Deterministic moore intuitionistic fuzzy sequential machine acceptors of intuitionistic fuzzy regular languages

M. Rajasekar¹ and T.S. Thilagavathi²*

Abstract

Inspired by the Deterministic acceptors of fuzzy regular languages, a new approach is proposed as the Deterministic moore intuitionistic fuzzy sequential machine acceptors of intuitionistic fuzzy regular languages.

Keywords

Intuitionistic Fuzzy Sequential Machine.

AMS Subject Classification

03E72.

1 Mathematics Section, Faculty of Engineering and Technology, Annamalai University, Annamalainagar-608002, Tamil Nadu, India.
2 Department of Mathematics, Annamalai University, Annamalainagar-608002, Tamil Nadu, India.

*Corresponding author: thilagavathiparamu@gmail.com; rajasekar.m.04701@annamalaiuniversity.ac.in

Article History: Received 10 January 2020; Accepted 01 May 2020

©2020 MJM.

1. Introduction

Automata theory is firmly similar to formal Language theory. Fuzzy automata has been widely used in diverse applications, such as lexical analysis, learning systems, control system, etc [3]. The fuzzy language and fuzzy automata was introduced for dealing with uncertainty in a system in 1960 by santos [2]. Fuzzy automata can be classified into nondeterministic and deterministic fuzzy finite automata. Fuzzy automata depend on the membership value, which lies between 0 and 1 [3].

A simple technique for dealing such problems is grammatical inference, which is a method of extracting grammatical rules from the set example. Fuzzy system models based on fuzzy set theory which have been developed include a description of decision making in a fuzzy environment [1], and fuzzy grammars and languages [5]. According to Chomsky classification there can be four types of fuzzy grammars viz., Regular, Context-free, Context Sensitive and Unrestricted [5]. Fuzzy grammars were first discussed by Lee and Zadeh. There by many researches investigated various issue on fuzzy grammars and languages such as max-min, max-product etc [2].

Fuzzy automata, Grammars, and Languages are leading to greater understanding of nondeterministic algorithms. Inspired with the work of Lee and Zadeh, an algorithm is developed for automata which classifies the strings of a language with a regular fuzzy grammar whose derivations are governed by the “max(min)” rule.

Using the notion of intuitionistic fuzzy sets[8, 9] it is possible to obtain intuitionistic fuzzy language[6] by introducing the nonmembership value to the strings of fuzzy language. This is a natural generalization of a fuzzy language as it is characterized by two functions expressing the degree of belongingness and the degree of non-belongingness. An intuitionistic fuzzy language is called intuitionistic fuzzy regular language, if its strings are regular having the finite membership and non-membership values between[0,1][7].
The paper is organized as follows. In section 2, we recall the definitions of fuzzy automata and fuzzy regular grammar. In section 3, we introduce the definition of intuitionistic fuzzy regular grammar and intuitionistic fuzzy Moore Sequential Machine, with examples. In section 4, we introduce the intuitionistic fuzzy regular grammar to intuitionistic fuzzy automata with theorem and examples. In section 5, Deterministic Moore intuitionistic fuzzy sequential machine acceptors of Intuitionistic fuzzy regular languages with theorem and examples.

2. Preliminaries

Definition 2.1. Let a set ‘A’ in ‘E’ be fixed. An intuitionistic fuzzy set ‘A’ in ‘E’ is an object having the form $A = \{ (x, \mu_A(x), \gamma_A(x)) \mid x \in E \}$ where, the functions $\mu_A(x) : E \rightarrow [0, 1]$ and $\gamma_A(x) : E \rightarrow [0, 1]$ define the degree of membership and the degree of nonmembership of the element $x \in E$ to the set ‘A’, the subset of ‘E’ respectively, and for every $x \in E$ $0 < \mu_A(x) + \gamma_A(x) \leq 1$.

Definition 2.2. An Intuitionistic fuzzy automata is a triple $M = (Q, \delta, \gamma)$ where,

* Q is a set of states.
* X is a input alphabets.
* $\delta : Q \times X \rightarrow Q$ is an intuitionistic fuzzy subset of Q.
* q_0 is the starting state.
* $f = (\mu, \gamma)$ is intuitionistic fuzzy subset of Q.
* $F = \{ (q, (\mu, \gamma)) \mid 0 < \mu + \gamma \leq 1 \}$.

Example 3.4. Let,$Q = \{q_0, q_1, q_2, q_3\}$
$q_0 = \{q_0\}$
$X = \{x, y\}$
$f = \{ (0.3, 0.2), (0.2, 0.3), (0.5, 0.3) \}$
$F = \{ q_3(0.4, 0.3) \}$
$\delta(q_0, x) = q_1$ $\delta(q_1, x) = q_1$ $\delta(q_0, y) = q_2$ $\delta(q_1, y) = q_3$
$\delta(q_2, x) = q_1$ $\delta(q_2, y) = q_3$

4. Intuitionistic fuzzy regular grammar to
Intuitionistic fuzzy automata

Theorem 4.1. If $IG = (V, T, S, P)$ is a intuitionistic fuzzy regular grammar, then prove that there exist a intuitionistic fuzzy finite automata IM such that $L(IM)=L(IG)$

Proof. Let $IG = (V, T, S, P)$ is a intuitionistic fuzzy regular grammar. Define Intuitionistic fuzzy automata $(IM) = (Q, X, q_0, \delta, F)$ where,
$Q = V \cup \{ q_f \}$, where q_f not in V.
$S = \{q_0\}$. $F = \{ q_f \}$ and δ is defined by

$\delta(q, x, p) = (\mu, \gamma)$ if and only if $q \xrightarrow{xp} x p$
$\delta(q, x, q_f) = (\mu, \gamma)$ if and only if $q \xrightarrow{x} x$

Let $X \in L(IG)$, where $X = x_1x_2\ldots x_n$. Now, $(\mu, \gamma)(q_0 \Rightarrow X)$ implies that there exist $q_1, q_2, \ldots q_n \in V$ and $(\mu_1, \gamma_1), (\mu_2, \gamma_2), \ldots (\mu_n, \gamma_n)$. $0 < \mu_n + \gamma_n \leq 1$

such that
$q_0 \xrightarrow{(\mu_0, \gamma_0)} x_1 \xrightarrow{(\mu_1, \gamma_1)} x_1 x_2 \xrightarrow{(\mu_2, \gamma_2)} \ldots \xrightarrow{(\mu_n, \gamma_n)} x_n = X.$

Then, corresponding to above derivation chain, P must have following productions:
$q_0 \xrightarrow{(\mu_0, \gamma_0)} x_1q_1 \xrightarrow{(\mu_2, \gamma_2)} x_1x_2q_2 \ldots \xrightarrow{(\mu_n, \gamma_n)} x_nq_n$ and $q_0 \rightarrow x_n$

whence,
$\delta(q_0, x_1, q_1) = (\mu_1, \gamma_1)$
$\delta(q_0, x_1, q_1) = (\mu_1, \gamma_1)$
$\delta(q_{n-2}, x_{n-1}, q_{n-1}) = (\mu_{n-1}, \gamma_{n-1})$ and $\delta(q_{n-1}, x_n, q_f) = (\mu_n, \gamma_n)$.

Therefore, $\delta(q_0, X, q_f) = (\mu', \gamma')$ where $\mu' = \mu_1 \vee \mu_2 \ldots \vee \mu_n$
and $\gamma' = \gamma_1 \vee \gamma_2 \ldots \vee \gamma_n$, $0 < \mu' + \gamma' \leq 1$.
Therefore $X \in L(IM)$.

Converse can similarly be proved.

Example 4.2. Consider $IG = (V, T, S, P)$ be a intuitionistic fuzzy regular grammar, where $V = \{q_0, q_1, q_2\}$, $T = \{x, y\}$, $S = \{q_0\}$.
$P = \{ q_0 \xrightarrow{(0.2, 0.3)} xq_0, q_0 \xrightarrow{(0.5, 0.3)} xq_1 \xrightarrow{(0.3, 0.2)} x, q_1 \xrightarrow{(0.7, 0.2)} xq_0 \}$.
5. Deterministic Moore Intuitionistic Fuzzy Sequential Machine Acceptors of Intuitionistic Fuzzy Regular Languages

Theorem 5.1. If $IG=(N,T,S,P)$ is an intuitionistic fuzzy regular grammar generate a language $L(IG)$, then there exist a Intuitionistic Fuzzy Sequential Moore Machine (IM) that accepts the language $L(IG)$. That is $L(IG)=L(IM)$.

Proof. The proof is a five step algorithm for constructing the Deterministic Intuitionistic Fuzzy sequential machine Automata.

step 1:-
Given the intuitionistic regular fuzzy grammar construct the corresponding Intuitionistic fuzzy automata.

step 2:-
obtain the set IM of possible membership and non membership grades of strings in the Intuitionistic language.

step 3:-
For each (θ_1, θ_2) in IM, obtain the Intuitionistic Regular expression $F'(\theta_1, \theta_2)$ describing those strings x of X^* such that $\mu(x) \geq \theta_1$, and $\gamma(x) \leq \theta_2$ with $0 < \theta_1 + \theta_2 \leq 1$.

$$F'(\theta_1, \theta_2) = \{ x : x \in X^*, \mu(x) \geq \theta_1 \text{ and } \gamma(x) \leq \theta_2, 0 < \theta_1 + \theta_2 \leq 1 \}$$

step 4:-
Consider the finite set IM of possible membership and non membership grades (θ_1, θ_2), (θ_1, θ_2) in IM such that $\theta_1 > \theta_2$, then the intuitionistic fuzzy regular expression $F(\theta_1, \theta_2) = F'(\theta_1, \theta_2) \cap F'(\theta_1, \theta_2)$ defines the set of strings,

$$\{ x : x \in X^*, \mu(x) \geq \theta_1, \mu(x) > \theta_1 \} \cap \{ x : x \in X^*, \gamma(x) \leq \theta_2, \gamma(x) > \theta_2 \}$$

Step 5:-
Use the intuitionistic fuzzy regular expressions $F(\theta_1, \theta_2)$, $(\theta_1, \theta_2) \in IM$ to obtain the state transition diagram of the Deterministic Moore intuitionistic fuzzy sequential automata.

An immediate consequence of this theorem is the following corollary.

Corollary 5.2. Given a intuitionistic fuzzy regular grammar IRFG1, there is an equivalent unambiguous IRFG2 in which productions have the form $A \xrightarrow{(\mu, \gamma)} xB$ or $A \xrightarrow{(\mu, \gamma)} x$, with $A,B \in V$, $x \in T$, and $0 < \mu + \gamma \leq 1$.
Step 4: Let \((\theta_1, \theta_2), (\theta_3, \theta_4)\), \(\theta_1 > \theta_2\)

\[F(\theta_1, \theta_2) = F(\theta_3, \theta_4) \cap F(\theta_1, \theta_2) \]

\[F(\theta_3, \theta_4) = \{ x : x \in X^*, \mu(x) \geq \theta_3, \mu(x) < \theta_1 \} \]

\[\gamma(x) \leq \theta_1, \quad \gamma(x) > \theta_2 \} \]

\(\theta_1 = 0.3 \quad \theta_2 = 0.6 \quad \theta_3 = 0.2 \quad \theta_4 = 0.7 \)

\[0.3 > 0.2 \quad 0.6 < 0.7 \]

\[F(0.2, 0.7) = F(0.2, 0.7) \cap F(0.3, 0.6) \]

\[= \{ (x + y)^4 (yy) | \mu(x) \geq 0.2, \mu(x) < 0.3 \} \]

\[\gamma(x) \leq 0.7, \quad \gamma(x) > 0.6 \}

\(\theta_1 = 0.4 \quad \theta_2 = 0.4 \quad \theta_3 = 0.3 \quad \theta_4 = 0.6 \)

\[0.4 > 0.3 \quad 0.4 < 0.6 \]

\[F(0.3, 0.6) = F(0.3, 0.6) \cap F(0.4, 0.4) \]

\[= \{ (x + y)(x + y)^4 (xy) | \mu(x) \geq 0.3, \mu(x) < 0.4 \} \]

\[\gamma(x) \leq 0.6, \quad \gamma(x) > 0.4 \}

\(\theta_1 = 0.5 \quad \theta_2 = 0.2 \quad \theta_3 = 0.4 \quad \theta_4 = 0.4 \)

\[0.5 > 0.4 \quad 0.2 < 0.4 \]

\[F(0.4, 0.4) = F(0.4, 0.4) \cap F(0.5, 0.2) \]

\[= \{ \phi \} | \mu(x) \geq 0.4, \mu(x) < 0.5 \}

\[\gamma(x) \leq 0.4, \quad \gamma(x) > 0.2 \}

\(\theta_1 = 0.6 \quad \theta_2 = 0.1 \quad \theta_3 = 0.5 \quad \theta_4 = 0.2 \)

\[0.6 > 0.5 \quad 0.1 < 0.2 \]

\[F(0.5, 0.2) = F(0.5, 0.2) \cap F(0.6, 0.0) \]

\[= \{ (xy) | \mu(x) \geq 0.5, \mu(x) < 0.6 \} \]

\[\gamma(x) \leq 0.2, \quad \gamma(x) > 0.1 \}

\(\theta_1 = 0.5 \quad \theta_2 = 0.2 \quad \theta_3 = 0.6 \quad \theta_4 = 0.1 \)

\[0.5 > 0.6 \quad 0.2 < 0.1 \]

which not satisfies the condition so, \(F(0.6, 0.1) = \phi \)

Example 5.4. Consider string \(xy \). Using \(IFRG_1 \), \(S \xrightarrow{0.5,0.2} xA \)

\(\xrightarrow{0.5,0.2} xy \) and

\(S \xrightarrow{0.6,0.4} xB \xrightarrow{0.4,0.4} xy \) so that

\(\mu(xy) = \max(\min(0.5,0.5),\min(0.6,0.4)), \min(\max(0.2,0.2), \max(0.1,0.4)) \)

\(= (0.5,0.2) \)

Using \(IFRG_2 \), \(S \xrightarrow{0.5,0.2} xy \).

6. Conclusion

Classical automata theory can not deal with uncertainly to deal with system uncertainly, nondeterministic finite automata have been generalized into fuzzy automata. The use of regular expressions in describing strings generated by a regular fuzzy grammar using the ‘max(min)’ as rule has been discussed.

In this paper, the Deterministic Moore intuitionistic fuzzy sequential machine acceptors of intuitionistic fuzzy regular languages.

References