

https://doi.org/10.26637/MJM0S20/0094

A study on subdirect irreducibility of the subgroup lattices of the group of 2×2 matrices over Z_3 and Z_5

R. Murugesan,¹* R. Seethalakshmi² and P. Namasivayam ³

Abstract

In this paper we determine subdirect irreducibility of the subgroup lattice of the group of 2×2 matrices over Z_3 and Z_5 .

Keywords

Matrix group, subgroups, Lattice, Congruence, subdirect irreducibility.

AMS Subject Classification 03G10.

¹ Department of Mathematics, St., John's College, Palayamkottai, Tirunelveli-627002, Tamil Nadu, India. ² Department of Mathematics, The M.D.T. Hindu College(Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli-627012 Tamil Nadu, India.), Pettai-627010, Tamil Nadu, India. ³ Department of Mathematics, The M.D.T. Lindu, College, Tirunelveli, 627010, Tamil Nadu, India.

³Department of Mathematics, The M.D.T. Hindu College, Tirunelveli-627010, Tamil Nadu, India.

*Corresponding author: ¹ rmurugesa2020@gmail.com; ²trseethalakshmi@gmail.com; ³vasuhe2010@gmail.com

Article History: Received 10 January 2020; Accepted 01 May 2020

©2020 MJM.

Contents

1	Introduction
2	Preliminaries
3	Subdirect irreducibility of $L(G)$ when $p = 3$ and 5.500
4	Conclusion
	References 501

1. Introduction

Let L(G) be the Lattice of Subgroups of G, where G is a group of 2×2 matrices over Z_p having determinant value 1 under matrix multiplication modulo p, where p is a prime number.

Let
$$\mathscr{G} = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
: $a, b, c, d \in Z_p, ad - bc \neq 0$.
Then \mathscr{G} is a group under matrix multiplication modulo p .
Let $G = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathscr{G} : ad - bc = 1. \right\}$
Then \mathscr{G} is a subgroup of G .
we have, $o(\mathscr{G}) = p(p^2 - 1)(p - 1)$ and $o(G) = p(p^2 - 1)$.

[6]

2. Preliminaries

Definition 2.1. (*Poset*) A partial order on a non-empty set P is a binary relation \leq on P that is reflexive, anti-symmetric

and transitive. The pair (P, \leq) is called a **partially ordered** set or poset. A poset. (P, \leq) is totally ordered if every $x, y \in P$ are comparable, that is either $x \leq y$ or $y \leq x$. A non-empty subset *S* of *P* is a chain in *P* if *S* is totally ordered by \leq .

Definition 2.2. Let (P, \leq) be a poset and let $S \subseteq P$. An upper bound of *S* is an element $x \in P$ for which $s \leq x$ for all $s \in S$. The least upper bound of *S* is called the **supremum or join** of *S*. A lower bound for *S* is an element $x \in P$ for which $x \leq s$ for all $s \in S$. The greatest lower bound of *S* is called the **infimum or meet** of *S*.

Definition 2.3. (*Lattice*) *Poset* (P, \leq) *is called a lattice if every pair x, y elements of P has a supremum and an infimum, which are denoted by x* \lor *y and x* \land *y respectively.*

Definition 2.4. (*Atom*) An element *a* is an atom, if a > 0 and *a* dual atom, if a < 1.

Definition 2.5. An equivalence relation θ on a lattice *L* is called a congruence relation on *L* iff $(a_0, b_0) \in \theta$ and $(a_1, b_1) \in \theta$ imply that $(a_0 \land a_1, b_0 \land b_1) \in \theta$ and $(a_0 \lor a_1, b_0 \lor b_1) \in \theta$.

Definition 2.6. *The collection of all congruence relations on L, is denoted by Con L.*

Note: Con *L* with respect to the set inclusion relation becomes an algebraic lattice.[1]

Definition 2.7. If a lattice L has only two trivial congruence relations, namely ω , the diagonal and $\tau = L \times L$, then L is said to be simple. (e.g. M_3 is simple)

Definition 2.8. If Con L contains a unique atom, then we say that L is subdirectly irreducible. (e.g N_5 is subdirectly irreducible)

We give below the diagrams of L(G) when P = 3 and 5.

Fig. 2.2 : L(G) when p = 5

Row I : (Left to right): S_1 to S_5 and T_1 to T_6 . Row II : (Left to right): P_1 to P_5 and R_1 to R_{10} . Row III: (Left to right): L_1 to L_{15} , N_1 to N_{10} and Q_1 to Q_6 .

Row IV: (Left to right): H_1 , K_1 to K_{10} and M_1 to M_6 .

3. Subdirect irreducibility of L(G) when p = 3 and 5

In the following theorems we consider L(G) when p = 3 and 5.

Lemma 3.1. $\theta(\{e\}, H_1)$, the principal congruence generated by $(\{e\}, H_1)$ is a proper congruence relation on L(G).

Proof. When p = 3, L(G) is given in figure 2.1. The principal congruence relation generated by $\theta(\{e\}, H_1)$ is equal to $\omega \cup \{(\{e\}, H_1), (H_1, (\{e\}), (K_1, M_1), (M_1, K_1), (K_2, M_2), (M_2, K_2), (K_3, M_3), (M_3, K_3), (K_4, M_4), (M_4, K_4)\}$, where ω is the diagonal relation on L(G), is a proper congruence relation of L(G).

Lemma 3.2. $\theta(A,B) = L(G) \times L(G)$, for all other pairs A and B of elements in L(G).

Proof.

$$\begin{aligned} \theta(\{e\}, K_1) \\ &= \omega \cup \{(\{e\}, K_1), (K_1, (\{e\}), (K_2, G), (K_3, G), (\{e\}, G), \ldots\} \\ &= L(G) \times L(G) \end{aligned}$$

Similarly,

$$\theta(\lbrace e \rbrace, K_2) = L(G) \times L(G)$$

$$\theta(\lbrace e \rbrace, K_3) = L(G) \times L(G)$$

$$\theta(\lbrace e \rbrace, K_4) = L(G) \times L(G)$$

$$\begin{aligned} &\theta(\{e\}, M_1) \\ &= \omega \cup \{(\{e\}, M_1), (M_1, (\{e\}), (K_3, G), (K_4, G), (\{e\}, G), \ldots\} \\ &= L(G) \times L(G) \end{aligned}$$

Similarly,

$$\theta(\{e\}, M_2) = L(G) \times L(G)$$

$$\theta(\{e\}, M_3) = L(G) \times L(G)$$

$$\theta(\{e\}, M_4) = L(G) \times L(G)$$

$$\begin{aligned} &\theta(\{e\}, N_1) = \omega \cup \{(\{e\}, N_1), (N_1, (\{e\}), (K_1, G), (K_2, G), \\ & (K_3, G), (K_4, G), (\{e\}, G), \ldots\} = L(G) \times L(G) \end{aligned}$$

$$\begin{split} &\theta(\{e\},L_1) = \omega \cup \{(\{e\},L_1),(L_1,(\{e\}),(K_1,G),(K_2,G),\\ &(K_3,G),(K_4,G),(\{e\},G),\ldots\} = L(G) \times L(G) \end{split}$$

Similarly,

$$\theta(\lbrace e \rbrace, L_2) = L(G) \times L(G)$$

$$\theta(\lbrace e \rbrace, L_3) = L(G) \times L(G)$$

 $\begin{aligned} \theta(H_1,G) \\ &= \omega \cup \{(H_1,G), (\{e\},K_3), (\{e\},K_4), (\{e\},G), \dots \} \\ &= L(G) \times L(G) \end{aligned}$

 $\begin{aligned} &\theta(H_1, M_1) \\ &= \omega \cup \{(H_1, M_1), (L_1, G), (L_2, G), (H_1, G), (\{e\}, K_3), \\ &(\{e\}, K_4), (\{e\}, G), \ldots\} = L(G) \times L(G) \end{aligned}$

Similarly,

$$\begin{aligned} \theta(H_1, M_2) &= L(G) \times L(G) \\ \theta(H_1, M_3) &= L(G) \times L(G) \\ \theta(H_1, M_4) &= L(G) \times L(G) \end{aligned}$$

$$\begin{aligned} \theta(L_1, L_2) \\ &= \boldsymbol{\omega} \cup \{ (L_1, L_2), (H_1, N_1), (M_1, G), (M_2, G), (M_3, G), \\ &(M_4, G), (H_1, G), (\{e\}, K_3), (\{e\}, K_4), (\{e\}, G), \ldots \} \\ &= L(G) \times L(G) \end{aligned}$$

Similarly,

$$\theta(L_1, L_3) = L(G) \times L(G)$$

$$\theta(L_2, L_4) = L(G) \times L(G)$$

$$\theta(K_1,K_2)$$

 $= \omega \cup \{(K_1, K_2), (M_1, G), (M_2, G), (M_4, G), (H_1, G), \\ (\{e\}, K_3), (\{e\}, K_4), (\{e\}, G), ...\} \\= L(G) \times L(G)$

Similarly,

$$\begin{aligned} \theta(L_1,L_3) &= L(G) \times L(G) \\ \theta(L_2,L_3) &= L(G) \times L(G) \end{aligned}$$

 $\begin{aligned} \theta(M_1, M_2) \\ &= \omega \cup \{ (M_1, M_2), (H_1, G), (\{e\}, K_3), \\ (\{e\}, K_4), (\{e\}, G) \dots \} = L(G) \times L(G) \end{aligned}$

Similarly,

$$\begin{aligned} \theta(M_1, M_3) &= L(G) \times L(G) \\ \theta(M_1, M_4) &= L(G) \times L(G) \\ \theta(M_2, M_3) &= L(G) \times L(G) \\ \theta(M_2, M_4) &= L(G) \times L(G) \\ \theta(M_3, M_4) &= L(G) \times L(G) \end{aligned}$$

Therefore, $\theta(A, B)$ is an improper congruence for all other pairs *A* and *B* of elements in *L*(*G*).

Remark 3.3. For p = 5, by similar argument we can prove that the only proper congruence of L(G) is $\theta(\{e\}, H_1)$.

Theorem 3.4. Con(L(G)) is a 3-element chain when p = 3 and 5. In otherwords, L(G) is subdirectly irreducible when p = 3 and 5.

Proof. From Lemma 3.1 and Lemma 3.2 we get the result. The Hasse diagram of Con(L(G)) is as shown below.

4. Conclusion

In this paper we proved that the subgroup lattices of the group of 2×2 matrices over Z_3 and Z_5 , are subdirect irreducibility.

References

- [1] N. Bourbaki, *Elements of Mathematics, Algebra I*, Chapter 1-3 Springer Verlag Berlin Heidelberg, New York, London Paris Tokio, (1974).
- ^[2] J. B. Fraleigh, A First Course in Abstract Algebra, Addison-Wesley, London, (1992).
- [3] C. F. Gardiner, A First Course in Group Theory, Springer-Verlag, Berlin, (1997).
- [4] G. Gratzer, *General Lattice Theory*, Birkhauser Veslag, Basel, (1998).
- ^[5] I. N. Herstien, *Topics in Algebra*, John Wiley and Sons, New York, (1975).
- [6] D. Jebaraj Thiraviam, A Study on Some Special Types of Lattices, Ph.D thesis, Manonmaniam Sundaranar University, (2015).
- [7] A. Vethamanickam and Jebaraj Thiraviam, On Lattices of Subgroups, *Int. Journal of Mathematical*, 6(9)(2015), 1-11.

********* ISSN(P):2319 – 3786 Malaya Journal of Matematik ISSN(O):2321 – 5666 ********

