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Analytical solutions of non-linear boundary value
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Abstract
A mathematical representation for the non-linear accelerator mechanics response technique is discussed. We
have a tendency to ponder dynamic models of reversible hastening agent responses and look at two systems for
expository rough arrangements of the model. Logical inexact arrangements of non-linear response conditions for
reversible kinetic responses are computed using the homotopy analysis Method and this article mainly focused on
the accelerator mechanics answer bind and uses the homotopy analytical procedure to find out an investigative
articulation for accelerator reaction technique. Our results are meet numerical simulation results and are found
subsequent in the sensible accedence. And we build a regression model.
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1. Introduction
The enzyme kinetics is the investigation of the substance

responses that are catalyzed by chemicals. In catalyst energy,
the response rate is estimated and the impacts of shifting the
states of the response researched. Concentrate a protein’s en-
ergy thusly can uncover the reactant instrument of this chemi-
cal, its part in digestion, how its movement is controlled, and
how a medication or an agonist may repress the compound.

Chemicals are normally protein particles that control dif-
ferent atoms the catalysts substrates. These objective par-
ticles tie to a protein’s dynamic site and are changed into

items through a progression of steps known as the enzymatic
systems. These instruments can be partitioned into single-
substrate and various substrate components. Motor exami-
nations on compounds that lone tie one substrate, such as
triosephosphate isomerism (CH3OCH3 and CH3CH2OH);
expect to gauge the liking with which the chemical ties this
substrate and the turnover rate.

Compounds are imperative in controlling natural proce-
dures, for instance, as activators or inhibitors in a response. To
comprehend their part we need to think about compound en-
ergy which is basically the investigation of rates of responses,
the fleeting conduct of the different reactants and the con-
ditions which impact them. Presentations with a statistical
twisted are given by Rubinow [1], Murray [2], Segel [3] and
Roberts [4].

In this paper we discuss about some model response com-
ponents, which reflect a substantial number of genuine re-
sponses, and some broad kinds of response wonders and their
relating numerical acknowledge; information of these is fun-
damental while building models to reflect particular known
biochemical properties of an instrument. Be that as it may,
to the best of my insight, till date no diagnostic outcomes
for catalyst energy response dissemination condition utilizing
homotopy analysis technique have been derived.
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2. Mathematical Formulation of the
Problem

The enzyme kinetics in biochemical frameworks have
generally been displayed by common differential conditions
which are construct exclusively in light of responses without
spatial reliance of the different focuses. The model for a cata-
lyst activity, first clarified by Michaelis and Menten proposed
the official of free protein to the reactant shaping a compound
reactant. Generally, the reactant atom that ties to the com-
pound is named the substrate S, and the system is regularly
composed as [5];

E +S←→k1
k−1

ES
k2−→ E +P (2.1)

This system outlines the authoritative of substrate S and arrival
of item P. E is the free compound and ES is the chemical
substrate complex. k1,k−1 and k2 signify the rates of response
of these three procedures. Note that substrate restricting is
reversible however item discharge isn’t. The convergence of
the reactants in the Eq. (2.1) is signified by bring down case
letters

s = [S],e = [E],c = [SE], p = [P] (2.2)

The law of mass activity prompts the arrangement of following
non-linear response equations [5]

ds
dt

=−k1es+ k−1c (2.3a)

de
dt

=−k1es+(k−1 + k2)c (2.3b)

dc
dt

= k1es− (k−1 + k2)c (2.3c)

d p
dt

= k2c (2.3d)

The boundary conditions are

s(0) = s0,e(0) = e0,c(0), p(0) = 0. (2.4)

Adding equations (2.3b) and (2.3c), we get,

de
dt

+
dc
dt

= 0 (2.5)

Using the initial conditions (2.4), we obtain the following
result

e(t)+ c(t) = e0 (2.6)

With this, the system of ordinary differential equations reduce
to only two, for s and c, namely

ds
dt

=−k1e0s+(k1s+ k−1)c (2.7)

dc
dt

= k1e0s− (k1s+ k−1 + k2)c (2.8)

with initial conditions s(0) = s0, c(0) = 0. By introducing the
following parameters

τ =
k1e0t

ε
, u(τ) =

s(t)
s0

, v(τ) =
c(t)
e0

, w(τ) =
p(t)
e0

λ =
k2

k1s0
, k =

k−1 + k2
k1s0

, ε =
e0

s0
, E (τ) =

e(t)
e0

(2.9)

the system of Eqs. (2.7) and (2.8) and the initial conditions
[Eqs. (2.4)] can be represented in dimensionless form as fol-
lows:

du
dτ

=−uε + ε (u+ k−λ )v (2.10a)

dv
dτ

= u− (u+ k)v (2.10b)

dw
dτ

= λv (2.10c)

u(0) = 1, v(0) = 0, w(0) = 0. (2.11)

From the Eq. (2.6), we can also obtain the dimensionless
concentration of enzyme

E (τ) = 1− v(τ) (2.12)

Equation (2.3d) is uncoupled with the initial three conditions.
The dimensionless concentration of the item is given by

w(τ) = λ

∫ t

0
v(t ′)dt ′ (2.13)

Eqs. (2.12) and (2.13) represent the new analytical expres-
sions of the concentrations of enzyme E(τ) and product w(τ)
for the values of parameters k, λ and ε .

3. Solution of Enzyme Kinetics Reaction
Diffusion Equations

The homotopy analysis method (HAM) is a powerful an-
alytical method to solve nonlinear problems [6–12] and this
method provides a convenient way to guarantee the conver-
gence of approximation series. Furthermore, the obtained
result is of high accuracy. Solving Eqs. (2.10a)–(2.10c) and
(2.12) using homotopy analysis method and simultaneous
equation method, the steady state and transient contributions
to the model are given by: The homotopy analysis method
(HAM) is a great systematic technique to tackle non-linear
issues [6–12] and this technique gives a helpful method to
ensure the merging of estimation arrangement. Besides, the
got result is of high exactness. Solving Eqs. (2.10a)–(2.10c)
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and (2.12) utilizing homotopy analysis method and synchronous
condition technique, the enduring state and transient commit-
ments to the model are given by:

u(τ) = e−ετ

(
1+

h
k

)
+

hε

(k− ε)

[
−ke−2ετ + εe−(k+ε)τ

kε

+
(k−λ )

(k− ε)

(
τ (k− ε)e−ετ +(e−kτ − e−ετ)

)]
(3.1)

v(τ) =
(

1+
h
k

)(
e−ετ − e−kτ

(k− ε)

)
+

h(k+ ε)

kε(k− ε)

(
e−kτ − e−(k+ε)τ

)
+

h
(k− ε)

[(
ε +1
k−2ε

)(
e−kτ − e−2ετ

)
+

ε(k−λ )

(k− ε)2

(
τ (k− ε)(e−kτ + e−ετ)

+2(e−kτ − e−ετ)
)]

(3.2)

w(τ) =
h

(k− ε)

(
1+

h
k

)((
e−kτ −1

)
k

− (e−ετ −1)
ε

)

+
h

(k− ε)

[(
ε +1
k−2ε

)(
e−2ετ −1

2ε
− e−kτ −1

k

)

+

(
k+ ε

kε

)(
e−(ε+k)τ −1

ε + k
− e−kτ −1

k

)]

+
hε(k−λ )

(k− ε)2

[(
1
ε2 +

1
k2

)
+

2
(k− ε)

(
e−ετ −1

ε
− e−kτ −1

k

)
− e−ετ

ε2 (τε +1)− e−kτ

k2 (τk+1)

]
(3.3)

E (τ) = 1−
(

1+
h
k

)(
e−ετ − e−kτ

(k− ε)

)
+

(
k+ ε

kε

)(
e−kτ − e−(k+ε)

τ

)
− h

(k− ε)

[(
ε +1
k−2ε

)(
e−kτ − e−2ετ

)
+

ε(k−λ )

(k− ε)2

(
τ(k− ε)(e−kτ + e−ετ)

+2(e−kτ − e−ετ)
)]

(3.4)

Eqs. (3.1)–(3.4) fulfill the limit conditions Eq. (2.11).
This equation speaks to the new analytical expression of the
concentration u(τ), v(τ), w(τ) and E(τ) for every possible
estimation of the parameters.

4. Numerical Simulation
The non-linear equations (Eqs. (2.10a)–(2.10c) and (2.12))

for the boundary conditions (Eq. (2.11)) are explained by nu-
merical strategies. The capacity ode45 in Scilab programming
is utilized to take care of the boundary value problems (BVPs)
for ordinary differential equations. The numerical outcomes
are likewise contrasted and the acquired expository articula-
tions (Eqs. (3.1)–(3.4)).

(a)

(b)
Figure 4.1. The focus of the substrate u(τ) are plotted using
Eq. (3.1) for the values k = 2, λ = 1, h =−0.01, (Blue)
ε = 0.5, (Green) ε = 1, ε = 1.5 and ε = 2.
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(a) (b)
Figure 4.2. The focus of the substrate u(τ) are plotted using Eq. (3.1) for the values k = 11, λ = 10, h =−0.01, (a) ε = 0.5,
(b) ε = 1, (c) ε = 1.5 and (d) ε = 2.

(a) (b)
Figure 4.3. The focus of the substrate u(τ) are plotted using Eq. (3.1) for the values k = 8, λ = 4, h =−0.01, (a) ε = 0.5, (b)
ε = 1, (c) ε = 1.5 and (d) ε = 2.

(a) (b)
Figure 4.4. The focus of the substrate u(τ) are plotted using Eq. (3.1) for the values k =6, λ = 5, h =-0.01, (a) ε = 0.5,(b)
ε = 1, (c) ε = 1.5 and (d) ε = 2.
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(a) (b)
Figure 4.5. The concentration of enzyme-substrate v(τ) are plotted using Eq. (3.2) for the values k =10, λ = 1, h =−0.001,
(a) ε = 0.5, (b) ε = 1, (c) ε = 1.5 and (d) ε = 2.

(a) (b)
Figure 4.6. The concentration of enzyme–substrate v(τ) are plotted using Eq. (3.2) for the values k = 8, λ = 6, h =−0.25, (a)
ε = 0.5, (b) ε = 1, (c) ε = 1.5 and (d) ε = 2.

(a) (b)
Figure 4.7. The concentration of enzyme–substrate v(τ) are plotted using Eq. (3.2) for the values k = 11, λ = 10, h =−0.01,
(a) ε = 0.5, (b) ε = 1, (c) ε = 1.5 and (d) ε = 2.
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(a) (b)
Figure 4.8. The concentration of enzyme-substrate v(τ) are plotted using Eq. (3.2) for the values k = 8, λ = 4, h =−0.01, (a)
ε = 2, (b) ε = 2.1, (c) ε = 2.2 and (d) ε = 2.3.

(a) (b)
Figure 4.9. The concentration of product w(τ) are plotted using Eq. (3.3) for the values k = 2, λ = 1, h =−0.25, (a) ε = 1.2,
(b) ε = 1.4, (c) ε = 1.6 and (d) ε = 1.8.

(a) (b)
Figure 4.10. The concentration of product w(τ) are plotted using Eq. (3.3) for the values k = 8, λ = 6, h =-0.25, (a) ε = 1.2,
(b) ε = 1.4, (c) ε = 1.6 and (d) ε = 1.8.
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(a) (b)
Figure 4.11. The concentration of product w(τ) are plotted using Eq. (3.3) for the values k =11, λ = 9, h =-0.01, (a) ε = 1.2,
(b) ε = 1.4, (c) ε = 1.6 and (d) ε = 1.8.

(a) (b)
Figure 4.12. The concentration of enzyme E(τ) are plotted using Eq. (3.4) for the values k =2, λ = 1, h =−0.15, (a) ε = 0.5,
(b) ε = 1.1, (c) ε = 1.5 and (d) ε = 2.1.

(a) (b)
Figure 4.13. The concentration of enzyme E(τ) are plotted using Eq. (3.4) for the values k = 66 λ = 5, h =−0.01, (a)
ε = 1.2, (b) ε = 1.4, (c) ε = 1.6 and (d) ε = 1.8.
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(a) (b)
Figure 4.14. The concentration of enzyme E(τ) are plotted using Eq. (3.4) for the values k = 10, λ = 9, h =−0.01, (a)
ε = 1.2, (b) ε = 1.4, (c) ε = 1.6 and (d) ε = 1.8.

(a) (b)
Figure 4.15. The concentration of enzyme E(τ) are plotted using Eq. (3.4) for the values k =−5, λ =−1, h =−0.01, (a)
ε = 0.5, (b) ε = 1, (c) ε = 1.5 and (d) ε = 2.

(a) (b)
Figure 4.16. The concentration of the substrate u(τ), enzyme-substrate v(τ), enzyme E(τ) and product w(τ) are plotted using
Eqs. (3.1)–(3.4) for the values k = 10, λ = 5, h =−0.01, and ε = 0.2.
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(a) τ = 0 to 10, k = 2, h = 0.01, λ = 1 (b) k =−1, λ = 1, h =−0.001
Figure 4.17. The concentration of the substrate u(τ), enzyme-substrate v(τ), enzyme E(τ) and product w(τ) are plotted using
Eqs. (3.1)–(3.4) for the values k = 10, λ = 5, h =−0.01, and ε = 0.2.

(a) (b)
Figure 4.18. The concentration of the substrate u(τ), enzyme-substrate v(τ), enzyme E(τ) and product w(τ) are plotted using
Eqs. (3.1)–(3.4) for the values k = 8, λ = 7, h =−0.01, and ε = 1.

(a) (b)
Figure 4.19. The concentration of the substrate u(τ), enzyme-substrate v(τ), enzyme E(τ) and product w(τ) are plotted using
Eqs. (3.1)–(3.4) for the values k = 8, λ = 7, h =−0.01, and ε = 1.
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4.1 Results and Discussion
Figures 4.13–4.15 shows that the concentrations of substrate
u, enzyme E, enzyme-substrate complex v and product w are
shown in blue, green, red and sky blue colors respectively.
In these figures, u and E decreases slowly and reaches the
constant values but v and w increases slowly and reaches the
constant value for greater values of τ . Figures 4.16–4.19
give us the confirmation for the above discussion in three-
dimensional graphs also.

Eqs. (3.1)–(3.4) demonstrates the basic surmised analyt-
ical expression of concentrations of substrate u, enzyme E,
enzyme-substrate complex v and item w for different esti-
mations of dimensionless response parameters k, λ and ε .
In Figures 4.1–4.3, the concentration of subtract gradually
abatements and achieves the steady qualities for some set-
tled estimations of k, λ and distinctive estimations of ε . The
centralizations of substrate ends up zero for substantial es-
timations of τ . From the Figures 4.4–4.6, it is derived that
the estimation of the concentration of the catalyst– substrate
increments at τ < 1 and diminishes gradually at τ > 1 for
various estimations of k, λ and ε . The convergence of the
compound substrate ends up zero for more noteworthy qual-
ities τ . Figures 4.7–4.9 demonstrates that the centralization
of the item increments gradually from the underlying fixation
and achieves the steady qualities for extensive estimations of
τ . In Figures 4.10–4.12, the estimations of centralizations of
catalyst diminish gradually and achieve consistent qualities
for more prominent estimations of τ .

Figures 4.13–4.15 demonstrates that the convergences of
substrate u, compound E, catalyst substrate complex v and
item w are appeared in blue, green, red and sky blue hues
individually. In these figures,u and E diminishes gradually
and achieves the consistent qualities yet u expands gradually
and achieves the steady an incentive for more prominent es-
timations of τ . Figures 4.16–4.19 give us the affirmation for
the above exchange in three-dimensional charts too.

5. Conclusion
In this work, an induced methodical response for non-

linear reaction equations has been displayed using homotopy
analysis method. An incredible and essential system for eval-
uating the concentration of substrate, item, chemical substrate
and catalyst are determined. In view of the consequence of
this work, it can be easily contacted an extensive variety of
course of action of coupled non-linear equation with various
complex boundary conditions in chemical substrate reaction
dispersal frames and our results are differentiated and numeri-
cal results and are seen to be in incredible understanding.
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