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Abstract
In this article, to extend and improve existing oscillatory criteria for third order Emden-Fowler type neutral partial
differential equations with mixed nonlinearities subject to the boundary conditions. Several sufficient conditions
are obtained for oscillation of solutions of such class of equations by using generalized Riccati and integral
average method.
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1. Introduction
The problem of oscillation and nonoscillation of third

order originated by Hanan [14] in this monumental paper pub-
lished in 1961. Since then a number of researches contributed
to the subject investigating various classes of differential equa-
tions and applying variety of techniques. A systematic survey
of the most significant efforts in this theory can be found in
the excellent monographs of Swanson [21], Greguš and the
very recent-one one of Padhi and Pati [11,19].
In the middle of the nineteenth century, the Emden-Fowler
equations emerged from theories deals with gaseous dynamics
in astrophysics. The Emden-Fowler equations are considered
to be one of the most important classical objects in the theory
of differential equations. This type of equations has variety
of interesting physical applications occuring in astrophysics
in the form of Emden equation and in atomic physics in the
form of Thomas-Fermi equation.

The Emden-Fowler type of equation has significant appli-
cations in many fields of scientific and technical world and
and this equation has been investigated by many researchers
[1-3,5-10,12,13,15-17,23,25,27,30] and the references cited
there in.

The Emden-Fowler equations were first considered only
for second order equations of the form

(p(t)u′)′+q(t)uγ = 0, t ≥ 0. (1.1)

By a mixed type Emden-Fowler equation we mean the
equation contains a finite sum of powers of x and if there
exists in sum exponents of which are both grater than and less
than 1. These type of equations arises for instant in the growth
of bacteria population with competitive species. As we have
known, almost all existing oscillation criteria in the literature,
see for example [18, 22, 28] are established for Emden-Fowler
type equations with mixed nonlinearities of second order.

In 2007, Xu et al. [29], discussed the Philos-type oscilla-
tion criteria for the second order Emden-Fowler neutral delay
differential equation of the form(

|x′(t)|γ−1x′(t)
)′
+q1(t)|y(t−σ)|α−1y(t−σ)

+q2(t)|y(t−σ)|β−1y(t−σ) = 0,

t ≥ 0, where x(t) = y(t)+ p(t)y(t− τ).
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In 2018, Sadhasivam et al. [20], investigated the oscilla-
tion of third-order neutral delay mixed type Emden-Fowler
differential equations of the form(

a(t)
(
b(t)|z′(t)|γ−1z′(t)

)′)′
+ p1(t)|x(σ1(t))|α−1x(σ1(t))

+ p2(t)|x(σ2(t))|β−1x(σ2(t)) = 0, t ≥ t0.

Where z(t) = x(t)+ c(t)x(τ(t)).
Partial differential equations are used to model a number

of real world problems arising in various branches of science
and engineering. The oscillation theory for second order
partial differential equations have been well developed. See
[4,19,24,26,31] and the references cited therein. There are
essentially less results on oscillation of third order Emden-
Fowler partial differential equations. Motivated by the above
observations, we are concerned with the oscillation criteria
for third-order Emden-Fowler type neutral partial differential
equations with mixed nonlinearities

∂

∂ t

(
r2(t)

∂

∂ t

(
r1(t)

∣∣∣∣∂ z(x, t)
∂ t

∣∣∣∣γ−1
∂ z
∂ t

))
+ p1(x, t)|u(x, t−δ1)|α−1u(x, t−δ1)

+ p2(x, t)|u(x, t−δ2)|β−1u(x, t−δ2)

= a(t)∆u(x, t)+F(x, t), (x, t) ∈Ω×R+. (1.2)

Where z(x, t) = u(x, t)+q(t)u(x, t− τ). R+ = (0,∞), where
Ω is bounded domain in RN with a piecewise smooth bound-
ary ∂Ω, ∆ is the Laplacian operator in the Euclidean N space
RN , i.e, ∆u(x, t) = ΣN

r=1
∂ 2u(x,t)

∂xr
2 .

Equation (1.1) is supplemented with the boundary condi-
tions with

∂u(x, t)
∂ µ

+g(x, t)u(x, t) = 0, (x, t) ∈Ω×R+, (1.3)

and

u(x, t) = 0, (x, t) ∈Ω×R+. (1.4)

Throughout this paper, we will suppose that the following
conditions hold:
(A1) τ , δ1 and δ2 are positive constants, α , β and γ are non-
negative constants with 0 < α < γ < β , where γ is ratio of
two odd positive integers;
(A2) p1(x, t), p2(x, t)∈C(Ḡ,R+), pi(t)=minx∈Ω̄

pi(x, t),where
i=1,2, p(t) is not identically zero on any ray from [t∗,∞) for
any t∗ ≥ 0 and q(t) ∈C(R+,R);0≤ q(t)≤ 1;
(A3) F(x, t) ∈C(Ḡ,R), such that

∫
Ω

F(x, t)dx≤ 0.
The following notations will be used for our convenience.

U(t) =
1
|Ω|

∫
Ω

u(x, t)dx, (1.5)

Z(t) =U(t)+q(t)U(t− τ) (1.6)

By a solution of (1.1),(1.2) or (1.1),(1.3) we mean a non-
trivial function u(x, t) ∈C3(G)∩C2(G)∩C1(G) that is satis-
fies the domain G and the boundary condition (1.2), (1.3). A
solution u(x, t) of (1.1),(1.2) or (1.1),(1.3) is said to be oscilla-
tory in G if it has a zero in Ω× (t,∞) for any t > 0. Otherwise
it is nonoscillatory. Equation (1.1) is said to be oscillatory if
all its solutions are oscillatory.

This paper is organized as follows: In Section 2, we
present some new oscillation criteria for all solutions of (1.1),
(1.2) and (1.1), (1.3). In Section 3, examples are provided to
illustrate the main results.

2. Main Results

In this section, we state and prove our oscillation results.

Theorem 2.1. If u(x, t) is a solution of (1.1), (1.2) for which
u(x, t)> 0 in GT = Ω× [T,∞),T ≥ 0, then the function U(t)
is defined by (1.4) satisfy the differential inequality

(
r2(t)

(
r1(t)

(
z′(t)

)γ
)′)′

+ p1(t)(U(t−δ1))
α + p2(t)(U(t−δ2))

β ≤ 0 (2.1)

with U(t) > 0, U(t − τ) > 0 and U(t − δi) > 0 for t ≥ T ,
where i = 1,2.

Proof. Let t ≥ T . Integrating (1.1) with respect to x over Ω,
we have

∫
Ω

d
dt

(
r2(t)

d
dt

(
r1(t)

∣∣∣∣dz(x, t)
dt

∣∣∣∣γ−1 dz
dt

))
dx

+
∫

Ω

p1(x, t)|u(x, t−δ1)|α−1u(x, t−δ1)dx

+
∫

Ω

p2(x, t)|u(x, t−δ2)|β−1u(x, t−δ2)dx

=
∫

Ω

a(t)∆u(x, t)dx+
∫

Ω

F(x, t)dx. (2.2)

Using Green’s formula and boundary condition (1.2), we
obtain

∫
Ω

∆u(x, t)dx =
∫

∂Ω

∂u(x, t)
∂ µ

dS

=−
∫

∂Ω

g(x, t)u(x, t)dS≤ 0, (2.3)
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t ≥ T .Also from (A2) and Jensen’s inequality, it follows that∫
Ω

p1(x, t)|u(x, t−δ1)|α−1u(x, t−δ1)dx

≥ p1(t)
∫

Ω

(u(x, t−δ1))
α dx

≥ p1(t)
(∫

Ω

u(x, t−δ1)dx
)α

≥ p1(t)(U(t−δ1))
α , t ≥ T, (2.4)∫

Ω

p2(x, t)|u(x, t−δ2)|β−1u(x, t−δ2)dx

≥ p2(t)
∫

Ω

(u(x, t−δ2))
β dx

≥ p2(t)
(∫

Ω

u(x, t−δ2)dx
)β

≥ p2(t)(U(t−δ2))
β , t ≥ T (2.5)

In view of (1.4), (2.3)-(2.5) and (A4), (2.2) yield(
r2(t)

(
r1(t)

(
z′(t)

)γ
)′)′

+ p1(t)(U(t−δ1))
α

+ p2(t)(U(t−δ2))
β ≤ 0, t ≥ T. (2.6)

This completes the proof.

Lemma 2.2. Assume that u(x, t) is an eventually positive
solution of Eq.(1.1). If∫

∞

0

1
r2(s)

ds = ∞, (2.7)∫
∞

0

1
r1(s)

ds = ∞, (2.8)

∫
∞

0

(
1

r1(θ)

∫
∞

θ

1
r2(ξ )

(∫
∞

ξ

P(s)ds
)

dξ

) 1
γ

dθ = ∞,

(2.9)

where

P(t) = p1(t)(1−q(t−δ1))
α Lα

+ p2(t)(1−q(t−δ2))
β Lβ (2.10)

then there exists a sufficiently large T such that (r1(t)(z′(t))γ)′>
0 on [T,∞) and either z′(t)> 0 on [T,∞) or limt→∞ z(t) = 0.

Proof. Since u(x, t) is an eventually positive solution of (1.1).
There exits t1 ≥ t0 such that u(x, t)> 0 on Ω× [T,∞), u(x, t−
τ) > 0,u(x, t − δ1) > 0,u(x, t − δ2) > 0 and from (1.5) we
have, (

r2(t)
(
r1(t)(z′(t))γ

)′)′
=−p1(t)(U(t−δ1))

α

− p2(t)(U(t−δ2))
β < 0, t ≥ t1. (2.11)

Then
(
r2(t)(r1(t)(z′(t))γ)′

)′ is strictly decreasing on [t1,∞),
and thus (r1(t)(z′(t))γ)′ is eventually of one sign. For t2 > t1

is sufficiently large on [t1,∞), we claim (r1(t)(z′(t))γ)′ > 0
on [t2,∞). Otherwise, assume that there exists a sufficiently
large t3 > t2 such that (r1(t)(z′(t))γ)′ < 0 on [t3,∞). Then
r1(t)(z′(t))γ is decreasing on [t3,∞), and we have

r1(t)(z′(t))γ − r1(t3)(z′(t3))γ =
∫ t

t3

r2(s)
r2(s)

(
r1(s)(z′(s))γ

)′ ds

≤ r2(t3)
(
r1(t3)(z′(t3))γ

)′ ∫ t

t3

1
r2(s)

ds.

By (2.7), we have limt→∞ r1(t)(z′(t))γ =−∞. So there exists
a sufficiently large t4 with t4 > t3 such that z′(t) < 0, [t4,∞).
Further more ∫ t

t4
z′(s)ds = z(t)− z(t4)∫ t

t4

r1(s)
r1(s)

z′(s)ds≤ r1(t4)z′(t4)
∫ t

t4

1
r1(s)

ds. (2.12)

By (2.8), we deduce that limt→∞ z(t) =−∞, which contradicts
the fact that z(t) is an eventually positive solution of (2.8).
So (r1(t)(z′(t))γ)′ > 0 on [t2,∞). Thus z′(t) is eventually
of one sign. Now, we assume that z′(t) < 0, t ∈ [t5,∞), for
sufficiently large t5 > t4. Since z′(t) > 0, further more, we
have limt→∞ z(t) = L ≥ 0. We claim that L = 0. Otherwise
assume that L > 0. Then z(t)≥ L on [t5,∞) and for t ∈ [t5,∞)
by (2.1),(

r2(t)
(
r1(t)(z′(t))γ

)′)′
=−p1(t)(U(t−δ1))

α

− p2(t)(U(t−δ2))
β

By (1.5), we get

U(t)≥ z(t)−q(t)U(t− τ)≥ z(t)(1−q(t)) (2.13)

Then, for all t ≥ t5,

U(t−δ1)≥ (1−q(t−δ1))z(t−δ1) (2.14)
U(t−δ2)≥ (1−q(t−δ2))z(t−δ2) (2.15)

Then (2.1), implies that,(
r2(t)

(
r1(t)(z′(t))γ

)′)′
+ p1(t)(1−q(t−δ1))

α zα (t−δ1)

+p2(t)(1−q(t−δ2))
β zβ (t−δ2)≤ 0.

(2.16)

Since z(t)≥ L on [t5,∞), we get(
r2(t)

(
r1(t)(z′(t))γ

)′)′
+ p1(t)(1−q(t−δ1))

α Lα

+p2(t)(1−q(t−δ2))
β Lβ ≤ 0, t ≥ t5.

(2.17)

Using (2.10), we have(
r2(t)

(
r1(t)(z′(t))γ

)′)′
+P(t)≤ 0, t ≥ t5. (2.18)
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Integrating with respect to s from t to ∞ yields,∫
∞

t

(
r2(s)

(
r1(s)(z′(s))γ

)′)′ ≤−∫ ∞

t
P(s)ds(

r1(s)(z′(s))γ
)′ ≥ 1

r2(t)

∫
∞

t
P(s)ds

Integrating with respect to s from t to ∞ yields,∫
∞

t

(
r1(s)(z′(s))γ

)′ ds≥
∫

∞

t

1
r2(ξ )

∫
∞

ξ

P(s)dsdξ

r1(t)(z′(t))γ ≤−
∫

∞

t

1
r2(ξ )

∫
∞

ξ

P(s)dsdξ

z′(t)≤
(
− 1

r1(t)

∫
∞

t

1
r2(ξ )

∫
∞

ξ

P(s)dsdξ

) 1
γ

Once again, integrating with respect to s from t5 to ∞ yields,

∫ t

t5
z′(s)ds≤−

∫ t

t5

[
1

r1(θ)

∫
∞

θ

1
r2(ξ )

∫
∞

ξ

P(s)dsdξ

] 1
γ

dθ

z(t)≤ z(t5)−
∫ t

t5

[
1

r1(θ)

∫
∞

θ

1
r2(ξ )

∫
∞

ξ

P(s)dsdξ

] 1
γ

dθ .

Letting t → ∞, from (2.9) we get limt→∞ z(t) = −∞, which
causes a contradiction. So the proof is complete.

Lemma 2.3. Assume that u(x, t) is an eventually positive
solution of Eq.(1.1) such that (r1(t)(z′(t))γ)′ > 0,z′(t)> 0 on
[t1,∞), where t1 ≥ t0 is sufficiently large. Then one has

z′(t)≥
{

1
r1(t)r2(t)

(
r1(t)(z′(t))γ

)′R1(t1, t)
} 1

γ

(2.19)

or

z(t)≥
((

r1(t)(z′(t))γ
)′) 1

γ

R2(t1, t) (2.20)

where R1(t1, t) =
∫ t

t1
1

r2(s)
ds,R2(t1, t) =

∫ t
t1

(
R1(t1,s)

r1(s)r2(s)

) 1
γ

ds.

Proof. By (2.11), we obtain that
(
r2(t)(r1(t)(z′(t))γ)′

)
is

strictly decreasing on [t1,∞). So∫ t

t1

(
r1(s)(z′(s))γ

)′ ds = r1(t)(z′(t))γ − r1(t1)(z′(t1))γ

Multiplying and divided by r2(t),

r1(t)(z′(t))γ ≥ r1(t)(z′(t))γ − r1(t1)(z′(t1))γ

=
∫ t

t1

r2(s)
r2(s)

(
r1(s)(z′(s))γ

)′ ds

r1(t)(z′(t))γ ≥ 1
r2(t)

(
r1(t)(z′(t))γ

)′ ∫ t

t1

1
r2(s)

ds

(z′(t))γ ≥ 1
r1(t)r2(t)

(
r1(t)(z′(t))γ

)′R1(t1, t)

z′(t)≥
{

1
r1(t)r2(t)

(
r1(t)(z′(t))γ

)′R1(t1, t)
} 1

γ

Integrating with respect to s from t1 to t we obtain,

∫ t

t1
z′(s)ds≥

∫ t

t1

{
1

r1(s)r2(s)

(
r1(s)(z′(s))γ

)′R1(t1,s)
} 1

γ

ds

z(t)≥
((

r1(t)(z′(t))γ
)′) 1

γ

∫ t

t1

(
R1(t1,s)

r1(s)r2(s)

) 1
γ

ds

z(t)≥
((

r1(t)(z′(t))γ
)′) 1

γ R2(t1, t)

This completes the proof.

In this section, we will obtain Philos - type oscillation
criteria for (1.1) under the case when 0 ≤ q(t) ≤ 1. The
following notations are used in the sequel.

Denote

σ = min
{

β −α

β − γ
,

β −α

γ− γ

}
,κ =

1
(γ +1)γ+1

P1(t) = σ

[(
p1(t)
r1(t)

)β−γ ( p2(t)
r1(t)

)γ−α

× (1−q(t−δ1))
α(β−γ) (1−q(t−δ2))

β (γ−α)

] 1
β−α

Let us define the following Philos functions J.
Let D0 =

{
(t,s) ∈ R2 : t > s≥ t0

}
and

D=
{
(t,s) ∈ R2 : t ≥ s≥ t0

}
. We say that the functions H ∈

C(D,R) belongs to the class J, denotes by H ∈ J, if
(H1) H(t, t) = 0 for t ≥ t0. H(t,s)> 0 on (t,s) ∈ D0;
(H2) H has a continuous and non positive partial derivative
on D0 with respect to the second variable, such that

∂

∂ s
H(t,s) =−h(t,s)H(t,s) f or (t,s) ∈ D0

where h ∈C(D,R).
For given functions h∈C(D,R),φ ∈C′([R+,∞),R+) and

η ∈C′([R+,∞),R) we set

ρ(t,s) = h(t,s)− φ ′(s)
φ(s)

K1(t,s) = P1(s)−η
′(s)+ρ(t,s)η(s)

Theorem 2.4. Let H ∈ J, φ ∈C′(R+,R+) and η ∈C′(R+,R).
Then (1.1),(1.2) is oscillatory provided that the following
condition holds

limsup
t→∞

1
H(t, t0)

∫ t

t0
H(t,s)φ(s)

{
K1(t,s)−|λ (s)||ρ(t,s)|γ+1}ds = ∞, (2.21)

where

λ (s) =
(r2(s)r1(s))

1−γ

(γ +1)γ+1R1(t1,s)
. (2.22)

Proof. Let u(x, t) be a nonoscillatory solution of (1.1). With-
out loss of generality, we may assume that u(x, t)> 0 on Ω×
[t0,∞) for some sufficiently large t0.(The Case u(x, t)< 0 can
be considered by same method) Let us assume that there exists
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a t1 > t0 such that u(x, t)> 0, u(x, t− τ)> 0,u(x, t−δ1)> 0
and u(x, t−δ2)> 0 for t ≥ t1. Therefore, we get (2.1). Now,
define

W (t) = φ(t)
(

r2(t)(r1(t)(z′(t))γ)′

r1(t)zγ(t−δ1)
+η(t)

)
(2.23)

for t ≥ t1. Differentiating (2.23) and (2.16), we have

W ′(t)≤ φ ′(t)
φ(t)

W (t)−φ(t)
[

p1(t)(1−q(t−δ1))
α zα (t−δ1)

r1(t)zγ (t−δ1)

]
−φ(t)

[
p2(t)(1−q(t−δ2))

β zβ (t−δ2)

r1(t)zγ (t−δ1)

]
−

φ(t)r2(t)(r1(t)(z′(t))γ )′
(
r1(t)γ(z′(t−δ1))

γ−1z′(t−δ1)
)

(r1(t)zγ (t−δ1))
2

+
r′1(t)z

γ (t−δ1)

(r1(t)zγ (t−δ1))
2 +φ(t)η ′(t).

For simplicity, let δ1 ≥ δ2 (a similar argument holds for
δ1 ≤ δ2) then
U(t−δ1)≤U(t−δ2) and applying Lemma 2.3, We get

W ′(t)≤ φ ′(t)
φ(t)

W (t)

−φ(t)
[

p1(t)
r1(t)

(1−q(t−δ1))
α zα−γ(t−δ1)

]
−φ(t)

[
p2(t)
r1(t)

(1−q(t−δ2))
β zβ−γ(t−δ1)

]

−
γφ(t)R

1
γ

1 (t1, t)

r
1−γ

γ

2 (t)r
1−γ

γ

1 (t)

(
W (t)
φ(t)

−η(t)
)1+ 1

γ

+φ(t)η ′(t)

(2.24)

Using Young’s inequality
(

l
p +

m
q ≥ l

1
p m

1
q
)

, we obtain that

β − γ

β −α

[
p1(t)
r1(t)

(1−q(t−δ1))
α zα−γ (t−δ1)

]
+

γ−α

β −α

[
p2(t)
r1(t)

(1−q(t−δ2))
β zβ−γ (t−δ1)

]
≥
{(

p1(t)
r1(t)

)β−γ ( p2(t)
r1(t)

)γ−α

× (1−q(t−δ1))
α(β−γ) (1−q(t−δ2))

β (γ−α)
} 1

β−α

= P1(t)

(2.25)

Combining (2.24) and (2.25) for t ≥ T0, we have

W ′(t)≤ φ ′(t)
φ(t)

W (t)−φ(t) [P1(t)−η(t)]

−
γφ(t)R

1
γ

1 (t1, t)

r
1−γ

γ

2 (t)r
1−γ

γ

1 (t)

∣∣∣∣W (t)
φ(t)

−η(t)
∣∣∣∣1+ 1

γ

(2.26)

Replacing t in (2.26) by s, then multiplying (2.26) by H(t,s)
and integrating on [T, t], it follows from (H2) that for all

t ≥ T ≥ T0,∫ t

T
H(t,s)φ(s) [P1(s)−η(s)]ds

≤−
∫ t

T
H(t,s)W ′(s)ds+

∫ t

T
H(t,s)

φ ′(s)
φ(s)

W (s)ds

− γ

∫ t

T

φ(s)R
1
γ

1 (t1,s)

r
1−γ

γ

2 (s)r
1−γ

γ

1 (s)
H(t,s)

∣∣∣∣W (s)
φ(s)

−η(s)
∣∣∣∣

γ+1
γ

ds

= H(t,T )W (t)+
∫ t

T
H(t,s)ρ(t,s)W (s)ds

− γ

∫ t

T

φ(s)R
1
γ

1 (t1,s)

r
1−γ

γ

2 (s)r
1−γ

γ

1 (s)
H(t,s)

∣∣∣∣W (s)
φ(s)

−η(s)
∣∣∣∣

γ+1
γ

ds

∫ t

T
H(t,s)φ(s)K1(t,s)ds≤ H(t,T )W (t)

+
∫ t

T
H(t,s)φ(t,s)|ρ(s)|

∣∣∣∣W (s)
φ(s)

−η(s)
∣∣∣∣ds

− γ

∫ t

T
H(t,s)φ(s)

∣∣∣∣∣∣ R
1
γ

1 (t1,s)

r
1−γ

γ

2 (s)r
1−γ

γ

1 (s)

∣∣∣∣∣∣
∣∣∣∣W (s)

φ(s)
−η(s)

∣∣∣∣
γ+1

γ

ds

(2.27)

For given t and s, t 6= s, set

F(ω) := |ρ||ω|− γ

∣∣∣∣∣∣ R
1
γ

1 (t1, t)

r
1−γ

γ

2 (t)r
1−γ

γ

1 (t)

∣∣∣∣∣∣ |ω| γ+1
γ , ω > 0.

F(ω) attains its maximum at (γ +1)−γ

∣∣∣∣ r1−γ

2 (t)r1−γ

1 (t)
R1(t1,t)

∣∣∣∣ |ρ|γ and

F(ω)≤ Fmax ≤ |λ (t)||ρ|γ+1 (2.28)

Substituting (2.28) into (2.27), we have∫ t

T
H(t,s)φ(s)K1(t,s)ds≤ H(t,T )W (t)

+
∫ t

T
H(t,s)φ(s)|λ (s)||ρ(t,s)|γ+1ds (2.29)

Set T = T0, so∫ t

T0

H(t,s)φ(s)
[
K1(t,s)−|λ (s)||ρ(t,s)|γ+1

]
ds

≤ H(t,T0)W (T0)

Thus by (H2), we obtain∫ t

T0

H(t,s)φ(s)
[
K1(t,s)−|λ (s)||ρ(t,s)|γ+1

]
ds

=

(∫ T0

t0
+
∫ t

T0

)
H(t,s)φ(s)[

K1(t,s)−|λ (s)||ρ(t,s)|γ+1
]

ds

≤ H(t, t0)
(∫ T0

t0
φ(s)

[
K1(t,s)−|λ (s)||ρ(t,s)|γ+1

]
ds

+ |W (T0)|
)
, (2.30)
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we divide (2.30) through by H(t, t0) and take limsup in it as
t→∞. Eq. (2.21) gives a desired contradiction in (2.13). This
proves the theorem.

Theorem 2.5. Let H,φ ,η be as in Theorem 2.1. Suppose that

0 < inf
s≥t0

{
liminf

t→∞

H(t,s)
H(t, t0)

}
≤ ∞ (2.31)

and

limsup
t→∞

1
H(t, t0)

∫ t

t0
H(t,s)φ(s)|ρ(t,s)|γ+1ds < ∞.

(2.32)

Then (1.1),(1.2) is oscillatory provided the following condition
holds. There exists Θ ∈C([(t0),∞),R)

∫
∞

φ(s)
(

Θ(s)
φ(s)

−η(s)
) γ+1

γ

+

ds = ∞, (2.33)

and for any T ≥ t0,

limsup
t→∞

1
H(t,T )

∫ t

T
H(t,s)φ(s)×[

K1(t,s)−|λ (s)||ρ(t,s)|γ+1]ds≥Θ(t)
(2.34)

where Θ+(s) = max{Θ(s),0}.

Proof. Proceeding as in the proof of Theorem 2.2, we have
that (2.27) and (2.29) hold. Therefore, from (2.29), for all
t > T ≥ T0,

limsup
t→∞

1
H(t,T )

∫ t

T
H(t,s)φ(s)×[

K1(t,s)−|λ (s)||ρ(t,s)|γ+1]ds≤W (T )

Also by (2.34), we have

Θ(t)≤W (T ), T ≥ T0. (2.35)

Define

Q1(t) =
1

H(t,T0)

∫ t

T0

H(t,s)φ(t,s)|ρ(s)|
∣∣∣∣W (s)

φ(s)
−η(s)

∣∣∣∣ds

and

Q2(t) =
γ

H(t,T0)

∫ t

T0

H(t,s)φ(s)

∣∣∣∣∣∣ R
1
γ

1 (t1,s)

r
1−γ

γ

2 (s)r
1−γ

γ

1 (s)

∣∣∣∣∣∣
×
∣∣∣∣W (s)

φ(s)
−η(s)

∣∣∣∣
γ+1

γ

ds

Then by (2.27) and (2.34), we see that

liminf
t→∞

[Q2(t)−Q1(t)]≤W (T0)

− limsup
t→∞

1
H(t, t0)

∫ t

T0

H(t,s)φ(s)K1(t,s)ds

≤W (T0)−Θ(T0)< ∞. (2.36)

Now, we claim that

∫
∞

T0

φ(s)

∣∣∣∣∣∣ R
1
γ

1 (t1,s)

r
1−γ

γ

2 (s)r
1−γ

γ

1 (s)

∣∣∣∣∣∣
∣∣∣∣W (s)

φ(s)
−η(s)

∣∣∣∣
γ+1

γ

ds < ∞

(2.37)

Suppose to the contrary that

∫
∞

T0

φ(s)

∣∣∣∣∣∣ R
1
γ

1 (t1,s)

r
1−γ

γ

2 (s)r
1−γ

γ

1 (s)

∣∣∣∣∣∣
∣∣∣∣W (s)

φ(s)
−η(s)

∣∣∣∣
γ+1

γ

ds = ∞

(2.38)

By (2.31), there exists a positive constant l1 such that

inf
s≥t0

{
liminf

t→∞

H(t,s)
H(t, t0)

}
≥ l1 (2.39)

Let l2 be an arbitrary positive number, then it follows from
(2.38) that there exists a T1 ≥ T0 such that

∫ t

T0
φ(s)

∣∣∣∣∣∣∣
R

1
γ

1 (t1,s)

r
1−γ

γ

2 (s)r
1−γ

γ

1 (s)

∣∣∣∣∣∣∣
∣∣∣∣W (s)

φ(s)
−η(s)

∣∣∣∣
γ+1

γ

ds≥ l2
l1
, t ≥ T1 (2.40)

Therefore,

Q2(t) =
γ

H(t,T0)

∫ t

T0

H(t,s)

×d

∫ s

T0

φ(τ)

∣∣∣∣∣∣ R
1
γ

1 (t1,τ)

r
1−γ

γ

2 (τ)r
1−γ

γ

1 (τ)

∣∣∣∣∣∣
∣∣∣∣W (τ)

φ(τ)
−η(τ)

∣∣∣∣
γ+1

γ

dτ


≥ γ

H(t,T0)

∫ t

T1

(
−∂H(t,s)

∂ s

)∫ s

T0

φ(τ)

∣∣∣∣∣∣ R
1
γ

1 (t1,τ)

r
1−γ

γ

2 (τ)r
1−γ

γ

1 (τ)

∣∣∣∣∣∣
×
∣∣∣∣W (τ)

φ(τ)
−η(τ)

∣∣∣∣
γ+1

γ

dτds

≥ l2
l1

γ

H(t,T0)

∫ t

T1

(
−∂H(t,s)

∂ s

)
ds

≥ l2
l1

γ

H(t,T0)
H(t,T1)

By (2.39), there exists a T2 ≥ T1 such that H(t,T1)
H(t,T0)

≥ l1 for all
t ≥ T2, which implies that Q2(t) ≥ l2γ . Since l2 is arbitrary,
then

lim
t→∞

Q2(t) = ∞. (2.41)

Next, in view of (2.36), we may consider a sequence {Tn}∞

n=1
in [t0,∞) satisfying

lim
n→∞

[Q2(Tn)−Q1(Tn)] = liminf
t→∞

[Q2(t)−Q1(t)]< ∞.

Then there exists a constants M such that

Q2(Tn)−Q1(Tn)≤M (2.42)
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for all sufficiently large n ∈ N. Since (2.41) ensure that

lim
n→∞

Q2(Tn) = ∞ (2.43)

and we have (2.42) implies that

lim
n→∞

Q1(Tn) = ∞ (2.44)

Further, (2.42) and (2.44) yield the inequalities

Q1(Tn)

Q2(Tn)
−1≥− M

Q2(Tn)
>−1

2
or

Q1(Tn)

Q2(Tn)
≥ 1

2

hold for all sufficiently large n ∈ N. In view of this and (2.44)
we have

lim
n→∞

Qγ+1
1 (Tn)

Qγ

2(Tn)
= ∞ (2.45)

On the other hand, from the definition of Q1 we can obtain by
Hölder’s inequality

Q1(Tn)≤
(

γ

H(Tn,T0)

∫ Tn

T0

H(Tn,s)φ(s)

∣∣∣∣∣∣ R
1
γ

1 (t1,s)

r
1−γ

γ

2 (s)r
1−γ

γ

1 (s)

∣∣∣∣∣∣
×
∣∣∣∣W (s)

φ(s)
−η(s)

∣∣∣∣
γ+1

γ

ds
) γ

γ+1

×
(

1
γγ H(Tn,T0)

∫ Tn

T0

H(Tn,s)φ(s)|ρ(t,s)|γ+1ds
) 1

γ+1

and accordingly,

Qγ+1
1 (Tn)

Qγ

2(Tn)
≤ 1

γγ H(Tn,T0)

∫ Tn

T0

H(Tn,s)φ(s)|ρ(t,s)|γ+1ds

So, because of (2.45), we have

lim
n→∞

1
H(Tn,T0)

∫ Tn

T0

H(Tn,s)φ(s)|ρ(t,s)|γ+1ds = ∞

which gives that

limsup
n→∞

1
H(t,T0)

∫ t

T0

H(t,s)φ(s)|ρ(t,s)|γ+1ds = ∞

Contradicting (2.32). Therefore (2.37) holds. Now, in view of
(2.35) and (2.37) we obtain

∫
∞

T0

φ(s)
(

Θ(s)
φ(s)

−η(s)
) γ+1

γ

+

ds

≤
∫

∞

T0

φ(s)
∣∣∣∣W (s)

φ(s)
−η(s)

∣∣∣∣
γ+1

γ

ds < ∞

which contradicts (2.33). This completes the proof.

Theorem 2.6. Let H,φ and η be as in Theorem 2.2, suppose
that (2.31) holds and

liminf
t→∞

∫ t

t0
H(t,s)φ(s)|ρ(t,s)|γ+1ds < ∞. (2.46)

then (1.1) is oscillatory provided the following condition
holds.

There exists Θ ∈C([t0,∞),R) such that (2.33) holds, and
for any T ≥ t0,

liminf
t→∞

1
H(t,T )

∫ t

T
H(t,s)φ(s)[

K1(t,s)−|λ (s)||ρ(t,s)|γ+1]ds≤Θ(t).
(2.47)

Theorem 2.7. Let H,φ and η be as in Theorem 2.2, sup-
pose that (2.31) holds.Then (1.1) is oscillatory provided the
following condition holds.

liminf
t→∞

1
H(t,T )

∫ t

T
H(t,s)φ(s)K1(t,s)ds < ∞. (2.48)

Further, suppose that there exists φ ∈C([t0,∞),R) such that
(2.33), (2.47) hold.

In this section we establish sufficient condition for the
oscillation of all solutions of equations (1.1), (1.3). For this
we need the following.

The smallest eigen value β0 of the Dirichlet problem

∆ω(x)+Λω(x) = 0 in Ω

ω(x) = 0 on ∂Ω

is positive and the corresponding eigen function ϕ(x) is posi-
tive in Ω.

Theorem 2.8. Let all conditions of Theorem 2.2 be hold.
Assume that |ϕ(x)| ≤ M for x ∈ Ω̄. Then every solution of
equations (1.1), (1.3) oscillatory in G.

Proof. Suppose that u(x, t) is a nonoscillatory solution of
(1.1),(1.3). Without loss of generality, we may assume that
u(x, t)> 0, u(x, t−τ)> 0,u(x, t−δ1)> 0 and u(x, t−δ2)> 0
in Ω× [t0,∞) for some s t0 > 0. Multiplying both sides of
(1.1) by ϕ > 0 and integrating with respect to x over Ω, we
obtain for t ≥ t1,∫

Ω

d
dt

(
r2(t)

d
dt

(
r1(t)|

dz(x, t)
dt
|γ−1 dz

dt

))
ϕ(x)dx

+
∫

Ω

p1(x, t)|u(x, t−δ1)|α−1u(x, t−δ1)ϕ(x)dx

+
∫

Ω

p2(x, t)|u(x, t−δ2)|β−1u(x, t−δ2)ϕ(x)dx

=
∫

Ω

a(t)∆u(x, t)ϕ(x)dx

+
∫

Ω

F(x, t)ϕ(x)dx. (2.49)

Using Green’s formula and boundary condition (1.3), it fol-
lows that∫

Ω

∆u(x, t)ϕ(x)dx =
∫

Ω

u(x, t)∆ϕ(x)dx

=−Λ0

∫
Ω

u(x, t)ϕ(x)dx≤ 0, t ≥ t1. (2.50)
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Also from (A2) and Jensen’s inequality, it follows that∫
Ω

p1(x, t)|u(x, t−δ1)|α−1u(x, t−δ1)ϕ(x)dx

≥ p1(t)
∫

Ω

(u(x, t−δ1))
α

ϕ(x)dx

≥ p1(t)
(∫

Ω

u(x, t−δ1)
α(ϕ(x))1−α+α dx

)
≥M1−α p1(t)(U(t−δ1))

α , t ≥ T, (2.51)∫
Ω

p2(x, t)|u(x, t−δ2)|β−1u(x, t−δ2)ϕ(x)dx

≥M1−β p2(t)(U(t−δ2))
β , t ≥ T (2.52)

Set

V (t) =
∫

Ω

u(x, t)ϕ(x)dx, t ≥ t1 (2.53)

In view of (2.50)-(2.52) and (A3), (2.49) yield(
r2(t)

(
r1(t)

(
z′(t)

)γ
)′)′

+M1−α p1(t)(V (t−δ1))
α

+M1−β p2(t)(V (t−δ2))
β ≤ 0, t ≥ T. (2.54)

Rest of the proof is similar to that of Theorem 2.2 and hence
the details are omitted.

Theorem 2.9. Let the conditions of Theorem 2.3 hold, then
every solution u(x, t) of (1.1), (1.3) is oscillatory in G.

Theorem 2.10. Let the conditions of Theorem 2.4 hold, then
every solution u(x, t) of (1.1), (1.3) is oscillatory in G.

Theorem 2.11. Let the conditions of Theorem 2.5 hold, then
every solution u(x, t) of (1.1), (1.3) is oscillatory in G.
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