Fuzzy quotient-3 cordial labeling of star related graphs- Paper I

Print   Print  

Authors :

P. Sumathi 1 * and J. Suresh Kumar 2

Author Address :

1 Department of Mathematics, C. Kandaswami Naidu College for Men, Chennai-600102, India.
2 Department of Mathematics, St. Thomas College of Arts and Science, Chennai-600107, India.

*Corresponding author.

Abstract :

Let $G(V, E)$ be a simple, finite and planar graph of order $p$ and size $q$. In this paper, the concept of Fuzzy Quotient-3 Cordial Labeling was introduced. Let $sigma : V(G) o [0, 1]$ be a function defined by $sigma(v) = frac{r}{10}$, $r in Z_4 - {0}$. For each edge $uv$ define $mu : E(G) o [0, 1]$ by $mu(uv) = frac{1}{10} lc frac{3sigma(u)}{sigma(v)} c$ where $sigma(u) leq sigma(v)$. The function $sigma$ is called fuzzy quotient-3 cordial labeling of $G$ if the number of vertices labeled with $i$ and the number of vertices labeled with $j$ differ by at most 1, the number of edges labeled with $i$ and the number of edges labeled with $j$ differ by at most 1 where $i, j in left{frac{r}{10}, r in Z_4 - {0} ight}$, $i eq j$. The number of vertices having label $i$ denotes $v_sigma(i)$ and the number of edges having label $i$ denotes $e_mu(i)$. Here it is proved that the Star graph and Star related graphs are Fuzzy Quotient-3 Cordial.

Keywords :

Star, Cycle, Fuzzy quotient-3 cordial graph.

DOI :

10.26637/MJM0S01/0020

Article Info :

Received : December 21, 2018; Accepted : February 11, 2019.

 

 

Search Information Pages

Go to Top

©2019 MJM - Malaya Journal of Matematik. All rights reserved.
web counter