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A study on some lattice theoretic identities of the
subgroup lattice of 2×2 matrices over Z7
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Abstract
In this paper we verify the lattice theoretic properties like modularity, distributivity, upper semi modularity and
super modularity in the subgroup lattice of the group of 2×2 matrices over Z7.
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1. Introduction
Let L(G) be the Lattice of Subgroups of G, where G is

a group of 2×2 matrices over Zp having determinant value
1 under matrix multiplication modulo p, where p is a prime
number.

Let G =

(
a b
c d

)
: a,b,c,d ∈ Zp,ad−bc 6= 0.

Then G is a group under matrix multiplication modulo p.

Let G =

{(
a b
c d

)
∈ G : ad−bc = 1.

}
Then G is a subgroup of G.
we have, o(G ) = p(p2−1)(p−1) and o(G) = p(p2−1).

[6]

2. Preliminaries

Definition 2.1. (Poset) A partial order on a non-empty set P
is a binary relation ≤ on P that is reflexive, anti-symmetric
and transitive. The pair (P,≤) is called a partially ordered
set or poset. A poset. (P,≤) is totally ordered if every x,y ∈ P
are comparable, that is either x ≤ y or y ≤ x. A non-empty
subset S of P is a chain in P if S is totally ordered by ≤.

Definition 2.2. Let (P,≤) be a poset and let S⊆ P. An upper
bound of S is an element x ∈ P for which s ≤ x for all s ∈ S.
The least upper bound of S is called the supremum or join of
S.A lower bound for S is an element x ∈ P for which x≤ s for
all s ∈ S. The greatest lower bound of S is called the infimum
or meet of S.

Definition 2.3. (Lattice) Poset (P,≤) is called a lattice if
every pair x,y elements of P has a supremum and an infimum,
which are denoted by x∨ y and x∧ y respectively.

Definition 2.4. (Covering Relation) In the poset (P,≤), a
covers b or b is covered by a (in notation, a > b or b < a) if
and only if b < a and for no x,b < x < a.

Definition 2.5. (Atom) An element a is an atom, if a > 0 and
a dual atom, if a < 1.

Definition 2.6. (Modular Lattice) A lattice L is said to be
modular if whenever a≤ c in L, a∨ (b∧ c) = (a∨b)∧ c for
all b ∈ L. In other words, a lattice L is said to be modular if
(a∧ c)∨ (b∧ c) = [a∧ c)∨b]∨ c for all a,b,c ∈ L.
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Definition 2.7. (Supermodular) A lattice L is said to be su-
permodular if it satisfies the following identity (a∨b)∧ (a∨
c)∧ (a∨d) = a∨ [b∧c∧ (a∨d)]∨ [c∧d∧ (a∨b)]∨ [b∧d∧
(a∨ c)] for all a,b,c,d ∈ L.

Definition 2.8. (Semi-supermodular) A lattice L is said to
be semi-supermodular if it satisfies the following identity
(a∨x1)∧(a∨x2)∧(a∨x3)∧(a∨x4)= a∨ [x1∧x2∧(a∨x3)∧
(a∨ x4)]∨ [x1∧ x3∧ (a∨ x2)∧ (a∧ x4)]∨ [x1∧ x4∧ (a∨ x2)∧
(a∨ x3)]∨ [x2∧ x3∧ (a∨ x1)∧ (a∨ x4)]∨ [x2∧ x4∧ (a∨ x1)∧
(a∨ x3)]∨ [x3∧ x4∧ (a∨ x1)∧ (a∨ x2)] for all a,x1,x2,x3,x4
in L.

Definition 2.9. (Distributive lattice) A Lattice L is said to be
distributive if a∨(b∧c) = [(a∨b)∧(a∨c)] for all a,b,c∈ L.

Definition 2.10. (General Disjointness) A lattice L with 0
satisfies the general disjointness property (GD) if x∧ y = 0
and (x∨ y)∧ z = 0 implies that x∧ (y∨ z) = 0, for x,y ∈ L.

We give below the structures of some lower intervals of
L(G) when p = 7

Fig. 2.1: The Interval [{e},U1]

Fig. 2.2: The Interval [{e},V1]

3. Lattice identities in the subgroup
lattice of the group of 2×2 matrices over

Z7

Lemma 3.1. L(G) is non-modular if p = 7.

Proof. when p = 7,
From fig. 2.1 and 2.2 we take three subgroups K1,N1,N2 ∈

L(G)

Fig: 3.1

Now, K1∨ (N1∧N2) = K1∨{e}= K1.

But, (K1∨N1)∧N2 = T1∧N2 = {e}.
Therefore, K1∨ (N1∧N2) 6= (K1∨N1)∧N2.
Therefore, L(G) is not modular when p = 7.

Lemma 3.2. L(G) is not distributive if p = 7.

Proof. when p = 7,
From fig. 2.1 and 2.2 we take three subgroups K14,K16,K17

in L(G)
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Fig: 3.2

K14∨ (K16∧K17) = K14∨{e}= K14.
But, (K14∨N16)∧ (K14∨N17) = T1∧T1 = T1.
Therefore, K14∨ (K16∧K17) 6= (K14∨K16)∧ (K14∨K17).
Hence L(G) is not distributive, when P = 7.

Lemma 3.3. L(G) is not upper semi modular if p = 7.

Proof. When p = 7,

Fig: 3.3

We observe, fig. 2.1 and 2.2, N1∧N2 = {e} which is covered
by N1 while N1∨N2 = G.

which does not cover N2.
Therefore, L(G) is not upper semi modular when p =

7.

Lemma 3.4. L(G) is not super modular if p = 7.

Proof. When p = 7, we chose four subgroups K2,N1,N2&N3
in L(G) such that (K2 ∨N1)∧ (K2 ∧N2)∧ (K2 ∨N3) = G∧
G∧G = G.

Fig: 3.4

But K2∨ [N1∧N2∧ (K2∧N3)]∨ [N1∧N3∧ (K2∧N2)]∨ [N2∧
N3 ∧ (K2 ∨N1)] = K2 ∨ [N1 ∧N2 ∧G]∨ [N1 ∧N3 ∧G]∨ [N2 ∧
N3∧G] = K2∨{e}∨{e}∨{e}= K2 6= G

Therefore, L(G) is not super modular when p = 7.

4. Conclusion
In this paper, we proved that the modularity, distributivity,

upper semi modularity and super modularity in the subgroup
lattice of the group of 2×2 matrices over Z7.
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