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Locating chromatic number of direct product of
some graphs
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Abstract
The locating chromatic number of G, denoted χLc (G) is the least r in such a way that G requires a locating
colouring with r colours. In this paper, we determine the values of the locating chromatic number of direct product
graphs among the graphs, complete graph (Kx), path graph (Px).
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1. Introduction
Let G = (V,E) be a linear graph which consists a set

of two objects called vertices and edges denoted as V =
{v1,v2, . . . ,vn} and E = {e1,e2, . . . ,en} in such a way that
every edge ek,1 ≤ k ≤ n, is associated with an unordered
pair of vertices, say (vi,v j). In this paper we only deal the
graphs which are without self-loops and parallel edges. Paint-
ing every vertices in the graph using some colours provided
different colours to be used to the vertices which are adja-
cent, this process is called proper colouring and also referred
as simply colouring of a graph. A graph is called properly
coloured graph if all the vertices of a graph is painted a colour
according to the proper colouring. In so many different ways
a graph can be properly coloured, in which the minimum
number of colours used to colour all the vertices of a graph
using proper colouring is called chromatic number. If r dif-
ferent colours required for its proper colouring, and not less,

is called r chromatic graph and r is the chromatic number
of the graph denoted by χ(G). Let v1,v2 be any two distinct
vertices of a graph G, then the distance between v1 & v2,
denoted as d (v1,v2), is the length of the smallest path be-
tween them, and v1 be any vertex of G, P be the subset of the
vertex set of G, then the distance between v1 and P is given
by d (v1,P) = min{d (v1,v2)/v2 ∈ P}.

Definition 1.1 ([3]). Let c be a proper r-coloring of a con-
nected graph G and Π = (P1,P2, . . . ,Pr) be an ordered parti-
tion of V (G) into the resulting classes. For a vertex v1 of G,
the colour code of v1 with respect to Π is defined to be the
ordered r tuple

cΠ (v1) = (d (v1,P1) ,d (v1,P2) , . . . ,d (v1,Pr)) .

If different colour codes have assigned to different vertices
of G, then c is called a locating colouring of G. The least
number of colours required for locating colouring is called
locating chromatic number of G, denoted as χLC(G).

The direct product is also referred in many terminologies
such as tensor product, cardinal product, weak direct product,
relational product, Kronecker product, or conjunction. Direct
product was introduced by Whitehead and Russel [1]. Direct
product satisfy commutative and associative properties [2]

Definition 1.2 ([2]). Let G = (V1,E1) and H = (V2,E2) be
any two simple graphs with V1 = {v1,v2, . . . ,vi} and V2 ={

v′1,v
′
2, . . . ,v

′
j

}
. Then the direct product of the graphs G and
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H denoted as G×H and defined as the Cartesian product of
the vertex sets V1 and V2 in such a way that any two different
vertices (v1,v′1) and (v2,v′2) of G×H are adjacent if v1,v2 ∈
E1(G) and v′1,v

′
2 ∈ E2(H) .

The locating chromatic number idea was initiated by Char-
trand et al. [3]. They calculated locating chromatic number
for some connected graphs. Also they authorized few bounds
for the locating chromatic number for connected graph.

The theorem stated as χLC(H) = x iff H is a complete
multipartite graph with 3 or more vertices proved by them.
From this we will come to know that the locating chromatic
number of the complete graph with x vertices is x. That is,
χLC (Kx) = x provided x ≥ 3. They also proved that in [1],
the locating chromatic number for paths and cycles whose
number of vertices are 3 or more as

χLC (Px) = 3, x≥ 3

χLC (Cx) =

{
3, if x is odd
4, if x is even.

The locating chromatic number for trees, Kneser graphs and
amalgamation of stars were determined in [3–5], respectively.
Refer [3] to [7] for a detailed interpretation on locating chro-
matic number.

Proposition 1.3 ([4]). In a locating colouring of H, the same
colour will not be assigned to two colourful vertices. Hence
at the maximum rcolourful vertices are there for locating r
colouring of H.

Proposition 1.4. If the connected graph H having two cliques
of order r, then χLC(H)≥≥ r+1.

In this paper, we study the locating number of the mesh
Px×Py and Kx×Py.

2. The Locating Chromatic number of
product of two Path graphs

Before getting the value of locating chromatic number
of Px×Py and Kx×Py, we need to get an upper bound for
the locating chromatic number of any two graphs H1 and H2
where H1 and H2 are connected graphs.

Theorem 2.1. Suppose H1 and H2 are any two connected
graphs then

χLC (H1×H2)≤ χLC (H1)χLC (H2) .

Proof. Let H1 be any connected graph with x1 locating colour-
ing with the colour class C1,C2, . . . ,Cx1 , that is, x1 = χLC (H1)
and let H2 be any connected graph with x2 locating colouring
with the colour class C′1,C

′
2, . . . ,C

′
x2

, that is, x2 = χLC (H2).
For every i ∈ [x1] and every j ∈ [x2], Ci×C′j is an indepen-

dent set in H1×H2. Therefore
{

Ci×C′j/i ∈ [x1] , j ∈ [x2]
}

of vertices of H1×H2 will be in the colour classes of proper

colouring of H1×H2. To verify that the above is a locating
colouring, let us consider any two distinct vertices say (a1,b1)
and (a2,b2) in the colour class Ci×C′j provided that a1 6= a2.

Also d
(

b1×C′j
)
= d

(
b2×C′j

)
= 0, then there exists l such

that d (a1×Cl) 6= d (a2×Cl). Therefore

D
(
(a1,b1)Cl×C′j

)
= d (a1,Cl)+d

(
b1,C′j

)
= d (a1,Cl)+0 6=d (a2×Cl)

= d
(
(a2,b2) ,Cl×C′j

)
.

It is very clearly indicating that the above mentioned colouring
is a locating colouring.

Suppose H1 and H2 are complete graph with two vertices
(i.e. K2), then we have

χLC (K2×K2) = χLC (C4) = 4 = χLC (K2) ·χLC (K2)

Hence the above mentioned inequality holds good.

Theorem 2.2. Let x and y be any arbitrary integers and y ex-
ceeds 2, x exceeds y then the locating chromatic number of the
product of two path graphs with x and y vertices respectively
is four, that is,χLC (Px×Py) = 4 provided y≥ 2 & x≥ y.

Proof. Let Px and Py be any two path graphs with x and y
vertices provided y≥ 2 & x≥ y. Clearly there is an induced
cycle C4 available with 3 colours in every proper 3 colouring
of the product of two path graphs with x and y vertices. Here
there are two vertices on this cycle with the same colour.
Hence χLC (Px×Py)≥ 4. For every i ∈ [x] and j ∈ [y], let ui, j
be the vertex in the mesh of Px×Py as ith row and jth column.

Now Px×Py is the product of two graphs with the proper
2 – colouring with the colour set {c1,c2} denoting as C. Let
us define the colouring class C′ as follows

C′ (u1,1) = c3,C′ (u1,y) = c4 and C′ (ui, j) = C (ui, j), then
we have

d (ui, j,u1,1) = i+ j−2

d (ui, j,u1,n) = n+ i− ( j+1).

From the above it is clear that, distinct vertices have distinct
colour codes, hence it completes the proof.

3. The locating Chromatic number of the
product of Complete graph and Path

graph
Let H be the resulting graph of the product of complete

graph with x vertices denoted as Kx and the path graph with
y vertices denoted as Py. Vertices of H can be represented
in x by y matrix, that is, H contains x number of rows and
y number of columns. Clearly the complete graph with x
vertices (Kx) is an isomorphic to the induced subgraph on
the vertices of every column and by the same way the path
graph with y vertices (Py) is an isomorphic to the induced
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subgraph on the vertices of every row. Let ui, j be the vertex
of the resulting graph of the product of complete graph with
x vertices and the path graph with y vertices which is in the
ith row and jth column of the x by y matrix where i≤ x and
j ≤ y. Therefore which is clearly indicates that (i, j) is the
colour of ui, j.

Theorem 3.1. Let x and y be the positive integers provided
x≥ 3 and y≥ 2 and H be the resulting graph of the product
of complete graph with x vertices and the path graph with y
vertices and there is a locating (x+1) colouring then X be
its colouring matrix. Then every two successive columns of X
has contrasting lost colours.

Proof. Let us consider the number of vertices of a complete
graph be 3 i.e, x = 3 and X be the matrix of the resulting graph
of the product of complete graph with x vertices and the path
graph with y vertices (Kx×Py). We need to prove that every
two successive columns of X has contrasting lost colours.

By the method of contradiction, there are two colours
which are successive say X j and X j+1 of X with the same lost
colour, say c4

Let us assume that X j =
[
c1 c2 c3

]T , obviously X j+1

is the alternate of X j then X j+1 =
[
c3 c1 c2

]T or otherwise
X j+1 =

[
c2 c3 c1

]T . If j = 1 and X j′ will be the first col-
umn and in row i in which the colour c4 can be used, then
the distance between the vertices ui,1 and ui+1,2 are equal to
the colour class c4. Which is contradiction to the fact that
different colours to be used for same distance vertices. For
j+1 = y, the above discussed procedure can be followed, not
only for that, the same argument can be followed pertaining
the colour c4 have the index more than j+1 or otherwise all
the indices smaller than j

Therefore assume that there are two indices j1 and j2
whereas j1 < j, j < j+1 & j+1 < j2 in such a way that the
colour c4 appears in both the columns j1 < j2. If j− j1 =
j2− j−1, then the distance between the columns j1 < k < j2.
If j− j1 = j2− j−1, then the distance between the columns
j and j+1 are equal to the colour code c4. Therefore at the
minimum, two vertices of the same distances have the same
colour code. Therefore WLG assume that j− j1 < j2− j−1,
and the colour code c4 available in I row of the column X j1
Now the distance between the vertices u3, j and u1, j+1 are
equal and having the colour code c4, which is the contradiction
to the fact that the same distance having vertices assigning
different colour codes.

For x≥ 4, then the same kind of approach can be viewed,
we can find two vertices with the same distance having the
same colour code. Which is contradiction to the fact that
the same distance having vertices assigning different colour
codes.

Therefore our assumption is wrong. Hence every two
successive columns of X has contrasting lost colours.

Theorem 3.2. Let x≥ 3 and y≥ 2 then χLC (Kx×Py) = x+1
provided x≥ y−1.

Proof. Let H be the resulting graph of the product of the
graphs complete graph with x vertices and path graph with y
vertices. By Proposition (2), we have χLC(H) = x+1, let us
assigning x+1 colouring to H. Let [cx+1 c1 c2 . . . cx−2 cx+2]

T

be the first column vector of the colouring matrix X and the
other columns are [c1 c2 . . . cx−1 cx]

T and [cx c1 c2 . . . cx−1]
T

then the distinct vertices of H have distinct colour codes, that
is, no two distinct vertices with the same distance and same
colour code, clearly it is locating colouring of H.

Hence χLC(H) = x+ 1 or χLC(H) = x+ 2. We are in a
position to prove that if χLC(H) = x+1 then x≥ y−1.

Let us assume that χLC(H) = x+ 1 and X be the corre-
sponding matrix of the locating x+1 colouring of H. Clearly
it indicates that X contains x rows and one colour will be
missing in every column. By Theorem 3.1, every two suc-
cessive columns of X has contrasting lost colours and also
all the columns of X have at the minimum of one full colour,
which shows that H has x+1 columns at the maximum. More
precisely, assume x≥ y−1 and proving χLC(H) = x+1. For
x ∈ {c3,c4} then E1 be the matrix of (K3×P4) and (K4×P5),
then
First column of E1 =

[
c1 c2 c3

]T
Second column of E1 =

[
c4 c1 c2

]T
Third column of E1 =

[
c2 c4 c3

]T
Fourth column of E1 =

[
c3 c1 c4

]T .
And E2 be the matrix of (K4×P5), then

First column of E2 =
[
c1 c2 c3 c4

]T
Second column of E2 =

[
c5 c3 c1 c2

]T
Third column of E2 =

[
c1 c5 c2 c4

]T
Fourth column of E2 =

[
c5 c3 c4 c1

]T
Fifth column of E2 =

[
c4 c5 c2 c3

]T .
From the above classifications of E1 and E2, we came to

know that distinct columns have distinct missing colours and
therefore distinct colour codes are assigned to the vertices
which are in same colour. There are absolutely x+1 colourful
vertices. Therefore this is locating colouring. Hence x be-
longing to either three or four and by the condition y≤ x+1.
Hence χLC (Kx×Py) = x+1.

4. Conclusion
In this paper, we studied colouring of the graph and ana-

lyze the locating chromatic number of graphs. In particularly
studied the locating chromatic number of the direct product
of path graphs and direct product of complete graph with
path graph. More precisely, the above said techniques were
analyzed through matrix method.
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