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Abstract

In this paper, we study the existence of solutions for boundary value problem for implicit fractional
differential equations with impulsive conditions. We prove the existence results by applying fixed point
theorem and finally an example is included to show the applicability of our results.
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1 Introduction

The study of impulsive functional differential and integro-differential systems is linked to their utility in
simulating processes and phenomena subject to short-time perturbations during their evolution. The
perturbations are performed discretely and their duration is negligible in comparison with the total duration
of the processes and phenomena. Now impulsive partial neutral functional differential and
integro-differential systems have become an important object of investigation in recent years stimulated by
their numerous applications to problems arising in mechanics, electrical engineering, medicine, biology,
ecology, etc. With regard to this matter, we refer the reader to see the monographs by Benchohra et al [5],
Lakshmikantham et al [15], Samoilenko and Perestyuk [20], and the papers [1–3, 13, 14] and the references
therein.

On the other hand, the nonlinear fractional differential and integro-differential equations have been proved
to be valuable tools in the modeling of many phenomena in various fields of engineering, physics, and
economics. It draws a great application in nonlinear oscillations of earthquakes, many physical phenomena
such as seepage flow in porous media and in fluid dynamic traffic models. Actually, fractional differential
equations are considered as an alternative model to integer differential equations. Some works have done
on the qualitative properties of solutions for these equations. For more details on this theory and on its
applications, we suggest the reader to refer [4, 9–12, 16–19].

Inspired by the work [22], we study the existence of solutions for boundary value problem for implicit
fractional differential equations with impulsive conditions of the form

cDαx(t) = f (t, x(t),c Dαx(t)), t ∈ J
′
, α ∈ (1, 2).

∆x(tk) = yk, ∆x′(tk) = ȳk, yk, ȳk ∈ R k = 1, 2, ..., m (1.1)

x(0) = 0, x′(1) = 0
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where cDα is the Caputo fractional derivative, f : J ×R×R→ R be a continuous function.
In this paper is organized as follows. Section 2 has definitions and elementary results of the fractional

calculus. In section 3, boundary value problem for implicit impulsive fractional differential equations is
attained and proved the theorems on the existence and uniqueness of a solution to the problem (1.1). In
section 4, an illustrative example is provided in support of the results of a problem (1.1).

2 Preliminaries

In this section, we recall some basic theorems, definitions and preliminary facts need to problem (1.1).
Define PC(J, R) = {x : J → R : x ∈ C(tk, tk+1], R, k = 0, 1, ..., m and there exist x(t−k )&x(t+k ), k =

1, 2, ..., m with x(t−k = x(tk)} and we define the norm ||x||PC = sup{|x(t)| : t ∈ J}. PC
′
(J, R) is also a Banach

space, denote PC
′
(J, R) = {x ∈ PC(J, R) : ẋ ∈ PC(J, R)} and set ||x||PC′ = ||x||PC + ||ẋ||PC.

Definition 2.1. The fractional order integral of the function h ∈ L1([0, T], R+) of order α ∈ R+ is defined by

Iαh(t) =
1

Γ(α)

∫ t

0
(t− s)α−1h(s)ds,

where Γ is the Euler’s gamma function defined by Γ(α) =
∫ ∞

0 tα−1e−tdt, α > 0

Definition 2.2. For a function h ∈ ACn(J), the Caputo’s fractional-order derivative of order α is defined by

(cDα
0 )(t) =

1
Γ(n− α)

∫ t

0
(t− s)n−α−1h(n)(s)ds,

where n = [α] + 1 and [α] denotes the integer part of the real number α.

Definition 2.3. A function x ∈ PC
′
(J, R) is said to be a solution of the problem (1), if x(t) = xk(t) for t ∈ (tk, tk+1)

and xk ∈ C([0 = t0 < t1 < ... < tm < tm+1 = T], R) satisfies cDαxk(t) = f (t, xk(t),c Dαxk(t)), almost everywhere
on (0, tk+1) with the restriction of xk(t) on [0, tk) is just xk−1(t) amd the conditions ∆x(tk) = yk, ∆x′(tk) =

ȳk, yk, ȳk ∈ R k = 1, 2, ..., m with x(0) = 0, x′(1) = 0.

Lemma 2.1 (Lemma 9,[7] and lemma 4.1 [22]). Let α ∈ (1, 2). Then the problem

cDαx(t) = f (t, x(t),c Dαx(t)), t ∈ J
′
,

∆x(tk) = yk, ∆x′(tk) = ȳk, yk, ȳk ∈ R k = 1, 2, ..., m

x(0) = 0, x′(1) = 0

is equivalent to the problem

(x)(t) = Iαg(t) +
k

∑
i=1

ȳi(t− ti) +
k

∑
i=1

yi

−
(

1
Γ(α− 1)

∫ 1

0
(1− t)α−2)g(t)dt +

m

∑
k=1

ȳk

)
t for t ∈ (tk, tk+1], k = 0, 1, 2, ...m

where g ∈ PC(J, R) satisfies the functional equation g(t) = f (t, (t), g(t)).

Theorem 2.1 ([22],Theorem 2.12). Let X be a Banach space and ψ ⊂ PC(J, X). If the following conditions are satisfied
a) ψ is uniformly bounded subset of PC(J, X). b) ψ is equicontinuous in (tk, tk+1), k = 0, 1, ..., m. c) ψ(t) = {x(t) :
x ∈ ψ, t ∈ J}, ψ(t−k ) = {x(t

−
k ) : x ∈ ψ} and ψ(t+k ) = {x(t

+
k ) : x ∈ ψ} is relatively compact subset of X, then ψ is a

relatively compact subset of PC(J, X).

Theorem 2.2 (Krasnoselskii’s theorem). . Let H be a closed convex and nonempty subset of a Banach space X. If A, B
be the operators such that a) Ax + By ∈ H whenever x, y ∈ H, b) A is compact and continuous, c) B is a contraction
mapping, then there exists a z ∈ A such that z = Az + Bz.



552 A. Anguraj et al. / Some Existence results for implicit fractional...

3 Main Results

In this section, we present and prove the main results of this paper. In order to prove the existence and
uniqueness results we need the following assumptions :

(A1) The function f : J ×R×R→ R be a continuous function.
(A2) There exists a postive constant L1 > 0 and 0 < L2 < 1 such that

| f (t, u, v)− f (t, ū, v̄)| ≤ L1|u− ū|+ L2|v− v̄| ∀t ∈ J, u, v, ū, v̄ ∈ R

(A3) There exist m, n ∈ C(J, R+) with l∗ = supt∈J l(t) < 1 such that

| f (t, u, w)| ≤ m(t) + n(t)|u|+ l(t)|w| for t ∈ J and u, w ∈ R

where l ∈ L
1
σ (J, R) and σ ∈ (0, α− 1).

Theorem 3.3. Assume (A1)− (A2). If

L1Tα

2(1− L2)Γ(1 + α)
< 1

then there exists a unique solution for BVPs (1.1) on J.

Proof. Set
Br = {x ∈ PC

′
(J, R) : ||x||PC′ ≤ r},

r ≥ 2

[
1 + α

Γ(1 + α)
L3 +

m

∑
i=1
|ȳi|+ 2

m

∑
i=1
|yi|
]

and
L3 = supt∈J | f (t, 0, 0)|.

Define an operator F : Br → PC
′
(J, R) by

(Fx)(t) = Iαg(t) +
k

∑
i=1

ȳi(t− ti) +
k

∑
i=1

yi −
(

1
Γ(α− 1)

∫ 1

0
(1− t)α−2)g(t)dt +

m

∑
k=1

ȳk

)
t

where g(t) = f (t, y(t), g(t)) for t ∈ (tk, tk+1], k = 0, 1, 2, ...m. where g ∈ PC(J, R) satisfies the functional
equation.

First can be checked that FBr ⊂ Br. For x ∈ Br, t ∈ J
′
,

|(Fx)(t)| =
∣∣∣∣∣Iαg(t) +

k

∑
i=1

ȳi(t− ti) +
k

∑
i=1

yi −
(

1
Γ(α− 1)

∫ 1

0
(1− t)α−2)g(t)dt +

m

∑
k=1

ȳk

)
t

∣∣∣∣∣
≤ 1 + α

Γ(1 + α)
L3 +

m

∑
i=1
|ȳi|+ 2

m

∑
i=1
|yi|

≤ r

Second can be checked that F is a contraction mapping. we have that

|(Fu1)(t)− (Fu2)(t)| =
1

Γ(α)

∫ t

0
(t− s)(α−1)|g(t)− h(t)|dt− 1

Γ(α− 1)

∫ 1

0
(1− t)(α−2)|g(t)− h(t)|dt (1.2)

By (A2)

|g(t)− h(t)| = | f (t, u1(t), g(t))− f (t, u2(t), h(t))|
≤ L1|u1(t)− u2(t)|+ L2|g(t)− h(t)|

≤ L1|u1(t)− u2(t)|
1− L2
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Therefore equation (1.2) implies

|(Fu1)(t)− (Fu2)(t)| ≤
L1

(1− L2)Γ(α)

∫ t

0
(t− s)(α−1)|u1(t)− u2(t)|dt

≤ L1Tα

(1− L2)Γ(1 + α)
||u1 − u2||PC

≤ 1
2
||u1 − u2||PC

and
||Fu1 − Fu2||PC ≤

1
2
||u1 − u2||PC.

Thus, the conclusion of theorem follows by the contraction mapping principle, F has a unique fixed point
which is a unique solution of problem (1.1).

Theorem 3.4. Assume (A1)− (A3) holds. Then the problem (1.1) has at least one solution on J.

Proof. Let us choose

r ≥
||l||

L
1
σ
(J)

Γ(α)
(

α−σ
1−σ

)1−σ
+

||l||
L

1
σ
(J)

Γ(α− 1)
(

α−σ−1
1−σ

)1−σ
+ 2

m

∑
i=1
|ȳi|+

m

∑
i=1
|yi|

and define the operator φ and χ on Br as

(φx)(t) = Iαg(t)−
(

1
Γ(α− 1)

∫ 1

0
(1− t)α−2g(t)dt

)
t

(χx)(t) =
k

∑
i=1

ȳi(t− ti) +
k

∑
i=1

yi −
m

∑
i=1

ȳit

For any λ1, λ2 ∈ Br, one can show φλ1 + χλ2 ∈ Br. It is obviously that φ is a contraction with the constant
zero.

On the otherhand, the continuity of f implies that the operator φ is continuous.
Also, φ is uniformly bounded on Br.

||φx||PC ≤
||l||

L
1
σ
(J)

Γ(α)
(

α−σ
1−σ

)1−σ
+

||l||
L

1
σ
(J)

Γ(α− 1)
(

α−σ−1
1−σ

)1−σ
≤ r.

Next, one can prove the compactness of the operator φ on Br and for any tk < λ1 < λ2 < tk+1 via conclude
that φ : C(J, R)→ C(J, R) Arzela-Ascoli theorem again.

Thus all the assumption of krasnoselskii’s fixed point theorem are satisfied, which implies that the problem
(1.1) has at least one solution on J.

4 Example

Consider the following boundary value problem for implicit fractional differential equations with
impulsive conditions

cD
3
2 x(t) =

1

2et(1 + |x(t)|+ |cD
3
2 x(t)|

,

∆x(1/4) = y1, ∆x′(1/4) = ȳ1,

x(0) = 0, x′(1) = 0

Set f (t, u, v) = 1
2et(1+|u|+|v| , t ∈ [0, 1], u, v ∈ R. Clearly, the function f is jointly continuous. For any u, v, ū, v̄ ∈

R

| f (t, u, v)− f (t, ū, v̄)| ≤ 1
4e

(|u− ū|+ |v− v̄|)
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Set L1 = L2 = 1
4e , α = 3

2 and
L1Tα

2(1− L2)Γ(1 + α)
=

1
2(4e− 1)Γ( 5

2 )
< 1

Thus all the assumptions of theorem (1.1) are satisfied. Thus the problem (1.1) as a unique solution.
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