Stability of general quadratic $-$ cubic $-$ quartic functional equation in quasi beta Banach space via two dissimilar methods

Print   Print  

Authors :

S. Pinelas1, M. Arunkumar2, N. Mahesh Kumar3*, E. Sathya4

Author Address :

1Academia Militar, Departamento de Ciias Exactas e Naturais, Av.Conde Castro Guimar, 2720-113 Amadora, Portugal.
2,4Department of Mathematics, Government Arts College, Tiruvannamalai - 606 603, TamilNadu, India.
3Department of Mathematics, Arunai Engineering College, Tiruvannamalai, TamilNadu, India - 606 603.

*Corresponding author.

Abstract :

In this paper, authors proved the generalized Ulam - Hyers stability of mixed type general quartic - cubic -quartic functional equation
egin{align*}
f(x + my) + f(x - my) = m^2f(x + y) + m^2f(x - y) + 2(1 - m^2)f(x)
+ frac{m^2(m^2 - 1)}{6}(f(2y) + 2f(-y) - 6f(y))
end{align*}
where $m e 0, pm 1$ in Quasi beta Banach space via two dissimilar methods.

Keywords :

Quadratic, cubic, quartic functional equations, Generalized Ulam - Hyers stability, Quasi beta Banach space, fixed point.

DOI :

10.26637/MJM0601/0015

Article Info :

Received : October 11, 2017; Accepted : December 27, 2017.

 

 

Search Information Pages

Go to Top

©2012 MJM - Malaya Journal of Matematik. All rights reserved.
web counter