New results on harmonic mean graphs

S. Meena 1* and M. Sivasakthi 2

Abstract
A graph G with p vertices and q edges is called a harmonic mean graph if it is possible to label the vertices $x \in V$ with distinct labels $f(x)$ from $\{1, 2, \ldots, q + 1\}$ in such a way that each edge $e = uv$ is labeled with

$$f(e) = \frac{2f(u)f(v)}{f(u) + f(v)}$$

(or)

$$f(e) = \frac{2f(u)f(v)}{f(u) + f(v)}$$

then the edge labels are distinct. In this case f is called Harmonic mean labeling of G. In this paper we prove that some families of graphs such as zig-zag triangle $Z(T_n)$, alternate zig-zag triangle $AZ(T_n)$, spiked snake graph $SS(4, n)$ are harmonic mean graphs.

Keywords
Harmonic mean graph, zig-zag triangle $Z(T_n)$, alternate zig-zag triangle $AZ(T_n)$, spiked snake graph $SS(4, n)$.

AMS Subject Classification
05078.

1 Department of Mathematics, Government Arts College, C. Mutlur, Chidambaram-608102, Tamil Nadu, India.
2 Department of Mathematics, Krishnasamy College of Science Arts and Management for Women Cuddalore-607001, Tamil Nadu, India.
*Corresponding author: 1 meenasaravanani4@gmail.com; 2 sivasakthi2203@gmail.com
Article History: Received 10 January 2020, Accepted 01 May 2020 ©2020 MJM.

Contents

1. Introduction .. 482
2. Harmonic mean labeling of graphs 483
3. Conclusion .. 485
References ... 485

1. Introduction

Let $G = (V, E)$ be a (p, q) graph with $p = |V(G)|$ vertices and $q = |E(G)|$ edges, where $V(G)$ and $E(G)$ respectively denote the vertex set and edge set of the graph G. In this paper, we consider the graphs which are simple, finite and undirected. Harary’s graph theory used for theoretic terminology and notations [3].

The concept of graph labeling was introduced by Rosa in 1967. A detailed survey of graph labeling is available in Gallian [2]. S.Somasundaram, R.Ponraj and S.S.Sandhya were introduced the concept of harmonic mean labeling of graphs. They investigated the existence of harmonic mean labeling of several family of graphs such as path, comb, cycle C_n, complete graph K_n, complete bipartite graph $K_{2,2}$, triangular snake T_n, quadrilateral snake Q_n, alternate triangular snake $A(T_n)$, alternate quadrilateral snake $A(Q_n)$, crown $C_n \circ K_1, C_n \circ \bar{K}_2, C_n \circ \bar{K}_3$, dragon, wheel in [8–10]. The harmonic mean labeling of step ladder $S(T_n, P_n \circ K_2), C_n \circ K_2$, flower graph, $L_n \circ \bar{K}_2$, triangular ladder, double triangular snake $D(T_n)$, alternate double triangular snake $A(DT_n)$ double quadrilateral snake $D(Q_n)$, alternate double quadrilateral snake $A(DQ_n), Q_n \circ K_1, (C_m \circ K_1) \cup C_n, (C_m \circ K_1) \cup P_n$, are investigated by C.Jayasekaran, C.David raj and S.S.Sandhya [11, 12]. We have proved Harmonic mean labeling of subdivision graphs such as $P_n \circ K_1, P_n \circ \bar{K}_2$, H-graph, crown, $C_n \circ K_1, C_n \circ \bar{K}_2$, quadrilateral snake, Triangular snake and also proved Harmonic mean labeling of some graphs such as Triple triangular snake $T(T_n)$, Alternate Triple triangular snake $A[T(Q_n)]$, Triple quadrilateral snake $T(Q_n)$. Alternate Triple quadrilateral snake $A[T(Q_n)]$, Twig graph $T(n)$, balloon triangular snake $T_n(C_m)$, and key graph $K_{y(m, n)}$, [6, 7]. The following definitions are useful for the present investigation.

Notations:

$\lfloor x \rfloor$ - Largest integer less than or equal to x.

Definition 1.1. [8] A Graph $G = (V, E)$ with p vertices and q edges is called a Harmonic mean graph if it is possible to label the vertices $v \in V$ with distinct labels $f(v)$ from $\{1, 2, \ldots, q + 1\}$.
Theorem 2.1. The zig-zag triangle \(Z(T_n) \) is a harmonic mean graph.

Proof. Let \(x_1, x_2, \ldots, x_n \) be the vertices of the path \(P_n \) and let \(G = Z(T_n) \) be the zig-zag triangle graph.

Let \(V(G) = \{x_i \mid 1 \leq i \leq n\} \) and
\[
E(G) = \{y_{i-1}x_i \mid 1 \leq i \leq n-1\} \cup \{y_iy_{i+1}x_i \mid 1 \leq i \leq n\} \cup \{y_1x_2, y_ny_{n-1}\}.
\]

Define a function \(f : V \rightarrow \{1, 2, \ldots, q+1\} \) by
\[
f(x_i) = \begin{cases} 3 & \text{if } i \text{ is odd} \\ 4i - 3 & \text{if } 3 \leq i \leq n \end{cases}
\]
\[
f(x_2) = 5
\]
\[
f(y_1) = 1
\]
\[
f(y_2) = 7
\]
\[
f(y_3) = 8
\]
\[
f(y_i) = 4i - 5 & \text{for } 4 \leq i \leq n
\]

Then the resulting edge labels are distinct.

\[
f(x_1x_2) = 3
\]
\[
f(x_iy_{i+1}) = 4i & \text{ for } 3 \leq i \leq n-2 \text{ if } i \text{ is odd}
\]
\[
f(x_2x_3) = 7
\]
\[
f(x_iy_{i+1}) = 4i + 1 & \text{ for } 4 \leq i \leq n-1 \text{ if } i \text{ is even}
\]
\[
f(x_1y_2) = 4
\]
\[
f(x_iy_{i+1}) = 4i - 2 & \text{ for } 3 \leq i \leq n-2 \text{ if } i \text{ is odd}
\]
\[
f(y_2x_3) = 8
\]
\[
f(y_iy_{i+1}) = 4i - 2 & \text{ for } 4 \leq i \leq n-1 \text{ if } i \text{ is even}
\]
\[
f(x_1y_1) = 1
\]
\[
f(x_3y_3) = 9
\]
\[
f(x_iy_1) = 4i - 4 & \text{ for } 5 \leq i \leq n \text{ if } i \text{ is odd}
\]
\[
f(x_1x_2) = 2
\]
\[
f(x_iy_{i+1}) = 4i - 1 & \text{ for } 3 \leq i \leq n-2 \text{ if } i \text{ is odd}
\]
\[
f(x_2y_3) = 6
\]
\[
f(x_iy_{i+1}) = 4i - 1 & \text{ for } 4 \leq i \leq n-1 \text{ if } i \text{ is even}
\]

Thus \(f \) provides a harmonic mean labeling of graph \(G \). Hence \(G \) is a harmonic mean graph.

Example 2.2. A harmonic mean labeling of zig-zag triangle \(Z(T_{11}) \) is given in Fig 2.1.1

2. Harmonic mean labeling of graphs

Theorem 2.3. The alternate zig-zag triangle \(A(Z(T_n)) \) is a harmonic mean graph.

Proof. Let \(G = AZ(T_n) \) be an alternate zig-zag triangle snake.

Consider a path \(x_1, x_2, \ldots, x_n \) to construct \(G \), join \(x_i, x_{i+1} \) (alternatively) with new vertices \(s_i, t_i, r_i \), for \(1 \leq i \leq n-1 \). Then the resultant graph is alternate zig-zag triangle. Here we consider two different cases.

Case(i)

If the degree of \(x_1 \) is 3

Define a function \(f : V(G) \rightarrow \{1, 2, \ldots, q+1\} \) by,
\[
f(x_1) = 2
\]
\[
f(x_i) = 10k & \text{ if } i = 3k+1 \text{ for } 1 \leq k \leq n
\]
\[
f(x_2) = 8
\]
\[
f(x_i) = 10k+6 & \text{ if } i = 3k+2 \text{ for } 1 \leq k \leq n
\]
\[
f(x_3) = 9
\]
Then the resulting edge labels are distinct.

\[f(x_i) = 10k + 9 \quad \text{if} \quad i = 3k + 3 \quad \text{for} \quad 1 \leq k \leq n \]
\[f(s_i) = 10i - 6 \quad \text{for} \quad 1 \leq i \leq \frac{n}{3} \]
\[f(r_1) = 1 \]
\[f(r_i) = 10i - 8 \quad \text{for} \quad 2 \leq i \leq \frac{n}{3} \]
\[f(t_1) = 6 \]
\[f(t_i) = 10i - 2 \quad \text{for} \quad 2 \leq i \leq \frac{n}{3} \]

Then the resulting edge labels are distinct.

\[f(x_1x_2) = 4 \]
\[f(x_is_{i+1}) = 10k + 3 \quad \text{if} \quad i = 3k + 1 \quad \text{for} \quad 1 \leq k \leq n \]
\[f(x_is_3) = 9 \]
\[f(x_is_{i+1}) = 10k + 8 \quad \text{if} \quad i = 3k + 2 \quad \text{for} \quad 1 \leq k \leq n \]
\[f(x_is_{i+1}) = 10k \quad \text{if} \quad i = 3k \quad \text{for} \quad 1 \leq k \leq n \]
\[f(x_is_1) = 3 \]
\[f(x_is_{i-2k}) = 10k + 2 \quad \text{if} \quad i = 3k + 1 \quad \text{for} \quad 1 \leq k \leq n - 2 \]
\[f(x_is_3) = 5 \]
\[f(x_is_{i-(2k+2)}) = 10k + 6 \quad \text{if} \quad i = 3k + 3 \quad \text{for} \quad 1 \leq k \leq n \]
\[f(x_is_1) = 6 \]
\[f(x_is_{i-(2k+1)}) = 10k + 5 \quad \text{if} \quad i = 3k + 2 \quad \text{for} \quad 1 \leq k \leq n - 1 \]
\[f(x_1r_1) = 2 \]
\[f(x_is_{i-2k}) = 10k + 1 \quad \text{if} \quad i = 3k + 1 \quad \text{for} \quad 1 \leq k \leq n - 2 \]
\[f(x_1r_1) = 1 \]
\[f(x_is_{i-(2k+1)}) = 10k + 4 \quad \text{if} \quad i = 3k + 2 \quad \text{for} \quad 1 \leq k \leq n - 2 \]
\[f(x_1r_1) = 7 \]
\[f(x_is_{i-(2k+1)}) = 10k + 7 \quad \text{if} \quad i = 3k + 2 \quad \text{for} \quad 1 \leq k \leq n - 1 \]
\[f(x_3t_1) = 8 \]
\[f(x_is_{i-(2k+2)}) = 10k + 9 \quad \text{if} \quad i = 3k + 3 \quad \text{for} \quad 1 \leq k \leq n \]

Case(ii)

Define a function \(f : V(G) \rightarrow \{1, 2, \ldots, q + 1\} \) by

\[f(x_1) = 1 \]
\[f(x_i) = 10k \quad \text{if} \quad i = 3k + 1 \quad \text{for} \quad 1 \leq k \leq n \]
\[f(x_2) = 3 \]
\[f(x_i) = 10k + 3 \quad \text{if} \quad i = 3k + 2 \quad \text{for} \quad 1 \leq k \leq n \]
\[f(x_3) = 7 \]
\[f(x_i) = 10k + 7 \quad \text{if} \quad i = 3k + 3 \quad \text{for} \quad 1 \leq k \leq n \]
\[f(s_i) = 10i - 1 \quad \text{for} \quad 1 \leq i \leq \frac{n}{2} \]
\[f(r_1) = 2 \]
\[f(r_i) = 10i - 9 \quad \text{for} \quad 2 \leq i \leq \frac{n}{2} \]
\[f(t_1) = 10i - 5 \quad \text{for} \quad 2 \leq i \leq \frac{n}{2} \]

Thus \(f \) provides a harmonic mean labeling of graph \(G \). Hence \(G \) is a harmonic mean graph. \(\square \)
Example 2.4. A harmonic mean labeling of zig-zag triangle $Z(T_{12})$ is given in fig 2.2.1

Example 2.5. A harmonic mean labeling of alternate zig-zag triangle $A Z(T_{14})$ is given in fig 2.2.2

Theorem 2.6. The spiked snake graph $SS(4,n)$ is a harmonic mean labeling of graphs.

Proof. Denote the vertices of a spiked snake graph $SS(4,n)$ as follows.

$$V(SS(4,n)) = v_1 \cup v_2 \cup v_3 \cup v_5.$$ \[v_1 = \{v_i/1 \leq i \leq n+1\}\]
\[v_2 = \{u_i/1 \leq i \leq n\}\]
\[v_3 = \{w_i/1 \leq i \leq n\}\]
\[v_4 = \{x_i/1 \leq i \leq n\}\]
\[v_5 = \{y_i/1 \leq i \leq n\}\]

Define a function $f : V(G) \rightarrow \{1,2,\ldots,q+1\}$ by

$$f(v_1) = 3$$
$$f(v_i) = 6i - 5 \text{ for } 2 \leq i \leq n.$$ \[f(w_1) = 6i - 1 \text{ for } 1 \leq i \leq n.$$ \[f(u_1) = 2$$
$$f(u_i) = 6i - 3 \text{ for } 2 \leq i \leq n.$$ \[f(x_1) = 6i \text{ for } 1 \leq i \leq n-1.$$ \[f(y_1) = 1$$
$$f(y_i) = 6i - 4 \text{ for } 2 \leq i \leq n-1.$$ Then the resulting edge labels are distinct.

$$f(v_1w_1) = 4$$
$$f(v_iw_{i+1}) = 6i + 3 \text{ for } 1 \leq i \leq n-1.$$ \[f(w_1x_i) = 6i - 1 \text{ for } 1 \leq i \leq n-1.$$ \[f(u_1y_1) = 1$$
$$f(u_{i+1}y_{i+1}) = 6i + 2 \text{ for } 1 \leq i \leq n.$$ \[f(v_1u_1) = 2$$
$$f(v_{i+1}u_{i+1}) = 6i + 1 \text{ for } 1 \leq i \leq n-1.$$ \[f(u_1v_2) = 3$$
$$f(u_{i+1}v_{i+2}) = 6i + 4 \text{ for } 1 \leq i \leq n-1.$$ Thus f provides a harmonic mean labeling of graph G. Hence G is a mean graph.

Example 2.7. A harmonic mean labeling of spiked snake graph $SS(4,n)$ is given in fig 2.6.1

3. Conclusion

We have presented some new results on Harmonic mean labeling of certain classes of graphs like the zig-zag triangle $Z(T_n)$, alternate zig-zag triangle $A Z(T_n)$, spiked snake graph $SS(4,n)$. Analogous work can be carried out for other families and in the context of different types of graph labeling techniques.

References

