq k_1 \frac{k_1}{1-k_1} \frac{k_2}{1-k_2} \cdots \frac{k_{n-1}}{1-k_{n-1}} d(T x_1, x_1) \\
& \quad + \frac{k_1}{1-k_1} \frac{k_2}{1-k_2} \cdots \frac{k_{n-1}}{1-k_{n-1}} d(T x_1, x_1) \\
& \quad + \cdots + \frac{k_1}{1-k_1} \frac{k_2}{1-k_2} \cdots \frac{k_{n-1}}{1-k_{n-1}} d(T x_1, x_1) \\
& \quad + \cdots + \frac{k_1}{1-k_1} \frac{k_2}{1-k_2} \cdots \frac{k_{n-1}}{1-k_{n-1}} d(T x_1, x_1) \\
& \leq m \left(\frac{k_1}{1-k_1} \frac{k_2}{1-k_2} \cdots \frac{k_{n-1}}{1-k_{n-1}} \right) d(T x_1, x_1) \\
& \quad + m \left(\frac{k_1}{1-k_1} \frac{k_2}{1-k_2} \cdots \frac{k_{n-1}}{1-k_{n-1}} \right) d(T x_1, x_1) \\
& \quad + \cdots + m \left(\frac{k_1}{1-k_1} \frac{k_2}{1-k_2} \cdots \frac{k_{n-1}}{1-k_{n-1}} \right) d(T x_1, x_1)
\end{align*}
\]
So,
\[
\begin{align*}
d(x_n, x_m) & \leq m \left(\frac{k_1}{1-k_1} \frac{k_2}{1-k_2} \cdots \frac{k_{n-1}}{1-k_{n-1}} \right) d(T x_1, x_1) \\
& \quad + m \left(\frac{k_1}{1-k_1} \frac{k_2}{1-k_2} \cdots \frac{k_{n-1}}{1-k_{n-1}} \right) d(T x_1, x_1) \\
& \quad + \cdots + m \left(\frac{k_1}{1-k_1} \frac{k_2}{1-k_2} \cdots \frac{k_{n-1}}{1-k_{n-1}} \right) d(T x_1, x_1)
\end{align*}
\]
Therefore, \(d(x_n, x_m) \to 0 \) as \(m, n \to \infty \). Hence \((x_n) \) is Cauchy.

Thus, if \(x_n \to x' \) as \(n \to \infty \), \(T x' = x' \) because \(T \) has a closed graph. The same argument is applicable for the general case \(x_1 \in M_n \).

Theorem 2.5. Let \(T : M \to M \) be a mapping on a complete metric space \((M, d)\) with a closed graph. Let \(k_i \in \left(0, \frac{1}{2}\right)\)
\(\forall i \) such that \(n \frac{k_1}{1-k_1} \frac{k_2}{1-k_2} \cdots \frac{k_n}{1-k_n} \to 0 \) as \(n \to \infty \) and \((\frac{k_n}{1-k_n})^n\) does not converge to 1 as \(n \to \infty \). Suppose \(M_1 \subseteq M_2 \subseteq \ldots \) be subsets of \(M \) such that for every \(i \), \(T(M_i) \subseteq M_{i+1} \) and \(d(Tx, Ty) \leq k_i [d(x, Tx) + d(y, Ty)] \) \(\forall x \in M_i, \forall y \in M \).

Let \(x_1 \in \bigcup_{j=1}^{\infty} M_j \). Then the sequence \((T^n x_1)_{n=1}^{\infty}\) converges to a fixed point of \(T \) in \(M \). If \(M = \bigcup_{j=1}^{\infty} M_j \), then \(T \) has a unique fixed point in \(M \).

\[\square\]
Proof. The proof follows from the above theorems.

References