Malaya
Journal of
MatematikMJM
an international journal of mathematical sciences with
computer applications...

www.malayajournal.org

On totally $\pi g^{\mu}r$ -continuous function in supra topological spaces

C. Janaki^{*a*,*} and V. Jeyanthi^{*b*}

^a Department of Mathematics, L.R.G. Government College for Women, Tirupur-641004, Tamil Nadu, India.

^bDepartment of Mathematics, Sree Narayana Guru College, Coimbatore-641105, Tamil Nadu, India.

Abstract

The focus of this paper is to use $\pi g^{\mu}r$ -closed set to define and investigate a new class of function called totally $\pi g^{\mu}r$ -continuous functions in supra topological spaces and to obtain some of its characteristics and properties.

Keywords: $\pi g^{\mu}r$ -closed set, $\pi g^{\mu}r$ -continuous functions, $\pi g^{\mu}r$ -irresolute function and Totally $\pi g^{\mu}r$ -continuous functions.

2010 MSC: 54A10, 54A20. ©2012 MJM. All rights reserved.

1 Introduction

The first step of generalized closed sets was initiated by Levine [6]. Zaitsev[11] introduced the concept of π -closed sets and defined a class of topological spaces called quasi normal spaces. Palaniappan[8] studied the concept of regular generalized closed set in topological spaces. In 1980, R.C. Jain [2] defined totally continuous functions in topological spaces.

In 1983, Mashhour et al [7] introduced the supra topological spaces. In 2010, Sayed and Noiri et al [9] introduced supra b-open sets and supra b-continuity in supra topological spaces. The notions of $\pi\Omega$ -closed and $\pi\Omega s$ -closed sets in supra topological spaces was introduced by Arockiarani et al[1]. The concepts of totally supra b-continuous functions and slightly supra b-continuous functions are introduced and studied by Jamal M. Mustafa[3].

Let $(X, \mu), (Y, \lambda)$ be the supra topological spaces denoted by X, Y respectively throughout this paper.

^{*}Corresponding author.

E-mail address: janakiesekar@yahoo.com (C. Janaki), jeyanthi_snge@yahoo.com(V. Jeyanthi).

2 **Preliminaries**

Definition 2.1. Let X be a non-empty set. The sub family $\mu \subseteq P(X)$ where P(X) is the power set of X is said to be a supra topology on X if $\phi, X \in U$ and U is closed under arbitrary unions. The pair (X, μ) is called a supra topological space. The elements of μ are said to be supra open in (X, μ) . The complement of supra open set is called supra closed set.

Definition 2.2. A subset A of X is called

- 1. supra semi-open [1,7] if $A \subseteq cl^{\mu}(int^{\mu}(A))$.
- 2. supra regular open[1] if $A = int^{\mu}(cl^{\mu}(A))$ and regular closed if $A = cl^{\mu}(int^{\mu}(A))$
- 3. supra π -open [1] if A is the finite union of regular open sets.

The complements of the above mentioned open sets are called their respective closed sets.

Definition 2.3. A map $f : (X, \mu) \to (Y, \lambda)$ is called supra continuous[7] if the inverse image of each open set of Y is supra open in X.

Definition 2.4 (4). A subset A of a supra topological space X is said to be supra πgr -closed set $[\pi g^{\mu}r$ -closed] if $rcl^{\mu}(A) \subset U$ whenever $A \subset U$ and U is supra π -open. The collection of all $\pi g^{\mu}r$ -closed set is denoted by $\pi G^{\mu}RC(X)$.

Definition 2.5. A space X is called

- (i) $\pi g^{\mu}r T_{1/2}$ -space[4] if every $\pi g^{\mu}r$ -closed set is supra regular closed.
- (ii) $\pi g^{\mu}r$ -locally indiscrete[4] if every $\pi g^{\mu}r$ -open subset of X is supra closed in X.

Definition 2.6 (4). Let (X, τ) and (Y, σ) be two topological spaces with $\tau \subset \mu$ and $\sigma \subset \lambda$. A map $f: (X, \mu) \to (Y, \lambda)$ is called

- (i) $\pi g^{\mu}r$ -continuous if the inverse image of each supra open set of Y is $\pi g^{\mu}r$ -open in X.
- (ii) $\pi g^{\mu}r$ -irresolute if the inverse image of each $\pi g^{\mu}r$ -open set of Y is $\pi g^{\mu}r$ -open in X.

Definition 2.7. A map $f : (X, \mu) \to (Y, \lambda)$ is said to be

(i) a $\pi g^{\mu}r$ -closed map[5] if f(U) is $\pi g^{\mu}r$ -closed in Y for every supra closed set U in X.

(ii) a strongly $\pi g^{\mu}r$ -closed map [5] if f(U) is $\pi g^{\mu}r$ -closed in Y for every $\pi g^{\mu}r$ -closed set U in X.

Definition 2.8 (10). A function $f : X \to Y$ is said to be supra totally continuous function if the inverse image of every supra open subset of Y is $cl^{\mu}open^{\mu}$ in X and is denoted by $totally^{\mu}$ continuous function.

Definition 2.9 (7,10). A supra topological space is said to be

- 1. $cl^{\mu}open^{\mu} T_1$ -space if for each pair of distinct points x and y in X, there exist $cl^{\mu}open^{\mu}$ sets U and V containing x and y respectively such that $x \in U, y \notin U$ and $x \notin V, y \in V$ containing one point but not other.
- 2 . $Ultra^{\mu}$ Hausdorff or $Ultra^{\mu} T_2$ -space if every two distinct points of X can be separated by disjoint $cl^{\mu}open^{\mu}$ sets.
- 3. *supra normal if each pair of non-empty distinct supra closed sets can be separated by disjoint supra open sets.*
- 4. $Ultra^{\mu}$ normal if each pair of non-empty distinct supra closed sets separated by disjoint $cl^{\mu}open^{\mu}$ sets.
- 5. $cl^{\mu}open^{\mu}$ -normal if for each pair of disjoint $cl^{\mu}open^{\mu}$ sets U and V of X, there exists two disjoint supra open sets G and H such that $U \subset G$ and $V \subset H$.
- 6. supra regular if each closed set F of X and each $x \notin F$, there exists disjoint supra open sets U and V such that $F \subset U$ and $x \in V$.
- 7. $Ultra^{\mu}$ regular if each supra closed set F of X and each $x \notin F$, there exist disjoint $cl^{\mu}open^{\mu}$ sets U and V such that $F \subset U$ and $x \in V$.
- 8. $cl^{\mu}open^{\mu}$ -regular if for each $cl^{\mu}open^{\mu}$ set F of X and for each $x \notin F$, there exists two disjoint supra open sets U and V such that $F \subset U$ and $x \in V$.

3 Totally $\pi g^{\mu} r$ continuous functions.

Definition 3.1. A function $f : X \to Y$ is said to be supra totally πgr -continuous function (totally $\pi g^{\mu}r$ continuous) if the inverse image of every $\pi g^{\mu}r$ -open subset of Y is $cl^{\mu}open^{\mu}$ in X.

Proposition 3.1. (i) Every totally^{μ} continuous function is $\pi g^{\mu}r$ -continuous.

- (ii) Every totally $\pi g^{\mu}r$ -continuous function is $\pi g^{\mu}r$ -irresolute.
- *Proof.* (i) Let $f : X \to Y$ be a $totally^{\mu}$ continuous function. Then $f^{-1}(V)$ is $cl^{\mu}open^{\mu}$ for every open set V of Y. Hence $f^{-1}(V)$ is $\pi g^{\mu}r$ -open in X. Therefore $f^{-1}(V)$ is $\pi g^{\mu}r$ -continuous in X.
 - (ii) Let V be a $\pi g^{\mu}r$ -open set in Y. Since f is totally $\pi g^{\mu}r$ -continuous, then $f^{-1}(V)$ is $cl^{\mu}open^{\mu}$ in X and hence $f^{-1}(V)$ is $\pi g^{\mu}r$ -open in X. Therefore f is $\pi g^{\mu}r$ -irresolute.

Example 3.1. (i) Let $X = \{a, b, c, d\} = Y$, $\mu = \{\phi, X, \{a\}, \{a, c\}, \{b, c\}, \{a, b, c\}\}$ and $\lambda = \{\phi, Y, \{a, b\}, \{b, c\}, \{a, b, c\}\}$. Let $f : X \to Y$ be an identity map. Then f is $\pi g^{\mu}r$ -continuous but not totally^{μ} continuous.

(ii) Let
$$X = \{a, b, c, d\} = Y$$
, $\mu = \{\phi, X, \{a\}, \{a, d\}, \{b, d\}, \{a, b, d\}\}$ and
 $\lambda = \{\phi, Y, \{c\}, \{c, d\}, \{b, d\}, \{b, c, d\}, \{a, c, d\}\}$. Let $f : X \to Y$ be defined by $f(a) = b, f(b) = c, f(c) = a$ and $f(d) = d$. Then f is $\pi g^{\mu}r$ -irresolute but not totally $\pi g^{\mu}r$ -continuous.

Theorem 3.1. A bijection $f : X \to Y$ is totally $\pi g^{\mu}r$ -continuous iff the inverse image of every $\pi g^{\mu}r$ -closed subset of Y is $cl^{\mu}open^{\mu}$ in X.

Proof. Let F be any $\pi g^{\mu}r$ -closed set in Y. Then Y - F is $\pi g^{\mu}r$ -open set in Y. By definition, $f^{-1}(Y - F)$ is $cl^{\mu}open^{\mu}$ in X. Then

 $f^{-1}(Y - F) = f^{-1}(Y) - f^{-1}(F) = X - f^{-1}(F)$ is $cl^{\mu}open^{\mu}$ in X. Hence $f^{-1}(F)$ is $cl^{\mu}open^{\mu}$ in X. Conversely, let V be $\pi g^{\mu}r$ -open in Y. By assumption, $f^{-1}(Y - V)$ is $cl^{\mu}open^{\mu}$ in Y. The above implies $X - f^{-1}(V)$ is $cl^{\mu}open^{|mu|}$ in X and hence $f^{-1}(V)$ is $cl^{\mu}open^{\mu}$ in X. Therefore, f is totally $\pi g^{\mu}r$ -continuous.

Theorem 3.2. Let $f : X \to Y$ be a function, where X and Y are supra topological spaces. The following are equivalent.

- (i) f is totally $\pi g^{\mu}r$ -continuous.
- (ii) for each $x \in X$ and each $\pi g^{\mu}r$ -open set V in Y with $f(x) \in V$, there is a $cl^{\mu}open^{\mu}$ set U in X such that $x \in U$ and $f(U) \subset V$.

Proof. $(i) \Rightarrow (ii)$: Let V be a $\pi g^{\mu}r$ -open set in Y containing f(x), so that $x \in f^{-1}(V)$. Since f is totally $\pi g^{\mu}r$ -continuous, $f^{-1}(V)$ is $cl^{\mu}open^{\mu}$ in X. Let $U = f^{-1}(V)$. Then U is $cl^{\mu}open^{\mu}$ in X and $x \in U$. Therefore $f(U) = f(f^{-1}(V)) = V$ and hence $f(U) \subset V$.

 $(ii) \Rightarrow (i)$: Let V be $\pi g^{\mu}r$ -open in Y. Let $x \in f^{-1}(V)$ be any arbitrary point. Then $f(x) \in V$. Therefore, by (ii), there is a $cl^{\mu}open^{\mu}$ set $f(G) \subset X$ containing x such that $f(G) \subset V$.

Hence $G \subset f^{-1}(V)$ is a $cl^{\mu}open^{\mu}$ neighborhood of x. Since x is arbitrary, $f^{-1}(V)$ is $cl^{\mu}open^{\mu}$ neighborhood of each of its points. Therefore $f^{-1}(V)$ is $cl^{\mu}open^{\mu}$ in X and hence f is totally $\pi g^{\mu}r$ -continuous.

Theorem 3.3. For a function $f : X \to Y$, the following properties hold:

- (i) If f is supra continuous and X is locally^{μ} indiscrete, then f is totally^{μ} continuous.
- (ii) If f is totally^{μ} continuous and Y is $\pi g^{\mu}r T_{1/2}$ space, then f is totally $\pi g^{\mu}r$ -continuous.

- *Proof.* (i) Let V be a supra open set in Y. Since f is supra continuous, $f^{-1}(V)$ is supra open in X. Again since X is $locally^{\mu}$ indiscrete, $f^{-1}(V)$ is supra closed in X. Therefore $f^{-1}(V)$ is $cl^{\mu}open^{\mu}$ in X and hence f is $totally^{\mu}$ continuous.
 - (ii) Let V be $\pi g^{\mu}r$ -open in Y. Then Y V is $\pi g^{\mu}r$ -closed in Y. Since Y is $\pi g^{\mu}r T_{1/2}$ -space, Y V is supra regular closed in Y. Thus V is supra open in Y. Since f is $totally^{\mu}$ continuous, $f^{-1}(V)$ is $cl^{\mu}open^{\mu}$ in X.

Therefore f is totally $\pi g^{\mu}r$ -continuous.

Proposition 3.2. The composition of two totally $\pi g^{\mu}r$ -continuous function is totally $\pi g^{\mu}r$ -continuous.

Proof. Obvious.

- **Proposition 3.3.** (i) If $f : X \to Y$ is totally $\pi g^{\mu}r$ -continuous and $g : Y \to Z$ is $\pi g^{\mu}r$ -irresolute, then $g \circ f : X \to Z$ is totally $\pi g^{\mu}r$ -continuous.
- (ii) If $f: X \to Y$ is totally $\pi g^{\mu}r$ -continuous and $g: Y \to Z$ is $\pi g^{\mu}r$ -continuous, then $g \circ f: X \to Z$ is totally^{μ} continuous.
- *Proof.* (i) Let V be a $\pi g^{\mu}r$ -open set in Z. Then $\pi g^{\mu}r$ -irresoluteness of g implies $g^{-1}(V)$ is $\pi g^{\mu}r$ -open in Y. Since f is the totally $\pi g^{\mu}r$ continuous, $f^{-1}(g^{-1}(V))$ is $cl^{\mu}open^{\mu}$ in Z. Hence $g \circ f$ is totally $\pi g^{\mu}r$ -continuous.
 - (ii) Similar to that of (i).

- **Theorem 3.4.** (*i*) Let $f : X \to Y$ be a $\pi g^{\mu}r$ -open map and $g : Y \to Z$ be any function. If $g \circ f : X \to Z$ is totally $\pi g^{\mu}r$ -continuous, then g is $\pi g^{\mu}r$ -irresolute.
 - (ii) Let $f : X \to Y$ be a strongly $\pi g^{\mu}r$ -open map and $g : Y \to Z$ be any function. If $g \circ f : X \to Z$ is totally $\pi g^{\mu}r$ -continuous, then g is $\pi g^{\mu}r$ -irresolute.
- *Proof.* (i) Let $g \circ f : X \to Z$ be a totally $\pi g^{\mu}r$ -continuous function and let V be a $\pi g^{\mu}r$ -open set in Z. Then $(g \circ f)^{-1}(V)$ is $cl^{\mu} open^{\mu}$ in X. Hence $f^{-1}(g^{-1}(V))$ is $cl^{\mu} open^{\mu}$ in X. Therefore $f^{-1}(g^{-1}(V))$ is supra open in X. Since f is $\pi g^{\mu}r$ -open, $f(f^{-1}(g^{-1}(V)) = g^{-1}(V)$ is $\pi g^{\mu}r$ -open in Y.

Hence g is $\pi g^{\mu}r$ - irresolute.

(ii) Similar to that of the above.

4 Applications

Definition 4.1. A supra topological space is said to be

- 1. $\pi g^{\mu}r T_0$ -space if for each distinct points in X, there exists a $\pi g^{\mu}r$ -open set containing one point but not the other.
- 2. $\pi g^{\mu}r T_1$ -space if for each pair of distinct points x and y in X, there exist $\pi g^{\mu}r$ -open sets U and V containing x and y respectively such that $x \in U$, $y \notin U$ and $x \notin V$, $y \in V$ containing one point but not other.
- 3. $\pi g^{\mu}r T_2$ -space if every two distinct points of X can be separated by disjoint $\pi g^{\mu}r$ -open sets.
- 4. $\pi g^{\mu}r$ -normal if for each pair of disjoint closed sets U and V of X, there exist two disjoint $\pi g^{\mu}r$ -open sets G and H such that $U \subset G$ and $V \subset H$.
- 5. $\pi g^{\mu}r$ -regular if for each $\pi g^{\mu}r$ -closed set F of X and each $x \notin F$, there exist two disjoint $\pi g^{\mu}r$ -open sets U and V such that $F \subset U$ and $x \in V$.
- 6. $\pi g^{\mu}r$ -connected if X is not the union of two disjoint non-empty $\pi g^{\mu}r$ -open subsets of X.

Theorem 4.1. If $f : X \to Y$ is totally $\pi g^{\mu}r$ -continuous injection and Y is $\pi g^{\mu}r - T_0$, then X is Ultra^{μ} Hausdorff.

Proof. Let x and y be any pair of distinct points of X. Then $f(x) \neq f(y)$ in Y. Since Y is $\pi g^{\mu}r - T_0$, there exists a $\pi g^{\mu}r$ -open set U containing f(x) but not f(y). Then $x \in f^{-1}(U)$ and $y \notin f^{-1}(U)$. Since f is totally $\pi g^{\mu}r$ -continuous, $f^{-1}(U)$ is $cl^{\mu} open^{\mu}$ in X. Also $x \in f^{-1}(U), y \notin f^{-1}(U)$.

(i.e) $y \in X - f^{-1}(U)$. This implies every pair of distinct points of X can be separated by disjoint cl^{μ} $open^{\mu}$ sets in X. Therefore, X is $Ultra^{\mu}$ Hausdorff.

Theorem 4.2. If $f : X \to Y$ is totally $\pi g^{\mu}r$ -continuous injection and Y is $\pi g^{\mu}r - T_1$, then X is cl^{μ} $open^{\mu} - T_1$.

Proof. Let x and y be any two distinct points of X. Then $f(x) \neq f(y)$. As Y is $\pi g^{\mu}r - T_1$, there exists $\pi g^{\mu}r$ -open sets U and V of Y such that $f(x) \in U$, $f(y) \notin U$ and $f(y) \in V$, $f(x) \notin V$. Therefore, we have $x \in f^{-1}(U), y \notin f^{-1}(U)$ and $y \in f^{-1}(V), x \notin f^{-1}(V)$. Since f is totally $\pi g^{\mu}r$ -continuous, $f^{-1}(U)$ and $f^{-1}(V)$ are $cl^{\mu} open^{\mu}$ in X. Hence X is $cl^{\mu}open^{\mu} - T_1$.

Theorem 4.3. If $f : X \to Y$ is totally $\pi g^{\mu}r$ -continuous injection and Y is $\pi g^{\mu}r - T_2$, then X is Ultra^{μ} Hausdorff.

Proof. Let x and y be any pair of distinct points of X. Then $f(x) \neq f(y)$ in Y. Since Y is $\pi g^{\mu}r - T_2$, there exist disjoint $\pi g^{\mu}r$ -open sets U and V such that $f(x) \in U$ and $f(y) \in V$. Since f is totally $\pi g^{\mu}r$ -continuous, $f^{-1}(U)$ is $cl^{\mu} open^{\mu}$ in X. Also $x \in f^{-1}(U)$ and $y \notin f^{-1}(U)$. (i.e) $y \in X - f^{-1}(U)$. This implies every pair of distinct points of X can be separated by disjoint $cl^{\mu}open^{\mu}$ sets in X. Therefore, X is $ultra^{\mu}$ Hausdorff.

Theorem 4.4. If $f : X \to Y$ is totally $\pi g^{\mu}r$ -continuous, supra closed injection and Y is $\pi g^{\mu}r$ -normal, then X is Ultra^{μ} normal.

Proof. Let F_1 and F_2 be disjoint supra closed subsets of X. Since f is supra closed, $f(F_1)$ and $f(F_2)$ are disjoint supra closed in Y. Since Y is $\pi g^{\mu}r$ -normal, $f(F_1)$ and $f(F_2)$ are separated by disjoint $\pi g^{\mu}r$ -open subsets G_1 and G_2 of Y. Then $F_1 \subset f^{-1}(G_1)$ and $F_2 \subset f^{-1}(G_2)$. As f is totally $\pi g^{\mu}r$ -continuous, $f^{-1}(G_1)$ and $f^{-1}(G_2)$ are cl^{μ} open^{\mu} sets in X. Also $f^{-1}(G_1) \cap f^{-1}(G_2) = f^{-1}(G_1 \cap G_2) = \phi$. Thus each pair of non-empty supra closed sets in X can be separated by disjoint cl^{μ} open^{μ} sets in X. Hence X is $Ultra^{\mu}$ normal.

Theorem 4.5. If $f : X \to Y$ is totally $\pi g^{\mu}r$ -continuous, surjection and X is supra connected, then Y is $\pi g^{\mu}r$ -connected.

Proof. Suppose *Y* is not $\pi g^{\mu}r$ -connected. Let A and B form disconnection in *Y*. Then A and B are $\pi g^{\mu}r$ -open sets in *Y* and *Y* = $A \cup B$, where $A \cap B = \phi$. Also $X = f^{-1}(Y) = f^{-1}(A \cup B) = f^{-1}(A) \cup f^{-1}(B)$, where $f^{-1}(A)$ and $f^{-1}(B)$ are non-empty $cl^{\mu}open^{\mu}$ sets and hence supra open in *X*, as f is totally $\pi g^{\mu}r$ -continuous. Further $f^{-1}(A) \cap f^{-1}(B) = f^{-1}(A \cap B) = \phi$. Then X is not supra connected, which is a contradiction. Therefore *Y* is $\pi g^{\mu}r$ -connected.

Theorem 4.6. If $f : X \to Y$ is totally $\pi g^{\mu}r$ -continuous and $\pi g^{\mu}r$ -open injective map from a $cl^{\mu}open^{\mu}$ regular space X onto Y, then Y is $\pi g^{\mu}r$ -regular.

Proof. Let F be a $cl^{\mu}open^{\mu}$ set in Y. Then F is $\pi g^{\mu}r$ -open and $\pi g^{\mu}r$ -closed in Y. Let $y \notin F$. Take y = f(x). Since f is totally $\pi g^{\mu}r$ -continuous, $f^{-1}(F)$ is $cl^{\mu}open^{\mu}$ in X. Let $G = f^{-1}(F)$. Then we have $x \notin G$. Since X is $cl^{\mu}open^{\mu}$ regular, there exists disjoint supra open sets U and V such that $G \subset U$ and $x \in V$. This implies $F = f(G) \subset f(U)$ and $y = f(x) \in f(V)$. Further, since f is a $\pi g^{\mu}r$ -open map, $f(U \cap V) = f(\phi) = \phi$ and f(U) and f(V) are $\pi g^{\mu}r$ -open sets in Y. Thus for each supra closed set F in Y and each $y \notin F$, there exists disjoint $\pi g^{\mu}r$ -open sets f(U) and f(V) in Y such that $F \subset f(U)$ and $y \in f(V)$. Therefore Y is $\pi g^{\mu}r$ -regular.

Theorem 4.7. If $f : X \to Y$ is totally $\pi g^{\mu}r$ -continuous and supra closed injective map. If Y is $\pi g^{\mu}r$ -regular, then X is Ultra^{μ} regular.

Proof. Let F be a supra closed set not containing x. Since f is supra closed, f(F) is supra closed in Y not containing f(x). Since Y is $\pi g^{\mu}r$ -regular, there exist disjoint $\pi g^{\mu}r$ -open sets A and B such that $f(x) \in A$ and $f(F) \subset B$. The above implies $x \in f^{-1}(A)$ and $F \subset f^{-1}(B)$. As f is totally $\pi g^{\mu}r$ continuous, $f^{-1}(A)$ and $f^{-1}(B)$ are $cl^{\mu}open^{\mu}$ in X and $f^{-1}(A) \cap f^{-1}(B) = f^{-1}(A \cap B) = f^{-1}(\phi) = \phi$. Thus for a point x and a supra closed set not containing x are separated by disjoint $cl^{\mu}open^{\mu}$ sets $f^{-1}(A)$ and $f^{-1}(B)$. Therefore X is $Ultra^{\mu}$ regular.

Theorem 4.8. If $f: X \to Y$ is totally $\pi g^{\mu}r$ -continuous and $\pi g^{\mu}r$ -closed injective map. If Y is $\pi g^{\mu}r$ -regular, then X is Ultra^{μ} regular.

Proof. Let F be a supra closed set not containing x. Since f is $\pi g^{\mu}r$ -closed, f(F) is $\pi g^{\mu}r$ -closed in Y not containing f(x). Since Y is $\pi g^{\mu}r$ -regular, there exist disjoint $\pi g^{\mu}r$ -open sets A and B such that $f(x) \in A$ and $f(F) \subset B$. The above implies $x \in f^{-1}(A)$ and $F \subset f^{-1}(B)$. As f is totally $\pi g^{\mu}r$ continuous, $f^{-1}(A)$ and $f^{-1}(B)$ are $cl^{\mu}open^{\mu}$ in X and $f^{-1}(A) \cap f^{-1}(B) = f^{-1}(A \cap B) = f^{-1}(\phi) = \phi$. Thus for a point x and a supra closed set F not containing x are separated by disjoint $cl^{\mu}open^{\mu}$ sets $f^{-1}(A)$ and $f^{-1}(B)$. Therefore X is $Ultra^{\mu}$ regular.

Theorem 4.9. If $f : X \to Y$ is $totally^{\mu}$ continuous and $\pi g^{\mu}r$ -open injective map from a $cl^{\mu}open^{\mu}$ normal space X onto a space Y, then Y is $\pi g^{\mu}r$ -normal.

Proof. Let F_1 and F_2 be two disjoint supra closed sets in Y. Since f is $totally^{\mu}$ continuous, $f^{-1}(Y - F_1) = X - f^{-1}(F_1)$ and $f^{-1}(Y - F_2) = X - f^{-1}(F_2)$ are $cl^{\mu}open^{\mu}$ subsets of X. That is $f^{-1}(F_1)$ and $f^{-1}(F_2)$ are $cl^{\mu}open^{\mu}$ in X. Take $U = f^{-1}(F_1)$ and $V = f^{-1}(F_2)$. Then $U \cap V = f^{-1}(F_1) \cap f^{-1}(F_2) = f^{-1}(F_1 \cap F_2) = f^{-1}(\phi) = \phi$. Since X is $cl^{\mu}open^{\mu}$ -normal, there exist disjoint supra open sets A and B such that $U \subset A$ and $V \subset B$. This implies $F_1 = f(U) \subset f(A)$ and $F_2 = f(V) \subset f(B)$. Further, since f is $\pi g^{\mu}r$ -open, f(A) and f(B) are disjoint $\pi g^{\mu}r$ -open in Y. Thus each pair of disjoint supra closed sets in Y can be separated by disjoint $\pi g^{\mu}r$ -open sets. Therefore Y is $\pi g^{\mu}r$ -normal.

Definition 4.2. A supra topological space X is called a $\pi g^{\mu}rc$ -normal if for each pair of disjoint $\pi g^{\mu}r$ -closed sets U and V of X, there exist two disjoint $\pi g^{\mu}r$ -open sets G and H such that $U \subset G$ and $V \subset H$.

Theorem 4.10. If $f : X \to Y$ is totally $\pi g^{\mu}r$ -continuous and $\pi g^{\mu}r$ -open injective map from a $cl^{\mu}open^{\mu}$ normal space X onto a space Y, then Y is $\pi g^{\mu}rc$ -normal.

Proof. Let F_1 and F_2 be two disjoint $\pi g^{\mu}r$ -closed sets in Y. Since f is totally $\pi g^{\mu}r$ -continuous, $f^{-1}(F_1)$ and $f^{-1}(F_2)$ are disjoint $cl^{\mu}open^{\mu}$ subsets of X. Take $U = f^{-1}(F_1)$ and $V = f^{-1}(F_2)$. Since f is injective, $U \cap V = f^{-1}(F_1) \cap f^{-1}(F_2) = f^{-1}(F_1 \cap F_2) = f^{-1}(\phi) = \phi$. Since X is $cl^{\mu}open^{\mu}$ -normal, there exist disjoint supra open sets A and B such that $U \subset A$ and $V \subset B$. This implies $F_1 = f(U) \subset f(A)$ and $F_2 = f(V) \subset f(B)$. Further, since f is $\pi g^{\mu}r$ -open, f(A) and f(B) are disjoint $\pi g^{\mu}r$ -open sets **Definition 4.3.** A function $f : X \to Y$ is said to be totally $\pi g^{\mu}r$ -open if the image of every $\pi g^{\mu}r$ -open set in X is $cl^{\mu}open^{\mu}$ in Y.

Theorem 4.11. If a bijective function $f : X \to Y$ is said to be totally $\pi g^{\mu}r$ -open, then the image of every $\pi g^{\mu}r$ -open set in X is $cl^{\mu}open^{\mu}$ in Y.

Proof. Let F be a $\pi g^{\mu}r$ -closed set in X. Then X - F is $\pi g^{\mu}r$ -open in X. Since f is totally $\pi g^{\mu}r$ -open, f(X - F) = Y - f(F) is $cl^{\mu}open^{\mu}$ in Y. Hence f(F) is $cl^{\mu}open^{\mu}$ in Y.

Theorem 4.12. A surjective function $f : X \to Y$ is totally $\pi g^{\mu}r$ -open iff for each subset B of Y and for each $\pi g^{\mu}r$ -closed set U containing $f^{-1}(B)$, there is a $cl^{\mu}open^{\mu}$ set V of Y such that $B \subset V$ and $f^{-1}(V) \subset U$.

Proof. Suppose $f : X \to Y$ be a surjective totally $\pi g^{\mu}r$ -open function and $B \subset Y$. Let U be a $\pi g^{\mu}r$ closed set of X such that $f^{-1}(B) \subset U$. Then V = Y - f(X - U) is $cl^{\mu}open^{\mu}$ subset of Y containing B
such that $f^{-1}(V) \subset U$.

Conversely, let F be a $\pi g^{\mu}r$ -closed set of X. Then $f^{-1}(Y-f(F)) \subset X-F$ is $\pi g^{\mu}r$ -open. By hypothesis, there exists a $cl^{\mu}open^{\mu}$ set V of Y such that $Y - f(F) \subset V$, which implies $f^{-1}(V) \subset X - F$. Therefore $F \subset X - f^{-1}(V)$.

Hence $Y - V \subset f(F) \subset f(X - f^{-1}(V)) \subset Y - V$, which is $cl^{\mu}open^{\mu}$ in Y. Thus the image of a $\pi g^{\mu}r$ -open set in X is $cl^{\mu}open^{\mu}$ in Y. Therefore f is totally $\pi g^{\mu}r$ -open function.

Theorem 4.13. For any bijective function $f : X \to Y$, the following statements are equivalent.

- (i) f^{-1} is totally $\pi g^{\mu}r$ -continuous.
- (*ii*) f is totally $\pi g^{\mu}r$ -open.

Proof. $(i) \Rightarrow (ii)$: Let U be a $\pi g^{\mu}r$ -open set of X. By assumption $(f^{-1})^{-1}(U) = f(U)$ is $cl^{\mu}open^{\mu}$ in Y. So, f is totally $\pi g^{\mu}r$ -open.

 $(ii) \Rightarrow (i)$: Let V be a $\pi g^{\mu}r$ -open in X. Then by assumption, f(V) is $cl^{\mu}open^{\mu}$ in Y. Thus $(f^{-1})^{-1}(V)$ is $cl^{\mu}open^{\mu}$ in Y and hence f^{-1} is totally $\pi g^{\mu}r$ -continuous.

Theorem 4.14. The composition of two $\pi g^{\mu}r$ -totally open function is totally $\pi g^{\mu}r$ -open.

Proof. Obvious.

Theorem 4.15. If $f : X \to Y$ is $\pi g^{\mu}r$ -irresolute and $g : Y \to Z$ is totally $\pi g^{\mu}r$ -continuous, then $g \circ f : X \to Z$ is $\pi g^{\mu}r$ -irresolute.

Proof. Let V be a $\pi g^{\mu}r$ -open set in Z. Since g is totally $\pi g^{\mu}r$ -continuous, $g^{-1}(V)$ is $cl^{\mu}open^{\mu}$ in Y. Then $g^{-1}(V)$ is $\pi g^{\mu}r$ -open in Y. As f is $\pi g^{\mu}r$ -irresolute, $f^{-1}(g^{-1}(V) = (g \circ f)^{-1}(V)$ is $\pi g^{\mu}r$ -open in X. Hence $(g \circ f)$ is $\pi g^{\mu}r$ -irresolute.

Theorem 4.16. Let $f : X \to Y$ and $g : Y \to Z$ be two functions such that $g \circ f : X \to Z$ is totally $\pi g^{\mu}r$ -open function. Then

- (*i*) If f is $\pi g^{\mu}r$ -irresolute and surjective, then g is totally $\pi g^{\mu}r$ -open.
- (ii) If g is totally^{μ} continuous and injective, then f is totally $\pi g^{\mu}r$ -open.
- *Proof.* (i) Let V be a $\pi g^{\mu}r$ -open set in Y. By hypothesis, $f^{-1}(V)$ is $\pi g^{\mu}r$ -open in X. Again, since $(g \circ f)$ is totally $\pi g^{\mu}r$ -open, $((g \circ f)(f^{-1}(V))) = g(V)$ is $cl^{\mu}open^{\mu}$ in Z. Hence g is totally $\pi g^{\mu}r$ -open.
 - (ii) Let V be a πg^μr-open set in X. Since (g ∘ f) is totally πg^μr-open, (g ∘ f)(V) is cl^μopen^μ in Z. Then (g ∘ f)(V) is supra regular open and hence πg^μr-open in Z. As g is totally^μ continuous, g⁻¹((g ∘ f)(V)) = f(V) is cl^μopen^μ in Y. Hence f is totally πg^μr-open.

References

- I.Arockiarani and M.Trinita Pricilla, πΩ-closed and πΩs-closed set in supra topological spaces, Int. J. Comp. Sci. Emerging Tech., 2(4)(2011), 534-538.
- [2] R.C. Jain, *The Role of Regularly Open Sets in General Topology*, Ph.D. Thesis, Meerut University, Institute of advanced studies, Meerut, India(1980)
- [3] Jamal M. Mustafa, Totally supra b-continuous and slightly supra b-continuous functions, *Tud. Yniv. Babes- Boiyai Math.*, 57(2012), No.1, 135-144.
- [4] V. Jeyanthi and C. Janaki, On πg^μr-closed sets in topological spaces, *Antarctica J.of Mathematics*, 10(5) (2013), 423-433.
- [5] V. Jeyanthi and C. Janaki, On $\pi g^{\mu}r$ -closed maps in supra topological spaces, *International Conference of Mathematical Sciences and its Computational Applications*, 167-171.
- [6] N. Levine, Generalized closed sets in topology, Rend. Circ. Mat. Palermo, (2)19(1970),89-96.
- [7] A.S. Mashour, A.A. Allam, F.S. Mahamoud and F.H. Khedr, On supra topological spaces, *Indian J. Pure and Appl. Math.*, No.4, 14(1983), 502-510.

- [8] N. Palaniappan and K.C. Rao, Regular Generalized closed sets, Kyungpook Math .J., 33(1993),211-219.
- [9] O.R. Sayed And T. Noiri, On supra b-open sets and supra b-continuity on supra topological spaces, *European Journal of Pure and Applied Mathematics*, 3(2)(2010), 295-302.
- [10] M. Trinita Pricilla and I. Arockiarani, On $g^{\mu}b$ -totally continuous functions in supra topological space, *IJMA*, 4(2)(2013), 11-16.
- [11] V.Zaitsev, On Certain classes of topological spaces and their bicompactifications, *Dokl. Akad*, *Nauk. SSSR.*, 178(1968),778-779.

Received: May 23, 2015; Accepted: June 09, 2015

UNIVERSITY PRESS

Website: http://www.malayajournal.org/