Existence of solutions of q-functional integral equations with deviated argument

aDepartment of Mathematics, Faculty of Science, Alexandria University, Alexandria, Egypt.
bDepartment of Mathematics, Faculty of Science, Damanhour University, Damanhour, Egypt.

Abstract

In this paper, we study the existence of solutions for q-functional integral equations in Banach space $C[0, T]$. The existence and uniqueness of solutions for the problems are proved by means of the Banach contraction principle.

Keywords: q-functional integral equations; Banach contraction principle; Deviated argument; existence.

2010 MSC: 534A08, 47H07, 47H10.

1 Introduction

The quantum calculus or q-difference calculus is an old subject that was first developed by Jackson ([12], [13]), while basic definitions and properties can be found in [15]. Studies on q-difference equations appeared already at the beginning of the last century in intensive works especially by F H Jackson [14], R D Carmichael [6], T E Mason [19], C R Adams [1], W J Trjitzinsky [21] and other authors [5]. Recently, q-calculus has served as an bridge between mathematics and physics. It has a lot of applications in mathematics and physics([7], [8], [17], [22]).

In this paper, we are concerned with the q-functional integral equations

\[x(t) = g(t) + \int_0^t f_1(t, s, x(\phi(s))) \, dq_s, \quad t \in [0, T] \]

(1.1)

and

\[x(t) = g(t) + f_2(t, \int_0^t g(s, x(\phi(s))) \, dq_s), \quad t \in [0, T] \]

(1.2)

where ϕ is deviated function. The existence of continuous solutions of the q-functional integral equation (1.1) in the Banach space $C[0, T]$ will be proved. The monotonicity of the solution of the equation (1.1) will be studied. The existence of continuous solutions of the q-functional integral equation (1.2) in Banach space $C[0, T]$ will be proved.

2 preliminaries

Here, we give the definition of q-derivative and q-integral and some of their properties which is referred to ([2], [15]).

*Corresponding author.

E-mail address: amasayed@gmail.com (A. M. A. El-Sayed), fatmagaafar2@yahoo.com (Fatma. M. Gaafar), ragab_537@yahoo.com (R. O. Abd-El-Rahman), m.elhadad88@yahoo.com (M. M. El-Haddad).
Let \(q \in (0, 1) \) and define
\[
[n]_q = \frac{q^n - 1}{q - 1} = 1 + q + q^2 + \cdots + q^{n-1}, \quad n \in \mathbb{R}
\]
which is called the \(q \)-analogue of \(n \).

Definition 2.1. The \(q \)-derivative of a real valued function \(f \) is defined by
\[
D_q f(t) = \frac{d_q f(t)}{d_q t} = \frac{f(qt) - f(t)}{qt - t}, \quad D_q f(0) = \lim_{t \to 0} D_q f(t)
\]
Note that \(\lim_{q \to 1} D_q f(t) = f'(t) \) if \(f(t) \) is differentiable.

The higher order \(q \)-derivative are defined as
\[
D_q^n f(t) = f(t), \quad D_q^n f(t) = D_q D_q^{n-1} f(t), \quad n \in \mathbb{N}.
\]

Definition 2.2. Suppose \(0 < a < b \). The definite \(q \)-integral is defined as
\[
I_q f(x) = \int_0^b f(x) \, d_q x = (1 - q) b \sum_{j=0}^{\infty} q^j f(q^j b).
\]
and
\[
\int_a^b f(x) \, d_q x = \int_a^b f(x) \, d_q x - \int_a^0 f(x) \, d_q x.
\]
Similarly, we have
\[
I_q^n f(t) = f(t), \quad I_q^n f(t) = I_q I_q^{n-1} f(t), \quad n \in \mathbb{N}.
\]

Theorem 2.1 (see [15]). *(Fundamental Theorem of \(q \)-Calculus)*
If \(F(x) \) is an antiderivative of \(f(x) \), and \(F(x) \) is continuous at \(x = 0 \), then
\[
\int_a^b f(x) \, d_q x = F(b) - F(a), \quad \quad 0 \leq a < b \leq \infty.
\]

Theorem 2.2. (see [4], [15]) For any function \(f \) one has
\[
D_q I_q f(x) = f(x). \quad \quad (2.3)
\]

Theorem 2.3. (see [2]) Let \(f \) be a function defined on \([a, b]\), \(0 \leq a \leq b \), and \(c \) is a fixed point in \([a, b]\). Assume that there exists, \(0 \leq \gamma < 1 \) such that \(x^\gamma f(x) \) is continuous on \([a, b]\). Let
\[
F(x) = \int_c^x f(t) \, d_q t, \quad \quad x \in [a, b].
\]
Then \(F(x) \) is a continuous function on \([a, b]\).

Lemma 2.1. If
\[
F(t) = \int_0^t f(s) \, d_q s, \quad \quad \text{for } t \in [a, b],
\]
is continuous, then for every \(\epsilon > 0 \) \(\exists \delta > 0 \), such that \(t_2, t_2 \in [0, T], \ |t_2 - t_1| < \delta \), then
\[
|F(t_2) - F(t_1)| < \epsilon
\]
i.e.,
\[
|\int_0^{t_2} f(s) \, d_q s - \int_0^{t_1} f(s) \, d_q s| < \epsilon.
\]

Lemma 2.2. (see [18])
(1) If \(f \) and \(g \) are \(q \)-integrable on \([a, b]\), \(a, c \in [a, b] \), then
\[
(i) \int_a^b [f(x) + g(x)] \, d_q x = \int_a^b f(x) \, d_q x + \int_a^b g(x) \, d_q x,
(ii) \int_a^b a f(x) \, d_q x = a \int_a^b f(x) \, d_q x,
\]
Main results

First, we study the existence and uniqueness of the solution of the functional integral equation (1.1) by

\[Fx(t) = g(t) + \int_0^t f_1(t, s, x(\phi(s))) \, dq_s. \]

To show that \(F : C[0, T] \rightarrow C[0, T] \), let \(x \in C[0, T] \), \(t_1, t_2 \in [0, T] \), then

\[
|Fx(t_2) - Fx(t_1)| = |g(t_2) - g(t_1)| + \int_0^{t_2} f_1(t_2, s, x(\phi(s))) \, dq_s - \int_0^{t_1} f_1(t_1, s, x(\phi(s))) \, dq_s |
\]

\[
\leq |g(t_2) - g(t_1)| + |\int_0^{t_2} f_1(t_2, s, x(\phi(s))) \, dq_s - \int_0^{t_1} f_1(t_1, s, x(\phi(s))) \, dq_s |
\]

\[
\leq |g(t_2) - g(t_1)| + |\int_0^{t_2} f_1(t_2, s, x(\phi(s))) \, dq_s - \int_0^{t_1} f_1(t_1, s, x(\phi(s))) \, dq_s |
\]

\[
+ |\int_0^{t_2} f_1(t_1, s, x(\phi(s))) \, dq_s - \int_0^{t_1} f_1(t_1, s, x(\phi(s))) \, dq_s |
\]

\[
\leq |g(t_2) - g(t_1)| + \int_0^{t_2} |f_1(t_2, s, x(\phi(s))) - f_1(t_1, s, x(\phi(s)))| \, dq_s
\]

\[
+ |\int_0^{t_2} f_1(t_1, s, x(\phi(s))) \, dq_s - \int_0^{t_1} f_1(t_1, s, x(\phi(s))) \, dq_s |
\]

\[
+ |\int_0^{t_2} f_1(t_1, s, x(\phi(s))) \, dq_s - \int_0^{t_1} f_1(t_1, s, x(\phi(s))) \, dq_s |
\]

\[
+ |\int_0^{t_2} f_1(t_1, s, x(\phi(s))) \, dq_s - \int_0^{t_1} f_1(t_1, s, x(\phi(s))) \, dq_s |
\]

\[
+ |\int_0^{t_2} f_1(t_1, s, x(\phi(s))) \, dq_s - \int_0^{t_1} f_1(t_1, s, x(\phi(s))) \, dq_s |
\]

3 Main results

Let \(X \) be the class of all continuous functions, \(x \in C[0, T] \) with the norm

\[\|x\| = \sup_{t \in [0,T]} |x(t)|. \]

First, we study the existence and uniqueness of the solution of the \(q \)-functional integral equation (1.1) and then we proved the monotonicity for the solution.

Consider the \(q \)-functional integral equation (1.1) under the following assumptions

(i) \(g : [0, T] \rightarrow R \) is continuous.
(ii) \(f_1 : [0, T] \times [0, T] \times R \rightarrow R \) is continuous.
(iii) \(f_1 \) satisfies the Lipschitz condition

\[|f_1(t, s, x) - f_1(t, s, y)| \leq k(t, s) |x - y|. \]

(iv)

\[\sup_t \int_0^t k(t, s) \, dq_s \leq K \]

Now for the existence of a unique continuous solution of the \(q \)-functional integral equation (1.1) we have the following theorem.

Theorem 3.4. Let the assumptions (i)-(iv) be satisfied. If \(K < 1 \), then the \(q \)-functional integral equation (1.1) has a unique solution \(x \in C[0, T] \).

Proof. Define the operator \(F \) associated with the \(q \)-functional integral equation (1.1) by

\[Fx(t) = g(t) + \int_0^t f_1(t, s, x(\phi(s))) \, dq_s. \]
applying Theorem 2.3 and Lemma 2.1, then we deduce that

$$ F : C[0, T] \to C[0, T]. $$

Let \(x, y \in C[0, T] \), we have

\[
|Fx(t) - Fy(t)| = |g(t) + \int_0^t f_1(t, s, x(\phi(s))) \, dq s - g(t) - \int_0^t f_1(t, s, y(\phi(s))) \, dq s|
\]

\[
= |\int_0^t f_1(t, s, x(\phi(s))) \, dq s - \int_0^t f_1(t, s, y(\phi(s))) \, dq s|
\]

\[
\leq \int_0^t |f_1(t, s, x(\phi(s))) - f_1(t, s, y(\phi(s)))| \, dq s
\]

\[
\leq \int_0^t k(t, s) |x(\phi(s)) - y(\phi(s))| \, dq s
\]

\[
\leq \|x - y\| \int_0^t k(t, s) \, dq s
\]

\[
\leq K \|x - y\|.
\]

This means that \(F \) is contraction.

Applying Banach contraction principle ([10], [16]), then we deduce that there exists a unique solution \(x \in C[0, T] \) of the \(q \)-functional integral equation (1.1).

The following theorem prove the monotonicity for the solution of the \(q \)-functional integral equation (1.1).

Theorem 3.5. Let the assumptions (i)-(iv) of Theorem (3.1) be satisfied. If \(f_1(t, s, x(\phi(s))) \) and \(g(t) \) are monotonic nonincreasing (nondecreasing) in \(t \) for each \(t \in [0, T] \), then the \(q \)-integral equation (1.1) has a unique monotonic nonincreasing (nondecreasing) solution \(x \in C[0, T] \).

Proof. Let \(f, g \) be monotonic nonincreasing functions in \(t \in [0, T] \), then for \(t_2 > t_1 \)

\[
x(t_2) = g(t_2) + \int_0^{t_2} f_1(t_2, s, x(\phi(s))) \, dq s
\]

\[
\leq g(t_1) + \int_0^{t_1} f_1(t_1, s, x(\phi(s))) \, dq s
\]

\[
= x(t_1).
\]

Hence,

\[
x(t_2) \leq x(t_1).
\]

Also, If \(f_1, g \) are monotonic nondecreasing functions in \(t \in [0, T] \), then for \(t_2 > t_1 \)

\[
x(t_2) = g(t_2) + \int_0^{t_2} f_1(t_2, s, x(\phi(s))) \, dq s
\]

\[
\geq g(t_1) + \int_0^{t_1} f_1(t_1, s, x(\phi(s))) \, dq s
\]

\[
= x(t_1).
\]
Hence
\[x(t_2) \geq x(t_1). \]
\[\square \]

Now, we study the existence and uniqueness of the solution of the \(q \)-functional integral equation
\[x(t) = g(t) + f_2(t, \int_0^t g(s, x(\phi(s))) \, dq_s), \quad t \in [0, T] \]

Consider the \(q \)-functional integral equation (1.2) under the following assumptions

(i) \(g : [0, T] \rightarrow \mathbb{R} \) is continuous.

(ii) \(f_2 : [0, T] \times \mathbb{R} \rightarrow \mathbb{R} \) is continuous.

(iii) \(f_2 \) satisfies the Lipschitz condition
\[|f_2(t, x(t)) - f_2(t, y(t))| \leq k |x(t) - y(t)|. \]

(iv) \(g \) satisfies the Lipschitz condition
\[|g(s, x(t)) - g(s, y(t))| \leq l |x(t) - y(t)|. \]

For the existence of a unique continuous solution of the \(q \)-functional integral equation (1.2), we have the following theorem.

Theorem 3.6. Let the assumptions (i)-(iv) be satisfied. If \(klT < 1 \), then the \(q \)-functional integral equation (1.2) has a unique solution \(x \in C[0, T] \).

Proof. Define the operator \(F \) associated with the \(q \)-functional integral equation (1.2) by
\[Fx(t) = g(t) + f_2(t, \int_0^t g(s, x(\phi(s))) \, dq_s). \]

To show that \(F : C[0, T] \rightarrow C[0, T] \), let \(x \in C[0, T], t_1, t_2 \in [0, T] \), then
\[
|Fx(t_2) - Fx(t_1)| = |(g(t_2) - g(t_1)) + (f_2(t_2, \int_0^{t_2} g(s, x(\phi(s))) \, dq_s) - f_2(t_1, \int_0^{t_1} g(s, x(\phi(s))) \, dq_s))|
\[
\leq |g(t_2) - g(t_1)| + |f_2(t_2, \int_0^{t_2} g(s, x(\phi(s))) \, dq_s) - f_2(t_1, \int_0^{t_1} g(s, x(\phi(s))) \, dq_s)|
\[
\leq |g(t_2) - g(t_1)| + |f_2(t_2, \int_0^{t_2} g(s, x(\phi(s))) \, dq_s) - f_2(t_1, \int_0^{t_2} g(s, x(\phi(s))) \, dq_s)|
\[
\leq |g(t_2) - g(t_1)| + |f_2(t_2, \int_0^{t_2} g(s, x(\phi(s))) \, dq_s) - f_2(t_1, \int_0^{t_1} g(s, x(\phi(s))) \, dq_s)|
\][
\[+ |\int_0^{t_2} g(s, x(\phi(s))) \, dq_s) - f_2(t_1, \int_0^{t_1} g(s, x(\phi(s))) \, dq_s)|
\]

applying Theorem (2.3) and Lemma (2.1), then we deduce that
\[F : C[0, T] \rightarrow C[0, T]. \]
Let \(x, y \in C[0, T] \), we have

\[
|Fx(t) - Fy(t)| = |g(t) + f_2(t, \int_0^t g(s, x(\phi(s))) \, dq_s) - g(t) - f_2(t, \int_0^t g(s, y(\phi(s))) \, dq_s)| \\
= |f_2(t, \int_0^t g(s, x(\phi(s))) \, dq_s) - f_2(t, \int_0^t g(s, y(\phi(s))) \, dq_s)| \\
\leq k |\int_0^t g(s, x(\phi(s))) \, dq_s - \int_0^t g(s, y(\phi(s))) \, dq_s| \\
\leq kl \int_0^t |x(\phi(s)) - y(\phi(s))| \, dq_s \\
\leq klT \|x - y\|.
\]

This means that \(F \) is contraction. Then \(F \) has a fixed point \(x \in C[0, T] \) which proves that there exists a unique solution of the \(q \)-functional integral equation (1.2). \(\square \)

References

Received: November 24, 2015; Accepted: January 15, 2016

UNIVERSITY PRESS
Website: http://www.malayajournal.org/