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Darcy-Benard double diffusive Marangoni
convection with Soret effect in a composite layer
system
R. Sumithra1 , B. Komala 2*, N. Manjunatha 3

Abstract
The effect of Soret parameter on double diffusive Marangoni convection in a two-layer system, comprising an
incompressible two component fluid saturated porous layer over which lies a layer of the same fluid under micro
gravity condition is investigated analytically. The upper boundary of the fluid layer is free, the lower boundary of
the porous layer is rigid and both the boundaries are insulating to heat and mass. At the interface, the velocity,
shear stress, normal stress, heat, heat flux, mass and mass flux are assumed to be continuous. Thermal
Marangoni number is obtained by solving ordinary differential equations using method of exact solution. The
effect of different physical parameters on double diffusive Marangoni convection are also investigated in detail.
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1. Introduction
Convection driven by surface tension gradient is termed as

Marangoni convection. As surface tension is a strong function
of temperature and solute concentration, a small fluctuation
in temperature or solute concentration on the free surface can
induce convection. The temperature gradient also induces
mass flux which is known as the thermal diffusion process or
Soret effect.
Bennacer R., Mahidjiba A., Vasseur P., Beji H and Duval R.

[3] have studied numerically and analytically natural convec-
tion with Soret effect in a binary fluid saturating a shallow
horizontal porous layer using the Darcy model and the den-
sity variation is also taken into account by the Boussinesq
approximation.

M.S.Malashetty, S.N.Gaikwad and Mahantesh Swamy
[10] have analysed the double diffusive convection in a two
component couple stress liquid layer with Soret effect using
both linear and non-linear stability analyses. They have found
that the effects of couple stress are quite large and the positive
Soret number enhances the stability while the negative Soret
number enhances the instability.

S. Saravanan and T. Sivakumar [15] have analysed the
onset of Marangoni convection in a non-reactive binary fluid
layer in the presence of throughflow and Soret effect with free
top surface. The linear stability analysis is followed and an
exact solution is obtained for the corresponding eigenvalue
problem by assuming that stationary convection is exhibited at
the neutral state. They have found that the contribution from
the Soret effect is seen only when the throughflow is weak,
and for a wider range of upward throughflow when the bottom
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boundary is conducting. The instability gets advanced/delayed
when the Soret parameter assumes negative/positive values.

A. Khadiri, A. Amahmid, M. Hasnaoui and A. Rtibi [1]
have studied numerically the Soret effect on double diffusion
in a two-dimensional square cavity filled with a saturated
Darcy porous medium. P.V.S.N. Murthy and M.F. El-Amin
[12] have analyzed Thermo-diffusion effect on free convection
heat and mass transfer from a vertical surface embedded in
a liquid saturated thermally stratified non - Darcy porous
medium using a local non-similar procedure.

M. Bhuvaneswari, S. Sivasankaran and Y. J. Kim [9] have
performed a numerical analysis to understand the mixed con-
vection flow, heat and mass transfer with Soret effect in a
two-sided lid-driven square cavity. J. P. Pascal and S. J. D.
D’Alessio [8] considered the stability of a binary liquid film
flowing down a heated incline. They have implemented a
theoretical model which captures the Soret effect and the de-
pendence of surface tension on both temperature and solutal
concentration.

C. G. Mohan, A. Satheesh [4] have studied a two-dimensional
steady state double-diffusive mixed convective flow in a square
cavity with Soret effect. Rishi Raj Kairi, Ch. Ram Reddy and
Santanu Raut [14] have emphasized the thermo-diffusion and
viscous dissipation effects on double diffusive natural convec-
tion heat and mass transfer characteristics of non- Newtonian
power-law fluid over a vertical cone embedded in a non-Darcy
porous medium with variable heat and mass flux conditions.

Chigozie Israel-Cookey, Emeka Amos and Liberty Ebi-
wareme [5] investigated the effects of Soret and magnetic field
on thermosolutal convection in a porous medium with concen-
tration based internal heat source. They have formulated the
leading equations assuming that the Boussinesq approxima-
tion is valid and the Darcy law is governing the flow. Linear
stability analysis was employed to determine the onset of insta-
bility. They have also shown the influence of Soret, Hartmann
number and internal heat tabular and graphical forms.

R Sumithra and B Komala [13] have investigated the ef-
fects of Parabolic and Inverted parabolic Salinity gradients on
the onset of Double Diffusive Marangoni Convection in a two-
layer system under microgravity condition with free upper
boundary and rigid lower boundary using Darcy-Brinkman
model, employing the method of Exact solution.

Hussam K. Jawad [7] have investigated in his thesis, natu-
ral convection and Soret effect in a multi-layered liquid and
porous system. They have shown that the positive sign of
Soret parameter indicates that the denser component moves in
the direction of colder side where as negative sign indicating
the less denser component moving towards colder side of the
system under consideration. B Komala and R Sumithra [2]
have investigated the effects of Uniform and Non uniform
salinity gradients on the onset of Double Diffusive Convec-
tion in a composite layer with rigid boundaries. They have
solved resulting Eigen value problem by Regular perturbation
method and have found that for the stability demanding situa-
tions like solar ponds, the parabolic salinity profile is the most

conducive where in the onset of double diffusive convection
in a composite layer can be delayed. For the heat and mass
transfer problems like petroleum and geothermal reservoirs,
the inverted parabolic salinity profile is most suitable, where
in the onset of double diffusive convection is fast. Marangoni
convection plays an important role in material processes asso-
ciated with unbalanced surface tension. The effect of this type
of convection is significant in reduced gravity environment
as it dampens buoyancy convection and hydro static pressure.
The phenomenon of heat and mass transfer in a system that
contain layers of both fluid and porous media is of great im-
portance because of the common occurrence of the system in
many environmental, natural, and industrial applications like
ground water pollution, migration of minerals and mass trans-
port modeling in living matters, geothermal systems, crude
oil production, storage of nuclear waste material, solidifica-
tion of castings, Extraction of oil from oil sand and deep oil
reservoirs, thermal insulation systems and many more.

The above applications motivated to investigate the double
diffusive Marangoni convection in composite layer with oret
effect.

2. Formulation of the Problem

We consider a horizontal two component fluid saturated,
isotropic, densely packed porous layer of thickness dm un-
derlying a two component fluid layer of thickness d, under
micro gravity condition. The lower surface of the porous layer
is rigid and the upper surface of the fluid layer is free with
the surface tension effects depending on both temperature
and concentration. Both the boundaries are kept at different
constant temperatures and concentrations. Cartesian coordi-
nate system is chosen with the origin at the interface between
porous and fluid layers and the z - axis vertically upwards.
The basic steady state is assumed to be the quiescent and the
governing equations are continuity, momentum, energy and
concentration equations including Soret effects with Boussi-
nesq approximation.
For fluid layer,

∇ ·~q = 0 (2.1)

ρ0

[
∂~q
∂ t

+(~q ·∇)~q
]
=−∇P+µ∇

2~q (2.2)

∂T
∂ t

+(~q ·∇)T = κ∇
2T (2.3)

∂C
∂ t

+(~q ·∇)C = κc∇
2C+κT ∇

2T (2.4)

and for porous layer,

∇m ·~qm = 0 (2.5)

ρ0

φ

(
∂~qm

∂ t

)
= −∇mPm−

µ

K
~qm (2.6)
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A
∂Tm

∂ t
+(~qm ·∇m)Tm = κm∇

2
mTm (2.7)

φ
∂Cm

∂ t
+(~qm.∇)Cm = κmc∇

2Cm +κmT ∇
2Tm (2.8)

where~q = (u,v,w) is the velocity vector, t is the time, µ is the

fluid viscosity, P = p+ µpH2

2 is the total pressure, ρ0 is the

fluid density, A =
(ρ0Cp)m
(ρCp) f

is the ratio of heat capacities, Cp is

the specific heat, K is the permeability of the porous medium,
T is the temperature, κ is the thermal diffusivity, κc the solutal
diffusivity, κT the Soret coefficient, C is the concentration or
the salinity field, φ is the porosity.
The subscripts m refer to the porous medium.
The basic steady state is assumed to the quiescent and we
consider the solution of the form,
In the fluid layer,

[u,v,w,P,T,C] = [0,0,0,Pb (z) ,Tb (z) ,Cb (z)] (2.9)

and in the porous layer,

[um,vm,wm,Pm,Tm,Cm] =

[0,0,0,Pmb (zm) ,Tmb (zm) ,Cmb (zm)] (2.10)

where the subscript b denotes the basic state.
The temperature distributions Tb (z) and Tm (zm) are found to
be

Tb (z) = T0 +
(Tu−T0)z

d
in 0≤ z≤ d (2.11)

Tm (zm) = T0 +
(TL−T0)zm

dm
in 0≤ zm ≤ dm (2.12)

T0 =
κmdTl−κdmTu

κmd−κdm
at z = 0. (2.13)

The concentration distributions Cb (z) and Cm (zm) are found
to be

Cb =C0 +
z(Cu−C0)

d
in 0≤ z≤ d (2.14)

Cm =C0 +
zm(CL−C0)

dm
in 0≤ zm ≤ dm (2.15)

C0 =
κmcdCl−κCdmCu

κmcd−κcdm
at z = 0. (2.16)

In order to investigate the stability of the basic solution, in-
finitesimal disturbances are introduced in the form,

[~q,P,T,C] = [0,Pb (z) ,Tb (z) ,Cb (z)]+
[
~q′,P′,θ ,S

]
and

[~qm,Pm,Tm,Cm] =

[0,Pmb (zm) ,Tmb (zm) ,Cmb (zm)]+
[
~q′m,P

′
m,θm,Sm

]
The governing equations are linearized and then the pres-
sure term is eliminated from momentum equation of fluid and

porous layers by taking curl twice and only the vertical compo-
nent is retained. The variables are then non-dimensionalised

using
d2

κ
,

κ

d
, T0− Tu and C0−Cu as the units of time

velocity, temperature, and the concentration in the fluid layer

and
d2

m

κm
,

κm

dm
, Tl − T0 and Cl −C0 as the corresponding

characteristic quantities in the porous layer. The separate
length scales are chosen for the two layers (Chen and Chen
[6]), D.A Nield [11]), so that each layer is of unit depth with
(x, y, z)= d(x′, y′, z′) and (xm, ym, zm)= dm(x′m, y′m, z′m−1).
The detailed flow fields are obtained for all the depth ratios

d̂ =
dm

d
in both the fluid and porous layers.

The dimensionless equations are rendered to normal mode
expansion (following Venkatachalappa M et al [16]). It is
known that the principle of exchange of instabilities holds for
Double Diffusive convection in both fluid and porous layers
separately for certain choice of parameters. Therefore, we as-
sume that the principle of exchange of instabilities holds even
for the composite layers (following Nield [11]). Denoting the

differential operator
∂

∂ z
and

∂

∂ zm
by D and Dm respectively,

an Eigen value problem consisting of the following ordinary
differential equations are obtained,
In 0≤ z≤ 1(

D2−a2)2
W (z) = 0 (2.17)(

D2−a2)
Θ(z)+W (z) = 0 (2.18)(

D2−a2)S(z)+
(

1
τc
−Sr1

)
W (z) = 0 (2.19)

In −1≤ zm ≤ 0

(
D2

m−a2
m
)2

Wm(zm) = 0 (2.20)(
D2

m−a2
m
)

Θm(zm)+Wm(zm) = 0 (2.21)(
D2

m−a2
m
)

Sm(zm)−
(

Sr2 +
1

τmc

)
Wm(zm) = 0 (2.22)

where β 2 = K
d2

m
= Da is the Darcy number, µ̂ = νm

ν
is the

viscosity ratio, τc =
κc

κ
, τT =

κT

κ
are the diffusivity ratio

in fluid layer, τmc =
κmc

κm
, τmT =

κmT

κm
are the temperature

and concentration diffusivity ratio in the porous layer, a and
am are the non-dimensional horizontal wave numbers in fluid
and porous regions respectively, Θ and Θm are the tem-
perature in fluid and porous layers respectively, S and Sm
are the concentration in fluid and porous layers respectively,

Sr1 =
τT (T0−Tu)

τc(C0−Cu)
, Sr2 =

τmT (T0−Tu)

τmc(C0−Cu)
are the Soret pa-

rameters in fluid and porous regions respectively.
These ordinary differential equations are solved exactly by
using the following boundary conditions.
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3. Boundary conditions
At the upper boundary,

W (1) = 0, D2W (1)+Ma2
Θ(1)+Msa2S(1) = 0,

DΘ(1) = 0, DS(1) = 0,

At the interface,

T̂ d̂3
β

2 (D3W (0)−3a2DW (0)
)
=

−DmWm (0)+ µ̂β
2D3

mWm (0)− µ̂β
23a2

mDmWm (0) ,

T̂W (0) =Wm(0), T̂ d̂DW (0) = DmWm(0),

Θ(0) = T̂ Θm(0), DΘ(0) = DmΘm(0),

T̂ d̂2 (D2 +a2)W (0) = µ̂
(
D2

m +a2
m
)

Wm(0),

S(0) = ŜSm(0), DS(0) = DmSm(0),

At the lower boundary,

Wm (−1) = 0, DmWm(−1) = 0,
DmΘm(−1) = 0, DmSm(−1) = 0.

where M =−∂σt

∂T
(T0−Tu)d

vκ
, Ms =−

∂σt

∂S
(C0−Cu)d

vκ
are

the thermal and solute Marangoni numbers.

T̂ =
(TL−T0)

(T0−TU )
, Ŝ =

(CL−C0)

(C0−CU )
, d̂ =

dm

d
,

κ̂ =
κm

κ
=

d̂
T̂

and κ̂s =
κsm

κs
=

d̂
Ŝ

.

4. Exact Solution
The solutions of the Equations (2.17) and (2.20) are inde-

pendent of Θ(z) ,S (z) ,Θm (zm) ,Sm (zm). The expressions for
W and Wm are obtained as,

W (z) = ∆8λ37

and

Wm (zm) = ∆8 [λ38 +λ39]

where

∆1 = λ33∆8, ∆2 = λ34∆8, ∆3 = λ36∆8,

∆4 = λ32∆8, ∆5 = λ35∆8, ∆6 = λ31∆8,

∆7 = λ30∆8, λ1 =
1−6a2

mµ̂β 2

2T̂ d̂3β 2a3
,

λ2 =
am−4a3

mµ̂β 2

2T̂ d̂3β 2a3
, λ3 =

1− T̂ d̂aλ1

T̂ d̂
,

λ4 =
am− T̂ d̂aλ2

T̂ d̂
, λ5 = amsinham + cosham,

λ6 = sinham +amcosham, λ7 = λ3cosha+λ1sinha,

λ8 = λ4cosha+λ2sinha, λ9 = T̂ µ̂a2,

λ10 = T̂ d̂a, λ12 = µ̂am∆8, λ13 =
λ12

λ9−λ11
,

λ14 =
λ10

λ9−λ11
, λ15 = ∆8λ13cosha,

λ16 = sinha−λ14cosha, λ17 = λ14T̂ cosham,

λ18 = sinham +λ13T̂ cosham, λ19 =−λ14T̂ amsinham,

λ20 = amcosham, λ21 = λ6 +λ13T̂ amsinham,

λ22 = cosham−
λ7λ17

λ15
, λ23 = sinham−

λ8λ17

λ15
,

λ24 = λ17−
λ17λ16

λ15
, λ25 = λ5−

λ7λ19

λ15
,

λ26 = λ20−
λ8λ19

λ15
, λ27 = λ21−

λ16λ19

λ15
,

λ28 = λ26−
λ23λ25

λ22
, λ29 = λ27−

λ24λ25

λ22
,

λ30 =
−λ29

λ28
, λ31 =−

λ23λ30 +λ24

λ22
,

λ32 =
λ7λ31 +λ8λ30 +λ16

−λ15
, λ33 = λ13−λ14λ32,

λ34 = λ3λ31 +λ4λ30, λ35 = T̂ λ33,

λ36 = λ1λ31 +λ2λ30

λ37 = (λ33 +λ34z)cosh(az)+(λ36 +λ32z)sinh(az),

λ38 = λ35cosh(amzm)+λ31sinh(amzm) ,

λ39 = λ30cosh(σzm)+ sinh(σzm) .

The Temperature distributions Θ(z) and Θm(zm) are obtained
from the Equations (2.18) and (2.21) by substituting expres-
sions for W (z) and Wm (zm) and are as below.

Θ(z) = ∆8 [α14cosh(az)+α12sinh(az)−F(z)]

Θm(zm) = ∆8 [α15cosh(amzm)+α13sinh(amzm)−F(zm)]

where

F(z) = sinh(az)
(

zλ33

2a
+

z2λ34

4a
− zλ32

4a2

)
+

cosh(az)
(

zλ36

2a
− zλ34

4a2 +
z2λ32

4a

)
,

F(zm) = sinh(amzm)

(
zmλ35

2am
+

z2
mλ31

4am
− zm

4a2
m

)
+

cosh(amzm)

(
zmλ30

2am
− zmλ31

4a2
m

+
z2

m

4am

)
,

α1 =
λ36

2a
− λ34

4a2 , α2 = α21 +α22,

α3 =
λ30

2am
− λ31

4a2
m
, α4 = α41 +α42

α21 = sinha
(

λ33

2a
+

λ34

2a
− λ34

4a
+

λ36

2
+

λ32

4
− λ32

4a2

)
,

α22 = cosha
(

λ33

2
+

λ34

4
− λ34

4a2 +
λ36

2a
+

λ32

2a
− λ32

4a

)
,
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α41 = sinham

(
λ35

2am
+

λ31

4am
− 1

4a2
m
+

λ30

2
+

1
4

)
,

α42 = cosham

(
λ35

2
+

λ31

4
+

1
4am

+
λ30

2am
− λ31

4a2
m

)
,

α5 = α3 +α1−
α2

ea , α6 = ae−2a−a,

α7 = α5−
α4

eam
, α8 = am

(
1− e−2am

)
,

α9 = 1+ e−2a, α10 = T̂
(
1+ e−2am

)
,

α11 =
α2

aea +
T̂ α4

ameam
, α12 =

α7α10 +α8α11

α6α10 +α8α9
,

α13 =
α7−α6α12

α8
, α14 = α12e−2a +

α2

aea ,

α15 =
α13ame−am −α4

ameam

The Concentration distributions S (z) and Sm (zm) are obtained
from the Equations (2.19) and (2.22) by substituting expres-
sions for W (z) and Wm (zm) and are as below.

S (z) = ∆8 [β17cosh(az)+β14sinh(az)−β21]

Sm (zm) = ∆8 [β16cosh(amzm)+β15sinh(amzm)−β11]

where,

β11 = F(zm)

(
1

τmc
−Sr2

)
−Sr2β12,

β12 = (α15cosh[amzm]+α13sinh[amzm]) ,

β1 = Sr1 (α14 +α12) ,

β2 =

(
P36

2a
− P34

4a2−
)(

1
τc
−Sr1

)
+β22,

β22 = Sr1a(α14−α12) ,

β21 = F(z)
(

1
τc
−Sr1

)
−β22,

β22 = Sr1(α14cosh[az]+α12sinh[az]),

β3 =
d f (1)

dz

(
1
τc
−Sr1

)
+Sr1a(α14−α12) ,

β4 =−Sr2 (α15 +α13) ,

β5 =

(
P30

2am
− P31

4a2
m
−
)(

1
τmc
−Sr2

)
+β51

β51 = Sr2am (α15−α13) ,

β6 =
d fm(−1)

dz

(
1

τmc
−Sr2

)
+β61,

β61 = Sr2am (α15sinh[am]−α13cosh[am]) ,

β7 =
β3

aea −β1− Ŝβ4, β8 = 1+ e−2a,

β9 = Ŝ
(
1+ e2am

)
, β10 = β7 +

β6Ŝ
ame−am

,

β11 = a
(
e−2a−1) , β12 = am

(
e2am −1

)
,

β13 = β3e−a−β2 +
β6

e−am −β5
,

β14 =
β10β12−β9β13

β9β11−β8β12
, β15 =

β14β8 +β10

β9
,

β16 =
β15ame−am −β6

ameam
, β17 =

β14ae−a +β3

aea

The Thermal Marangoni number is obtained by

D2W (1)+Ma2
Θ(1)+Msa2S(1) = 0

as

M =
−
(
a2MsM1 +M2

)
a2M3

(4.1)

where,

M1 = β17ea +β14e−a−F(z)
(

1
τc
−Sr1

)
−M11,

M11 = Sr1 (α14cosh[az]+α12sinh[az]) ,

M2 = sinha
(
2aP34 +a2P36 +a2P32

)
+ cosha

(
a2P33 +a2P34 +2aP32

)
,

M3 = α14ea +α12e−a− sinha
(

P33

2a
+

P34

4a
− P32

4a2

)
−

cosha
(

P32

4a
+

P36

2a
− P34

4a2

)
.

5. Graphical Interpretations
The effects of horizontal wave number a on the thermal

Marangoni number M is shown in Figure 1 for fixed values
of Da = 0.005, µ̂ = 1, Ms = 10, Sr1 = 0.75, Sr2 =
0.25, Ŝ = 1, T̂ = 1. The curves are diverging, indicating
that for larger values of depth ratios d̂, the effect of horizontal
wave number a is more. Also, by increase in the value of the
horizontal wave number a, the value of the thermal Marangoni
number M increases for a fixed depth ratio d̂, thus the Darcy-
Benard double diffusive Marangoni convection is retarded and
hence the system is stabilized.

The effects of solute Marangoni number Ms on the ther-
mal Marangoni number M is shown in Figure 2 for fixed val-
ues of a = 2, µ̂ = 1, Da = 0.005, Sr1 = 0.75, Sr2 =
0.25, Ŝ = 1, T̂ = 1. The increase in the value of the solute
Marangoni number Ms, the value of the thermal Marangoni
number M increases, thus the Darcy-Benard double diffusive
Marangoni convection is retarded making the system stable.

The effects of Darcy number Da on the thermal Marangoni
number M is shown in Figure 3 for fixed values of a =
2, µ̂ = 1, Ms = 10, Sr1 = 0.75, Sr2 = 0.25, Ŝ = 1,
T̂ = 1. From the figure it is evident that the curves for different
values Da are diverging and for smaller values of depth ratios
d̂, the effect of Darcy number Da is same. Also by increase
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Figure 1. The Effect of the horizontal wave number a on
thermal Marangoni number M
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Figure 2. The Effect of solute Marangoni number Ms on
thermal Marangoni number M
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Figure 3. The Effect of Darcy number Da on thermal
Marangoni number M
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Figure 4. The Effect of Soret parameter of fluid layer Sr1 on
thermal Marangoni number M
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Figure 5. The Effect of Soret parameter of porous layer Sr2
on critical thermal Marangoni number M

in the value of the Dary number Da, the value of the thermal
Marangoni number M decreases, thus the Darcy-Benard dou-
ble diffusive Marangoni convection is accelerated making the
system unstable.

The effects of the soret parameter Sr1 =
τT (T0−Tu)

τc(C0−Cu)
in fluid

layer, on the thermal Marangoni number M is shown in Fig-
ure 4 for fixed values of a = 2, µ̂ = 1, Ms = 10, Da =
0.005, Sr2 = 0.25, Ŝ = 1, T̂ = 1. By increase in the
value of the Soret parameter Sr1, the value of the thermal
Marangoni number M decreases, thus the Darcy-Benard dou-
ble diffusive Marangoni convection is accelerated making the
system unstable.

The effects of the soret parameter Sr2 =
τmT (T0−Tu)

τmc(C0−Cu)
in porous layer, on the thermal Marangoni number M is
shown in Figure 5 for fixed values of a = 2, µ̂ = 1, Ms =
10, Da = 0.005, Sr1 = 0.75, Ŝ = 1, T̂ = 1. By in-
crease in the value of the Soret parameter Sr2, the value of
the thermal Marangoni number M decreases, thus the Darcy-
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Benard double diffusive Marangoni convection is accelerated
making the system unstable.

6. Consequences

• The Darcy-Benard double diffusive Marangoni con-
vection can be accelerated by increasing the physical
parameters Darcy number Da, the Soret parameters Sr1
of fluid layer and the Soret parameter Sr2 of porous
layer making the system unstable.

• The Darcy-Benard double diffusive Marangoni convec-
tion can be retarded by increasing the physical parame-
ters wave number a and solute Marangoni number Ms
making the system stable.

• The effects of horizontal wave number a, the Darcy
number Da, solute Marangoni number Ms and the Soret
parameters Sr1 of fluid layer are dominant for larger
values of depth ratio d̂ i.e., for porous layer dominant
composite layer system.

• The effects of the Soret parameter Sr2 of porous layer
is prominent for smaller values of depth ratio d̂ i.e., for
fluid layer dominant composite layer system.
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