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The open hub number of a graph
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Abstract
Let G = (V,E) be a connected graph. A subset H of V is called a hub set of G if for any two distinct vertices
u,v ∈V −H, there exists a u-v path P in G such that all the internal vertices of P are in H .A hub set H of V is
called an open hub set if the induced sub graph < H > has no isolated vertices.The minimum cardinality of an
open hub set of G is called the open hub number of G and is denoted by hO(G). In this paper, we present several
basic results on the open hub number.
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1. Introduction
By a graph G = (V,E) we mean a finite ordered graph

with no loops and no multiple edges.For graph theoretic termi-
nology we refer [1]. Let G = (V,E) be a connected graph.The
concept of hub set is introduced by M walsh[3]. A subset H
of V is called a hub set of G if for any two distinct vertices
u,v ∈ V −H, there exists a u-v path P in G such that all the
internal vertices of P are in H. The minimum cardinality of a
hub set of G is called the hub number of G and is denoted by
h(G). The size of a smallest connected hub set is denoted by
hc(G). A dominating set of a graph G is a sub set D of V such
that every vertex not in D is adjacent to at least one member of
D. The domination number γ(G) is the number of vertices in
a smallest dominating set for G. A dominating set D is said to
be a connected dominating set if the subgraph < D > induced
by D is connected in G. The minimum of the cardinalities of
the connected dominating sets of G is called the connected
domination number and is denoted by γc(G). In this paper we
introduce the Open hub number of a graph G. A hub set H of
V is called an open hub set if the induced subgraph < H > has
no isolated vertices. The minimum cardinality of an open hub

set of G is called the open hub number of G and is denoted by
hO(G). Since an open hub set has at least two elements we
have hO(G)≥ 2.

We use the following results to prove our main results.

Lemma 1.1. [3] For any graph G, γ(G)≤ h(G)+1.

Lemma 1.2. [3] Let d(G) denote the diameter of G. Then
h(G)≥ d(G)−1, and the inequality is sharp.

Theorem 1.3. [3] If Cn is the cycle with n vertices then,
h(Cn) = n−3.

Theorem 1.4. [3] If Pn is the path with n vertices then,
h(Pn) = n−2.

Theorem 1.5. [4] If G is a connected graph and n≥ 3, then
γc(G) = n− εT (G) ≤ n− 2. ,where εT (G) is the maximum
number of pendent vertices of underlying spanning tree of G.

Theorem 1.6. [5] For any connected graph G,
h(G)≤ hc(G)≤ γc(G)≤ h(G)+1

2. Main Results
Theorem 2.1. For every connected graph G ,
h(G)≤ hO(G)≤ 2h(G).

Proof. Since every open hub set is a hub set we have
h(G) ≤ hO(G). Let H = {v1,v2, ....,vk} be a minimum hub
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set of G. Since G has no isolated vertices ,each open neigh-
borhood N(vi) 6= φ .Let ui ∈ N(vi),1 ≤ i ≤ k and let H ′ =
{u1,u2, ...,uk}. Therefore the set H ∪H ′ is an open hub set of
G. Hence hO(G)≤ |H ∪H ′| ≤ 2|H|= 2h(G).

Proposition 2.2. For a connected graph G, if hc(G) ≥ 2
then,every connected hub set is an open hub set .

Proof. Suppose hc(G)≥ 2 and assume H is a connected hub
set of G.Then < H > is connected and contains more than
one vertex.Hence H is an open hub set.

Proposition 2.3. For any connected graph G ,if ∆(G)= n−1,
then hO(G) = 2.

Proof. Suppose ∆(G) = n−1. Let u be a vertex of G having
degree n-1.Then {u,v} where v ∈ N(u),the neighborhood of
u, forms an open hub set of G. Hence the result.

Corollary 2.4. hO(Wn) = 2

Proof. The result is obvious from above proposition since
∆(Wn) = n−1.

Now we characterise a class of graphs having open hub
number n−3

Theorem 2.5. Suppose G is a connected graph of order n
such that ∆(G) 6= n− 1,then hO(G) = n− 3 if and only if G
isomorphic to one of the following graphs

1. The cycle Cn

2. A subdivision of K1,3

3. Ck with a path attached for any k.

4. C3 with two paths attached

5. C3 with three paths attached

6. A graph with exactly two cycles C3 and Ck for any k≥ 4,
with one edge common ,if G has no pendent vertices.

7. A graph with exactly two cycles C3 and Ck for any k≥ 3,
with one edge common and a path attached to a vertex
of degree 2 in C3

Proof. Suppose hO(G) = n−3.Since hO(G)≤ n−∆(G) we
have ∆(G)≤ 3.
If ∆(G) = 1 ,G≡ K2,a contradiction.
If ∆(G) = 2,G is eiher a cycle or a path.But open hub number
of the path Pn is n−2.Hence G is a cycle.
If ∆(G) = 3
Case 1 Suppose G is a tree having l leaves.
Since the set of all non leaf vertices of a tree(which is not a
star) is a minimum open hub set , the open hub number of tree
is n− l,we have l=3.That is G is a tree having 3 leaves and
∆ = 3.
Therefore G must be isomorphic to a subdivision of K1,3
.

Case 2 G is not a tree.
Then G contains cycles.If G contains two disjoint cycles
Cl = (u1,u2, ....ul ,u1) and Ck = (v1,v2, ...vk,v1).Let H1 and
H2 are minimum open hubsets of Cl and Ck respectively
such that |H1| = |V (Cl)| − 3 and |H2| = |V (Ck)| − 3.Then
H = H1 ∪H2 ∪T where T = V (G)− (V (Cl)∪V (Ck)) is an
open hubset of G,a contradiction to hO(G) = n−3.Also since
∆ = 3,no cycles have only single vertex in common.Hence
any two cycles have common edge.Thus G is either unicyclic
or exactly two cycles with a common edge.
Subcase I: G is unicyclilc.
Suppose G contains a cycle Ck = (v1,v2, ...vk,v1).
Let S = {v ∈V (Ck)|d(v) = 3}.Then |S| ≤ 3.
If |S|= 0 Then G is isomorphic to Ck,k = n.
If |S| = 1,then G is isomorphic to the graph Ck with a path
attached to one vertex .
If |S|= 2,then G is isomorphic to C3 with two paths attached.
If |S|= 3,G is isomorphic to C3 with 3 paths attached.
Subcase II: G is not Unicyclic
Then G contains exactly 2 cycles and atleast one cycle should
be C3.In this case if G has no pendent vertices ,then it is iso-
morphic to a graph with 2 cycles C3 and Ck,k ≥ 3 with one
common edge.If G has pendent vertices then it is isomorphic
to a graph with 2 cyles C3 and Ck,k ≥ 4 with one edge com-
mon and a path attached to vertex of degree 2 in C3
Converse is trivial.

Figure 1. Class of graphs in Theorem 2.5

Theorem 2.6. Given two integers k and n with
2≤ k ≤ [ n

2 ], there exist a connected graph G of order
n with hO(G) = k.

Proof. Let Kn−k be the complete graph with
V (Kn−k) = {v1,v2, ...,vn−k}. Let G be the graph obtained
from Kn−k by adding k new vertices u1,u2, ...uk and k new
edges uivi,1≤ i≤ k.Then G is a connected graph of order n.
The domination number γ(G) = k.Hence h(G) ≥ k−1. Let
H be a hub set of G. Then either v j ∈ H ∀ j 1 ≤ j ≤ k or
u j ∈ H ∀ j,1≤ j ≤ k . Therefore h(G) = k and {v1,v2, ...vk}
is a minimum hub set of G and the induced subgraph< H > is
the path graph v1v2...vk and hence it is an open hub set.Hence
the result.
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Theorem 2.7. Given two integers k and n with
2≤ k ≤ n−2,there exist a connected graph G of order
n with hO(G) = k.

Proof. Let Kn−k be the complete graph with
V (Kn−k)= {v1,v2, ...,vn−k}.Let Pk+1 be the path w1w2...wk+1.
Let G be the graph obtaned by identifying the vertices v1 and
w1.We claim that h(G) = k. It follows from Theorem1.5
γc(G)= k and by Theorem 1.6 h(G)= k or k−1.Now suppose
h(G) = k−1. Let H be a hubset of G with cardinality k−1.If
both v1 and wk+1 are not in H,then wi ∈ H,∀i, 2 ≤ i ≤ k.
Since cardinality of H is k−1,we have H = {w2,w3, ...,wk}
,a contradiction to H is a hub set of G.Suppose v1 ∈ S and
wk+1 /∈ S.Then if w2 /∈H then wi ∈H,∀i,3≤ i≤ k.In this case
H = {v1,w3, ...wk},which is not a hub set,again a contradic-
tion.We must have w2 ∈ H.By similar argument we have
wi ∈H,∀i,3≤ i≤ k,a contradiction.We get a similar contradic-
tion if v1 /∈ H and wk+1 ∈ H or if both v1 and wk+1 ∈ H.Thus
h(G) 6= k−1.Hence h(G) = k.Hence hO(G)≥ k .
Now S = {v1,w2, ...wk} is a minimum hub set of G and the
induced subgraph < S > is the path graph v1w2w3...wk. and
hence has no isolated vertices.Hence S is an open hub set of
G so that hO(G)≤ k.Hence the result.

Corollary 2.8. For each positive integer n,there exist a con-
nected graph G of order n such that hO(G) = n−∆(G).

Proof. The graph G constructed in the above theorem has
∆(G) = n− k and hO(G) = k.

Definition 2.9. Let G1,G2, ....,Gr be connected graphs,then
the graph G obtained by joining each vertex of Gi with each
vertex of Gi+1, 1≤ i≤ r−1 ,is called the successive join of
G1,G2, ....,Gr and is denoted by G1 +G2 + ....+Gr.

Theorem 2.10. Let G1,G2, ....,Gr be connected graphs and
let G = G1 +G2 + ....+Gr,then

hO(G) =

{
2 if r = 2, 3
r−2 if r ≥ 4

Proof. Case I r = 2,3
Here H = {u,v} where u ∈V (G1) and v ∈V (G2) , is an open
hub set of G.
Case II r ≥ 4
In this case H = {v2,v3, ...,vr−1},where vi ∈ V (Gi) for 2 ≤
i≤ r−1, is an open hub set of G.
Hence hO(G) ≤ r− 2.Now the diameter of G,d(G) = r− 1
and hence by Lemma 1.2, hO(G)≥ r−2.
Hence hO(G) = r−2
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