# A study on subdirect irreducibility of the subgroup lattices of the group of $2 \times 2$ matrices over $Z_{3}$ and $Z_{5}$ 

R. Murugesan, ${ }^{1 *}$ R. Seethalakshmi ${ }^{2}$ and P. Namasivayam ${ }^{3}$

## Abstract

In this paper we determine subdirect irreducibility of the subgroup lattice of the group of $2 \times 2$ matrices over $Z_{3}$ and $Z_{5}$.

## Keywords

Matrix group, subgroups, Lattice, Congruence, subdirect irreducibility.

## AMS Subject Classification

03G10.
${ }^{1}$ Department of Mathematics, St., John's College, Palayamkottai, Tirunelveli-627002, Tamil Nadu, India.
${ }^{2}$ Department of Mathematics, The M.D.T. Hindu College(Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli-627012 Tamil Nadu, India.), Pettai-627010, Tamil Nadu, India.
${ }^{3}$ Department of Mathematics, The M.D.T. Hindu College, Tirunelveli-627010, Tamil Nadu, India.
*Corresponding author: ${ }^{1}$ rmurugesa2020@gmail.com; ${ }^{2}$ trseethalakshmi@gmail.com; ${ }^{3}$ vasuhe2010@gmail.com
Article History: Received 10 January 2020; Accepted 01 May 2020

## Contents

1 Introduction ..... 499
2 Preliminaries ..... 499
3 Subdirect irreducibility of $L(G)$ when $p=3$ and 5.500
4 Conclusion ..... 501
References ..... 501

## 1. Introduction

Let $L(G)$ be the Lattice of Subgroups of $G$, where $G$ is a group of $2 \times 2$ matrices over $Z_{p}$ having determinant value 1 under matrix multiplication modulo $p$, where $p$ is a prime number.

Let $\mathscr{G}=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right): a, b, c, d \in Z_{p}, a d-b c \neq 0$.
Then $\mathscr{G}$ is a group under matrix multiplication modulo $p$.
Let $G=\left\{\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \mathscr{G}: a d-b c=1.\right\}$
Then $\mathscr{G}$ is a subgroup of $G$.
we have, $o(\mathscr{G})=p\left(p^{2}-1\right)(p-1)$ and $o(G)=p\left(p^{2}-1\right)$. [6]

## 2. Preliminaries

Definition 2.1. (Poset) A partial order on a non-empty set $P$ is a binary relation $\leq$ on $P$ that is reflexive, anti-symmetric
and transitive. The pair $(P, \leq)$ is called a partially ordered set or poset. A poset. $(P, \leq)$ is totally ordered if every $x, y \in P$ are comparable, that is either $x \leq y$ or $y \leq x$. A non-empty subset $S$ of $P$ is a chain in $P$ if $S$ is totally ordered by $\leq$.

Definition 2.2. Let $(P, \leq)$ be a poset and let $S \subseteq P$. An upper bound of $S$ is an element $x \in P$ for which $s \leq x$ for all $s \in S$. The least upper bound of $S$ is called the supremum or join of $S$.A lower bound for $S$ is an element $x \in P$ for which $x \leq s$ for all $s \in S$. The greatest lower bound of $S$ is called the infimum or meet of $S$.

Definition 2.3. (Lattice) Poset $(P, \leq)$ is called a lattice if every pair $x, y$ elements of $P$ has a supremum and an infimum, which are denoted by $x \vee y$ and $x \wedge y$ respectively.

Definition 2.4. (Atom) An element $a$ is an atom, if $a>0$ and a dual atom, if $a<1$.

Definition 2.5. An equivalence relation $\theta$ on a lattice $L$ is called a congruence relation on $L$ iff $\left(a_{0}, b_{0}\right) \in \theta$ and $\left(a_{1}, b_{1}\right) \in \theta$ imply that $\left(a_{0} \wedge a_{1}, b_{0} \wedge b_{1}\right) \in \theta$ and $\left(a_{0} \vee a_{1}, b_{0} \vee\right.$ $\left.b_{1}\right) \in \theta$.

Definition 2.6. The collection of all congruence relations on $L$, is denoted by Con $L$.

Note: Con $L$ with respect to the set inclusion relation becomes an algebraic lattice.[1]

Definition 2.7. If a lattice $L$ has only two trivial congruence relations, namely $\omega$, the diagonal and $\tau=L \times L$, then $L$ is said to be simple. (e.g. $M_{3}$ is simple)

Definition 2.8. If Con $L$ contains a unique atom, then we say that $L$ is subdirectly irreducible. (e.g $N_{5}$ is subdirectly irreducible)

We give below the diagrams of $L(G)$ when $P=3$ and 5 .


Fig. 2.1: $L(G)$ when $p=3$


Fig. 2.2: $L(G)$ when $p=5$
Row I : (Left to right): $S_{1}$ to $S_{5}$ and $T_{1}$ to $T_{6}$.
Row II : (Left to right): $P_{1}$ to $P_{5}$ and $R_{1}$ to $R_{10}$.
Row III: (Left to right): $L_{1}$ to $L_{15}, N_{1}$ to $N_{10}$ and $Q_{1}$ to $Q_{6}$.

Row IV: (Left to right): $H_{1}, K_{1}$ to $K_{10}$ and $M_{1}$ to $M_{6}$.

## 3. Subdirect irreducibility of $L(G)$ when $p=3$ and 5

In the following theorems we consider $L(G)$ when $p=3$ and 5.

Lemma 3.1. $\boldsymbol{\theta}\left(\{e\}, H_{1}\right)$, the principal congruence generated by $\left(\{e\}, H_{1}\right)$ is a proper congruence relation on $L(G)$.

Proof. When $p=3, L(G)$ is given in figure 2.1. The principal congruence relation generated by $\theta\left(\{e\}, H_{1}\right)$ is equal to $\omega \cup$ $\left\{\left(\{e\}, H_{1}\right),\left(H_{1},(\{e\}),\left(K_{1}, M_{1}\right),\left(M_{1}, K_{1}\right),\left(K_{2}, M_{2}\right),\left(M_{2}, K_{2}\right)\right.\right.$, $\left.\left(K_{3}, M_{3}\right),\left(M_{3}, K_{3}\right),\left(K_{4}, M_{4}\right),\left(M_{4}, K_{4}\right)\right\}$, where $\omega$ is the diagonal relation on $L(G)$, is a proper congruence relation of $L(G)$.

Lemma 3.2. $\theta(A, B)=L(G) \times L(G)$, for all other pairs $A$ and $B$ of elements in $L(G)$.

Proof.

$$
\begin{aligned}
& \theta\left(\{e\}, K_{1}\right) \\
& =\omega \cup\left\{\left(\{e\}, K_{1}\right),\left(K_{1},(\{e\}),\left(K_{2}, G\right),\left(K_{3}, G\right),(\{e\}, G), \ldots\right\}\right. \\
& =L(G) \times L(G)
\end{aligned}
$$

Similarly,

$$
\begin{aligned}
& \theta\left(\{e\}, K_{2}\right)=L(G) \times L(G) \\
& \theta\left(\{e\}, K_{3}\right)=L(G) \times L(G) \\
& \theta\left(\{e\}, K_{4}\right)=L(G) \times L(G)
\end{aligned}
$$

$\theta\left(\{e\}, M_{1}\right)$
$=\omega \cup\left\{\left(\{e\}, M_{1}\right),\left(M_{1},(\{e\}),\left(K_{3}, G\right),\left(K_{4}, G\right),(\{e\}, G), \ldots\right\}\right.$
$=L(G) \times L(G)$
Similarly,

$$
\begin{aligned}
& \theta\left(\{e\}, M_{2}\right)=L(G) \times L(G) \\
& \theta\left(\{e\}, M_{3}\right)=L(G) \times L(G) \\
& \theta\left(\{e\}, M_{4}\right)=L(G) \times L(G)
\end{aligned}
$$

$$
\begin{aligned}
& \theta\left(\{e\}, N_{1}\right)=\omega \cup\left\{\left(\{e\}, N_{1}\right),\left(N_{1},(\{e\}),\left(K_{1}, G\right),\left(K_{2}, G\right),\right.\right. \\
& \left.\left(K_{3}, G\right),\left(K_{4}, G\right),(\{e\}, G), \ldots\right\}=L(G) \times L(G)
\end{aligned}
$$

$\theta\left(\{e\}, L_{1}\right)=\omega \cup\left\{\left(\{e\}, L_{1}\right),\left(L_{1},(\{e\}),\left(K_{1}, G\right),\left(K_{2}, G\right)\right.\right.$, $\left.\left(K_{3}, G\right),\left(K_{4}, G\right),(\{e\}, G), \ldots\right\}=L(G) \times L(G)$

Similarly,

$$
\begin{aligned}
& \theta\left(\{e\}, L_{2}\right)=L(G) \times L(G) \\
& \theta\left(\{e\}, L_{3}\right)=L(G) \times L(G)
\end{aligned}
$$

$$
\begin{aligned}
& \theta\left(H_{1}, G\right) \\
& =\omega \cup\left\{\left(H_{1}, G\right),\left(\{e\}, K_{3}\right),\left(\{e\}, K_{4}\right),(\{e\}, G), \ldots\right\} \\
& =L(G) \times L(G) \\
& \theta\left(H_{1}, M_{1}\right) \\
& =\omega \cup\left\{\left(H_{1}, M_{1}\right),\left(L_{1}, G\right),\left(L_{2}, G\right),\left(H_{1}, G\right),\left(\{e\}, K_{3}\right),\right. \\
& \left.\left(\{e\}, K_{4}\right),(\{e\}, G), \ldots\right\}=L(G) \times L(G)
\end{aligned}
$$

Similarly,

$$
\begin{aligned}
& \quad \theta\left(H_{1}, M_{2}\right)=L(G) \times L(G) \\
& \quad \theta\left(H_{1}, M_{3}\right)=L(G) \times L(G) \\
& \quad \theta\left(H_{1}, M_{4}\right)=L(G) \times L(G) \\
& \theta\left(L_{1}, L_{2}\right) \\
& =\omega \cup\left\{\left(L_{1}, L_{2}\right),\left(H_{1}, N_{1}\right),\left(M_{1}, G\right),\left(M_{2}, G\right),\left(M_{3}, G\right),\right. \\
& \\
& \left.\left(M_{4}, G\right),\left(H_{1}, G\right),\left(\{e\}, K_{3}\right),\left(\{e\}, K_{4}\right),(\{e\}, G), \ldots\right\} \\
& = \\
& L(G) \times L(G)
\end{aligned}
$$

Similarly,

$$
\begin{aligned}
& \theta\left(L_{1}, L_{3}\right)=L(G) \times L(G) \\
& \theta\left(L_{2}, L_{4}\right)=L(G) \times L(G)
\end{aligned}
$$

$$
\begin{aligned}
& \theta\left(K_{1}, K_{2}\right) \\
& =\omega \cup\left\{\left(K_{1}, K_{2}\right),\left(M_{1}, G\right),\left(M_{2}, G\right),\left(M_{4}, G\right),\left(H_{1}, G\right),\right. \\
& \left.\quad\left(\{e\}, K_{3}\right),\left(\{e\}, K_{4}\right),(\{e\}, G), \ldots\right\} \\
& =L(G) \times L(G)
\end{aligned}
$$

Similarly,

$$
\begin{aligned}
& \theta\left(L_{1}, L_{3}\right)=L(G) \times L(G) \\
& \theta\left(L_{2}, L_{3}\right)=L(G) \times L(G)
\end{aligned}
$$

$$
\begin{aligned}
& \theta\left(M_{1}, M_{2}\right) \\
& =\omega \cup\left\{\left(M_{1}, M_{2}\right),\left(H_{1}, G\right),\left(\{e\}, K_{3}\right),\right. \\
& \left.\left(\{e\}, K_{4}\right),(\{e\}, G) \ldots\right\}=L(G) \times L(G)
\end{aligned}
$$

Similarly,

$$
\begin{aligned}
& \theta\left(M_{1}, M_{3}\right)=L(G) \times L(G) \\
& \theta\left(M_{1}, M_{4}\right)=L(G) \times L(G) \\
& \theta\left(M_{2}, M_{3}\right)=L(G) \times L(G) \\
& \theta\left(M_{2}, M_{4}\right)=L(G) \times L(G) \\
& \theta\left(M_{3}, M_{4}\right)=L(G) \times L(G)
\end{aligned}
$$

Therefore, $\theta(A, B)$ is an improper congruence for all other pairs $A$ and $B$ of elements in $L(G)$.

Remark 3.3. For $p=5$, by similar argument we can prove that the only proper congruence of $L(G)$ is $\theta\left(\{e\}, H_{1}\right)$.

Theorem 3.4. Con $(L(G))$ is a 3-element chain when $p=3$ and 5. In otherwords, $L(G)$ is subdirectly irreducible when $p=3$ and 5 .

Proof. From Lemma 3.1 and Lemma 3.2 we get the result.
The Hasse diagram of $\operatorname{Con}(L(G))$ is as shown below.


Fig. 3.1: $\operatorname{Con}(L(G))$

## 4. Conclusion

In this paper we proved that the subgroup lattices of the group of $2 \times 2$ matrices over $Z_{3}$ and $Z_{5}$, are subdirect irreducibility.

## References

${ }^{[1]}$ N. Bourbaki, Elements of Mathematics, Algebra I, Chapter 1-3 Springer Verlag Berlin Heidelberg, New York, London Paris Tokio, (1974).
${ }^{[2]}$ J. B. Fraleigh, A First Course in Abstract Algebra, Addison-Wesley, London, (1992).
${ }^{\text {[3] }}$ C. F. Gardiner, A First Course in Group Theory, SpringerVerlag, Berlin, (1997).
${ }^{[4]}$ G. Gratzer, General Lattice Theory, Birkhauser Veslag, Basel, (1998).
${ }^{\text {[5] }}$ I. N. Herstien, Topics in Algebra, John Wiley and Sons, New York, (1975).
${ }^{\text {[6] }}$ D. Jebaraj Thiraviam, A Study on Some Special Types of Lattices, Ph.D thesis, Manonmaniam Sundaranar University, (2015).
[7] A. Vethamanickam and Jebaraj Thiraviam, On Lattices of Subgroups, Int. Journal of Mathematical, 6(9)(2015), 1-11.
$\operatorname{ISSN}(\mathrm{P}): 2319-3786$
Malaya Journal of Matematik
ISSN(O): $2321-5666$
*********

